MAU34804—Fixed Point Theorems and Economic Equilibria
School of Mathematics, Trinity College
Hilary Term 2022
Appendix A: Proofs of Basic Results of Real
Analysis

David R. Wilkins

A. Proofs of Basic Results of Real Analysis

Lemma 1.1

Let **p** be a point of \mathbb{R}^n , where $\mathbf{p} = (p_1, p_2, \dots, p_n)$. Then a sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots$ of points in \mathbb{R}^n converges to **p** if and only if the *i*th components of the elements of this sequence converge to p_i for $i = 1, 2, \dots, n$.

Proof of Lemma 1.1

Let $(\mathbf{x}_j)_i$ denote the ith components of \mathbf{x}_j . Then $|(\mathbf{x}_j)_i - p_i| \leq |\mathbf{x}_j - \mathbf{p}|$ for $i = 1, 2, \dots, n$ and for all positive integers j. It follows directly from the definition of convergence that if $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$ then $(\mathbf{x}_j)_i \to p_i$ as $j \to +\infty$.

Conversely suppose that, for each integer i between 1 and n, $(\mathbf{x}_j)_i \to p_i$ as $j \to +\infty$. Let $\varepsilon > 0$ be given. Then there exist positive integers N_1, N_2, \ldots, N_n such that $|(\mathbf{x}_j)_i - p_i| < \varepsilon / \sqrt{n}$ whenever $j \geq N_i$. Let N be the maximum of N_1, N_2, \ldots, N_n . If $j \geq N$ then $j \geq N_i$ for $i = 1, 2, \ldots, n$, and therefore

$$|\mathbf{x}_j - \mathbf{p}|^2 = \sum_{i=1}^n ((\mathbf{x}_j)_i - p_i)^2 < n \left(\frac{\varepsilon}{\sqrt{n}}\right)^2 = \varepsilon^2.$$

Thus $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$, as required.

The real number system satisfies the Least Upper Bound Principle:

Any set of real numbers which is non-empty and bounded above has a least upper bound.

Let S be a set of real numbers which is non-empty and bounded above. The least upper bound, or *supremum*, of the set S is denoted by $\sup S$, and is characterized by the following two properties:

- (i) $x \le \sup S$ for all $x \in S$;
- (ii) if u is a real number, and if $x \le u$ for all $x \in S$, then $\sup S \le u$.

A straightforward application of the Least Upper Bound guarantees that any set of real numbers that is non-empty and bounded below has a greatest lower bound, or *infimum*. The greatest lower bound of such a set S of real numbers is denoted by inf S.

A.0.

An infinite sequence x_1, x_2, x_3, \ldots of real numbers is said to be strictly increasing if $x_{j+1} > x_j$ for all positive integers j, strictly decreasing if $x_{j+1} < x_j$ for all positive integers j, non-decreasing if $x_{j+1} \ge x_j$ for all positive integers j, non-increasing if $x_{j+1} \le x_j$ for all positive integers j. A sequence satisfying any one of these conditions is said to be monotonic; thus a monotonic sequence is either non-decreasing or non-increasing.

Theorem A.1

Any non-decreasing sequence of real numbers that is bounded above is convergent. Similarly any non-increasing sequence of real numbers that is bounded below is convergent.

Proof

Let x_1, x_2, x_3, \ldots be a non-decreasing sequence of real numbers that is bounded above. It follows from the Least Upper Bound Principle that there exists a least upper bound p for the set $\{x_j: j \in \mathbb{N}\}$. We claim that the sequence converges to p.

Let some strictly positive real number ε be given. We must show that there exists some positive integer N such that $|x_i - p| < \varepsilon$ whenever i > N. Now $p - \varepsilon$ is not an upper bound for the set $\{x_i: j \in \mathbb{N}\}$ (since p is the least upper bound), and therefore there must exist some positive integer N such that $x_N > p - \varepsilon$. But then $p - \varepsilon < x_i \le p$ whenever $j \ge N$, since the sequence is non-decreasing and bounded above by p. Thus $|x_i - p| < \varepsilon$ whenever $j \geq N$. Therefore $x_i \rightarrow p$ as $j \rightarrow +\infty$, as required. If the sequence x_1, x_2, x_3, \ldots is non-increasing and bounded below then the sequence $-x_1, -x_2, -x_3, \dots$ is non-decreasing and bounded above, and is therefore convergent. It follows that the sequence x_1, x_2, x_3, \dots is also convergent.

Theorem A.2 (Bolzano-Weierstrass Theorem in One Dimension)

Every bounded sequence of real numbers has a convergent subsequence.

Proof

Let a_1, a_2, a_3, \ldots be a bounded sequence of real numbers. We define a *peak index* to be a positive integer j with the property that $a_j \geq a_k$ for all positive integers k satisfying $k \geq j$. Thus a positive integer j is a peak index if and only if the jth member of the infinite sequence a_1, a_2, a_3, \ldots is greater than or equal to all succeeding members of the sequence. Let S be the set of all peak indices. Then

$$S = \{j \in \mathbb{N} : a_j \ge a_k \text{ for all } k \ge j\}.$$

First let us suppose that the set S of peak indices is infinite. Arrange the elements of S in increasing order so that $S=\{j_1,j_2,j_3,j_4,\ldots\}$, where $j_1< j_2< j_3< j_4<\cdots$. It follows from the definition of peak indices that $a_{j_1}\geq a_{j_2}\geq a_{j_3}\geq a_{j_4}\geq \cdots$. Thus $a_{j_1},a_{j_2},a_{j_3},\ldots$ is a non-increasing subsequence of the original sequence a_1,a_2,a_3,\ldots . This subsequence is bounded below (since the original sequence is bounded). It follows from Theorem A.1 that $a_{j_1},a_{j_2},a_{j_3},\ldots$ is a convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive integer i_1 which is greater than every peak index. Then i_1 is not a peak index. Therefore there must exist some positive integer j_2 satisfying $j_2 > j_1$ such that $a_{i_2} > a_{j_1}$. Moreover j_2 is not a peak index (because j_2 is greater than j_1 and j_1 in turn is greater than every peak index). Therefore there must exist some positive integer j_3 satisfying $j_3 > j_2$ such that $a_{j_3} > a_{j_2}$. We can continue in this way to construct (by induction on i) a strictly increasing subsequence $a_{j_1}, a_{j_2}, a_{j_3}, \ldots$ of our original sequence. This increasing subsequence is bounded above (since the original sequence is bounded) and thus is convergent, by Theorem A.1. This completes the proof of the Bolzano-Weierstrass Theorem.

Theorem 1.2

Every bounded sequence of points in a Euclidean space has a convergent subsequence.

Proof of Theorem 1.2

The theorem is proved by induction on the dimension n of the space \mathbb{R}^n within which the points reside. When n=1, the required result is the one-dimensional case of the Bolzano-Weierstrass Theorem, and the result has already been established in this case (see Theorem A.2).

When n > 1, the result is proved in dimension n asssuming the result in dimensions n-1 and 1. Consequently the result is established successively in dimensions $2, 3, 4, \ldots$, and therefore is valid for bounded sequences in \mathbb{R}^n for all positive integers n.

It has been shown that every bounded infinite sequence of real numbers has a convergent subsequence (Theorem A.2). Let n be an integer greater than one, and suppose, as an induction hypothesis, that, in cases where n>2, all bounded sequences of points in \mathbb{R}^{n-1} have convergent subsequences. Let $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\ldots$ be a bounded infinite sequence in \mathbf{R}^n and, for each positive integer j, let \mathbf{s}_j denote the point of \mathbb{R}^{n-1} whose ith component is equal to the ith component $x_{j,i}$ of \mathbf{x}_j for each integer i between 1 and n-1.

Let some strictly positive real number ε be given. Now the infinite sequence

$$\textbf{s}_1,\textbf{s}_2,\textbf{s}_3,\dots$$

of points of \mathbb{R}^{n-1} is a bounded infinite sequence. In the case when n=2 we can apply the one-dimensional Bolzano-Weierstrass Theorem (Theorem A.2) to conclude that this sequence of real numbers has a convergent subsequence. In cases where n>2, we are supposing as our induction hypothesis that any bounded sequence in \mathbb{R}^{n-1} has a convergent subsequence. Thus, assuming this induction hypothesis in cases where n>2, we can conclude, in all cases with n>1, that the bounded infinite sequence $\mathbf{s}_1,\mathbf{s}_2,\mathbf{s}_3,\ldots$ of points in \mathbb{R}^{n-1} has a convergent subsequence.

Let that convergent subsequence be

$$\mathbf{s}_{m_1}, \mathbf{s}_{m_2}, \mathbf{s}_{m_3}, \ldots,$$

where m_1, m_2, m_3, \ldots is a strictly increasing infinite sequence of positive integers, and let $\mathbf{q} = \lim_{j \to +\infty} \mathbf{s}_{m_j}$. There then exists some positive integer L such that

$$|\mathbf{s}_{m_j} - \mathbf{q}| < \frac{1}{2}\varepsilon$$

for all positive integers j for which $m_j \geq L$. (Indeed the definition of convergence ensures the existence of a positive integer N that is large enough to ensure that $|\mathbf{s}_{m_j} - \mathbf{q}| < \frac{1}{2}\varepsilon$ whenever $j \geq N$. Taking $L = m_N$ then ensures that $j \geq N$ whenever $m_j \geq L$.)

Let t_j denote the *n*th component of the point \mathbf{x}_j of \mathbb{R}^n for each positive integer j. The one-dimensional Bolzano-Weierstrass Theorem ensures that the bounded infinite sequence

$$t_{m_1}, t_{m_2}, t_{m_3}, \ldots$$

of real numbers has a convergent subsequence. It follows that there is a strictly increasing infinite sequence k_1, k_2, k_3, \ldots of positive integers, where each k_j is equal to one of the positive integers m_1, m_2, m_3, \ldots , such that the infinite sequence

$$t_{k_1},t_{k_2},t_{k_3},\ldots$$

is convergent.

Let $r=\lim_{j\to+\infty}t_{k_j}.$ There then exists some positive integer M such that $M\geq L$ and

$$|t_{k_i}-r|<\frac{1}{2}\varepsilon$$

for all positive integers j for which $k_j \ge M$. It follows that if $k_i \ge M$ then

$$|\mathbf{s}_{k_j} - \mathbf{q}| < \frac{1}{2}\varepsilon$$
 and $|t_{k_j} - r| < \frac{1}{2}\varepsilon$.

Now there is a point \mathbf{p} of \mathbb{R}^n , where $\mathbf{p}=(p_1,p_2,\ldots,p_n)$, determined so that the ith components of the point \mathbf{p} of \mathbb{R}^n is equal to the ith component of the point \mathbf{q} of \mathbb{R}^{n-1} for each integer i between 1 and n-1 and also the nth component of the point \mathbf{p} is equal to the real number t.

Also it follows from the definition of the Euclidean norm that

$$|\mathbf{x}_{k_j} - \mathbf{p}|^2 = |\mathbf{s}_{k_j} - \mathbf{q}|^2 + |t_{k_j} - r|^2 < \frac{1}{2}\varepsilon^2$$

whenever $k_j \geq M$. But then $|\mathbf{x}_{k_j} - \mathbf{p}| < \varepsilon$ for all positive integers j for which $k_j \geq M$. It follows that $\lim_{j \to +\infty} \mathbf{x}_{k_j} = \mathbf{p}$. We conclude therefore that the bounded infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ does indeed have a convergent subsequence. This completes the proof of the Bolzano-Weierstrass Theorem in dimension n for all positive integers n.

Lemma 1.3

Let X be a subset of \mathbb{R}^n , and let \mathbf{p} be a point of X. Then, for any positive real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about \mathbf{p} is open in X.

Proof of Lemma 1.3

Let \mathbf{x} be an element of $B_X(\mathbf{p},r)$. We must show that there exists some $\delta>0$ such that $B_X(\mathbf{x},\delta)\subset B_X(\mathbf{p},r)$. Let $\delta=r-|\mathbf{x}-\mathbf{p}|$. Then $\delta>0$, since $|\mathbf{x}-\mathbf{p}|< r$. Moreover if $\mathbf{y}\in B_X(\mathbf{x},\delta)$ then

$$|\mathbf{y} - \mathbf{p}| \le |\mathbf{y} - \mathbf{x}| + |\mathbf{x} - \mathbf{p}| < \delta + |\mathbf{x} - \mathbf{p}| = r,$$

by the Triangle Inequality, and hence $\mathbf{y} \in B_X(\mathbf{p}, r)$. Thus $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. This shows that $B_X(\mathbf{p}, r)$ is an open set, as required.

Proposition 1.4

Let X be a subset of \mathbb{R}^n . The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open in X;
- (ii) the union of any collection of open sets in X is itself open in X;
- (iii) the intersection of any *finite* collection of open sets in X is itself open in X.

Proof of Proposition 1.4

The empty set \emptyset is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set X. This proves (i).

Let \mathcal{A} be any collection of open sets in X, and let U denote the union of all the open sets belonging to \mathcal{A} . We must show that U is itself open in X. Let $\mathbf{x} \in U$. Then $\mathbf{x} \in V$ for some set V belonging to the collection \mathcal{A} . It follows that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset V$. But $V \subset U$, and thus $B_X(\mathbf{x}, \delta) \subset U$. This shows that U is open in X. This proves (ii).

Finally let $V_1, V_2, V_3, \ldots, V_k$ be a *finite* collection of subsets of X that are open in X, and let V denote the intersection $V_1 \cap V_2 \cap \cdots \cap V_k$ of these sets. Let $\mathbf{x} \in V$. Now $\mathbf{x} \in V_i$ for $j = 1, 2, \dots, k$, and therefore there exist strictly positive real numbers $\delta_1, \delta_2, \dots, \delta_k$ such that $B_X(\mathbf{x}, \delta_i) \subset V_i$ for $j = 1, 2, \dots, k$. Let δ be the minimum of $\delta_1, \delta_2, \dots, \delta_k$. Then $\delta > 0$. (This is where we need the fact that we are dealing with a finite collection of sets.) Now $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{x}, \delta_i) \subset V_i$ for i = 1, 2, ..., k, and thus $B_X(\mathbf{x}, \delta) \subset V$. Thus the intersection V of the sets V_1, V_2, \ldots, V_k is itself open in X. This proves (iii).

Proposition 1.5

Let X be a subset of \mathbb{R}^n , and let U be a subset of X. Then U is open in X if and only if there exists some open set V in \mathbb{R}^n for which $U = V \cap X$.

Proof of Proposition 1.5

First suppose that $U=V\cap X$ for some open set V in \mathbb{R}^n . Let $\mathbf{u}\in U$. Then the definition of open sets in \mathbb{R}^n ensures that there exists some positive real number δ such that

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < \delta\} \subset V.$$

Then

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{u}| < \delta\} \subset U.$$

This shows that U is open in X.

Conversely suppose that the subset U of X is open in X. For each point \mathbf{u} of U there exists some positive real number $\delta_{\mathbf{u}}$ such that

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{u}| < \delta_{\mathbf{u}}\} \subset U.$$

For each $\mathbf{u} \in U$, let $B(\mathbf{u}, \delta_{\mathbf{u}})$ denote the open ball in \mathbb{R}^n of radius $\delta_{\mathbf{u}}$ about the point \mathbf{u} , so that

$$B(\mathbf{u}, \delta_{\mathbf{u}}) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < \delta_{\mathbf{u}}\}$$

for all $\mathbf{u} \in U$, and let V be the union of all the open balls $B(\mathbf{u}, \delta_{\mathbf{u}})$ as \mathbf{u} ranges over all the points of U. Then V is an open set in \mathbb{R}^n . Indeed every open ball in \mathbb{R}^n is an open set (Lemma 1.3), and any union of open sets in \mathbb{R}^n is itself an open set (Proposition 1.4). The set V is a union of open balls. It is therefore a union of open sets, and so must itself be an open set.

Now $B(\mathbf{u}, \delta_{\mathbf{u}}) \cap X \subset U$. for all $\mathbf{u} \in U$. Also every point of V belongs to $B(\mathbf{u}, \delta_{\mathbf{u}})$ for at least one point \mathbf{u} of U. It follows that $V \cap X \subset U$. But $\mathbf{u} \in B(\mathbf{u}, \delta_{\mathbf{u}})$ and $B(\mathbf{u}, \delta_{\mathbf{u}}) \subset V$ for all $\mathbf{u} \in U$, and therefore $U \subset V$, and thus $U \subset V \cap X$. It follows that $U = V \cap X$, as required.

Lemma 1.6

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n converges to a point \mathbf{p} if and only if, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ for all j satisfying $j \geq N$.

Proof of Lemma 1.6

Suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ has the property that, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ whenever $j \geq N$. Let $\varepsilon > 0$ be given. The open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is an open set by Lemma 1.3. Therefore there exists some positive integer N such that $\mathbf{x}_j \in B(\mathbf{p}, \varepsilon)$ whenever $j \geq N$. Thus $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \geq N$. This shows that the sequence converges to \mathbf{p} .

Conversely, suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to \mathbf{p} . Let U be an open set which contains \mathbf{p} . Then there exists some $\varepsilon > 0$ such that the open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is a subset of U. Thus there exists some $\varepsilon > 0$ such that U contains all points \mathbf{x} of X that satisfy $|\mathbf{x} - \mathbf{p}| < \varepsilon$. But there exists some positive integer N with the property that $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \geq N$, since the sequence converges to \mathbf{p} . Therefore $\mathbf{x}_j \in U$ whenever $j \geq N$, as required.

Lemma 1.8

Let X be a subset of \mathbb{R}^n , and let F be a subset of X which is closed in X. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of F which converges to a point \mathbf{p} of X. Then $\mathbf{p} \in F$.

Proof of Lemma 1.8

The complement $X \setminus F$ of F in X is open, since F is closed. Suppose that \mathbf{p} were a point belonging to $X \setminus F$. It would then follow from Lemma 1.6 that $\mathbf{x}_j \in X \setminus F$ for all values of j greater than some positive integer N, contradicting the fact that $\mathbf{x}_j \in F$ for all j. This contradiction shows that \mathbf{p} must belong to F, as required.

Lemma 1.9

Let X, Y and Z be subsets of \mathbb{R}^m , \mathbb{R}^n and \mathbb{R}^k respectively, and let $f: X \to Y$ and $g: Y \to Z$ be functions satisfying $f(X) \subset Y$. Suppose that f is continuous at some point \mathbf{p} of X and that g is continuous at $f(\mathbf{p})$. Then the composition function $g \circ f: X \to Z$ is continuous at \mathbf{p} .

Proof of Lemma 1.9

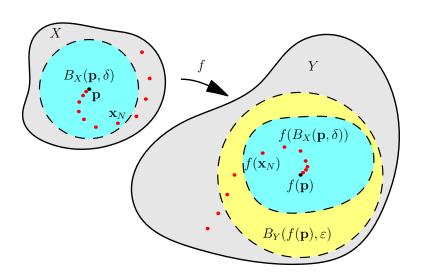
Let $\varepsilon>0$ be given. Then there exists some $\eta>0$ such that $|g(\mathbf{y})-g(f(\mathbf{p}))|<\varepsilon$ for all $\mathbf{y}\in Y$ satisfying $|\mathbf{y}-f(\mathbf{p})|<\eta$. But then there exists some $\delta>0$ such that $|f(\mathbf{x})-f(\mathbf{p})|<\eta$ for all $\mathbf{x}\in X$ satisfying $|\mathbf{x}-\mathbf{p}|<\delta$. It follows that $|g(f(\mathbf{x}))-g(f(\mathbf{p}))|<\varepsilon$ for all $\mathbf{x}\in X$ satisfying $|\mathbf{x}-\mathbf{p}|<\delta$, and thus $g\circ f$ is continuous at \mathbf{p} , as required.

Lemma 1.10

Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ be a continuous function from X to Y. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of X which converges to some point \mathbf{p} of X. Then the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$.

Proof of Lemma 1.10

Let $\varepsilon > 0$ be given. Then there exists some $\delta > 0$ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, since the function f is continuous at \mathbf{p} .



Also there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \delta$ whenever $j \geq N$, since the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to \mathbf{p} . Thus if $j \geq N$ then $|f(\mathbf{x}_j) - f(\mathbf{p})| < \varepsilon$. Thus the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$, as required.

Proposition 1.9

Let X, Y and Z be subsets of \mathbb{R}^m , \mathbb{R}^n and \mathbb{R}^k respectively, and let $f: X \to Y$ and $g: Y \to Z$ be functions satisfying $f(X) \subset Y$. Suppose that f is continuous at some point \mathbf{p} of X and that g is continuous at $f(\mathbf{p})$. Then the composition function $g \circ f: X \to Z$ is continuous at \mathbf{p} .

Proof of Proposition 1.9

Note that the ith component f_i of f is given by $f_i = \pi_i \circ f$, where $\pi_i \colon \mathbb{R}^n \to \mathbb{R}$ is the continuous function which maps $(y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ onto its ith coordinate y_i . Now any composition of continuous functions is continuous, by Lemma 1.9. Thus if f is continuous at \mathbf{p} , then so are the components of f.

Conversely suppose that the components of f are continuous at $\mathbf{p} \in X$. Let $\varepsilon > 0$ be given. Then there exist positive real numbers $\delta_1, \delta_2, \ldots, \delta_n$ such that $|f_i(\mathbf{x}) - f_i(\mathbf{p})| < \varepsilon/\sqrt{n}$ for $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta_i$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$. If $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$ then

$$|f(\mathbf{x})-f(\mathbf{p})|^2=\sum_{i=1}^n|f_i(\mathbf{x})-f_i(\mathbf{p})|^2<\varepsilon^2,$$

and hence $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$. Thus the function f is continuous at \mathbf{p} , as required.

Proposition 1.12

Let X be a subset of \mathbb{R}^n , and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions from X to \mathbb{R} . Then the functions f+g, f-g and $f\cdot g$ are continuous. If in addition $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ then the quotient function f/g is continuous.

Proof of Proposition 1.12

First we prove that f+g is continuous. Let some strictly positive real number ε be given. Then there exist strictly positive real numbers δ_1 and δ_2 such that $|f(\mathbf{x})-f(\mathbf{p})|<\frac{1}{2}\varepsilon$ whenever $\mathbf{x}\in X$ satisfies $|\mathbf{x}-\mathbf{p}|<\delta_1$ and $|g(\mathbf{x})-g(\mathbf{p})|<\frac{1}{2}\varepsilon$ whenever $\mathbf{x}\in X$ satisfies $|\mathbf{x}-\mathbf{p}|<\delta_2$. Let δ be the minimum of δ_1 and δ_2 . If $\mathbf{x}\in X$ satisfies $|\mathbf{x}-\mathbf{p}|<\delta$ then

$$|(f+g)(\mathbf{x})-(f+g)(\mathbf{p})|\leq |f(\mathbf{x})-f(\mathbf{p})|+|g(\mathbf{x})-g(\mathbf{p})|<\frac{1}{2}\varepsilon+\frac{1}{2}\varepsilon=\varepsilon.$$

Thus the function f + g is continuous at **p**.

The function -g is also continuous at \mathbf{p} , and f-g=f+(-g). It follows that the function f-g is continuous at \mathbf{p} .

Next we prove that $f \cdot g$ is continuous. Let some strictly positive real number ε be given. There exists some strictly positive real number δ_0 such that $|f(\mathbf{x}) - f(\mathbf{p})| < 1$ and $|g(\mathbf{x}) - g(\mathbf{p})| < 1$ whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta_0$. Let M be the maximum of $|f(\mathbf{p})| + 1$ and $|g(\mathbf{p})| + 1$. Then $|f(\mathbf{x})| < M$ and $|g(\mathbf{x})| < M$ whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta_0$. Now

$$f(\mathbf{x})g(\mathbf{x}) - f(\mathbf{p})g(\mathbf{p}) = (f(\mathbf{x}) - f(\mathbf{p}))g(\mathbf{x}) + f(\mathbf{p})(g(\mathbf{x}) - g(\mathbf{p})),$$

and thus

$$|f(\mathbf{x})g(\mathbf{x}) - f(\mathbf{p})g(\mathbf{p})| \le M(|f(\mathbf{x}) - f(\mathbf{p})| + |g(\mathbf{x}) - g(\mathbf{p})|)$$

whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta_0$.

There then exists some strictly positive real number δ , where $0 < \delta \le \delta_0$, such that

$$|f(\mathbf{x}) - f(\mathbf{p})| < \frac{\varepsilon}{2M}$$
 and $|g(\mathbf{x}) - g(\mathbf{p})| < \frac{\varepsilon}{2M}$

whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$. But then

$$|f(\mathbf{x})g(\mathbf{x}) - f(\mathbf{p})g(\mathbf{p})| < \varepsilon$$

whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$. Thus the function $f \cdot g$ is continuous at \mathbf{p} .

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$. Note that $1/g = r \circ g$, where $r \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is the reciprocal function, defined by r(t) = 1/t. Now the reciprocal function r is continuous. Thus the function 1/g is a composition of continuous functions and is thus continuous. But then, using the fact that a product of continuous real-valued functions is continuous, we deduce that f/g is continuous.

Lemma 1.13

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a continuous function mapping X into \mathbb{R}^n , and let $|f|: X \to \mathbb{R}$ be defined such that $|f|(\mathbf{x}) = |f(\mathbf{x})|$ for all $\mathbf{x} \in X$. Then the real-valued function |f| is continuous on X.

Proof of Lemma 1.13

Let \mathbf{x} and \mathbf{p} be elements of X. Then

$$|f(\mathbf{x})| = |(f(\mathbf{x}) - f(\mathbf{p})) + f(\mathbf{p})| \le |f(\mathbf{x}) - f(\mathbf{p})| + |f(\mathbf{p})|$$

and

$$|f(\mathbf{p})| = |(f(\mathbf{p}) - f(\mathbf{x})) + f(\mathbf{x})| \le |f(\mathbf{x}) - f(\mathbf{p})| + |f(\mathbf{x})|,$$

and therefore

$$||f(\mathbf{x})|-|f(\mathbf{p})|| \leq |f(\mathbf{x})-f(\mathbf{p})|.$$

The result now follows from the definition of continuity, using the above inequality. Indeed let \mathbf{p} be a point of X, and let some positive real number ε be given. Then there exists a positive real number δ small enough to ensure that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. But then

$$||f(\mathbf{x})| - |f(\mathbf{p})|| \le |f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$$

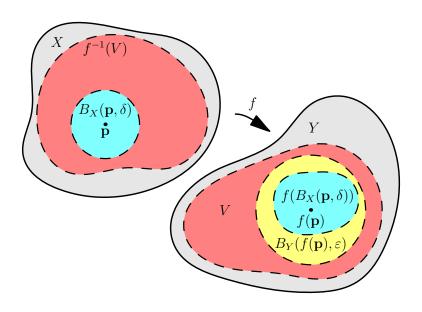
for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, and thus the function |f| is continuous, as required.

Proposition 1.14

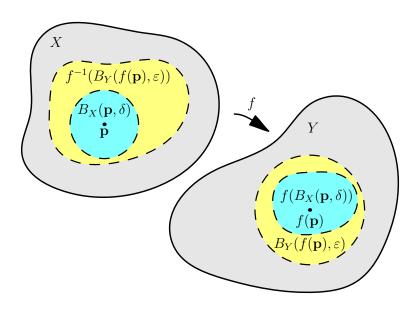
Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(V)$ is open in X for every open subset V of Y.

Proof of Proposition 1.14

Suppose that $f: X \to Y$ is continuous. Let V be an open set in Y. We must show that $f^{-1}(V)$ is open in X. Let $\mathbf{p} \in f^{-1}(V)$. Then $f(\mathbf{p}) \in V$. But V is open, hence there exists some $\varepsilon > 0$ with the property that $B_Y(f(\mathbf{p}), \varepsilon) \subset V$. But f is continuous at \mathbf{p} . Therefore there exists some $\delta > 0$ such that f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$ (see the remarks above). Thus $f(\mathbf{x}) \in V$ for all $\mathbf{x} \in B_X(\mathbf{p}, \delta)$, showing that $B_X(\mathbf{p}, \delta) \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is open in X for every open set V in Y.



Conversely suppose that $f\colon X\to Y$ is a function with the property that $f^{-1}(V)$ is open in X for every open set V in Y. Let $\mathbf{p}\in X$. We must show that f is continuous at \mathbf{p} .



Let $\varepsilon > 0$ be given. Then $B_Y(f(\mathbf{p}), \varepsilon)$ is an open set in Y, by Lemma 1.3, hence $f^{-1}(B_Y(f(\mathbf{p}), \varepsilon))$ is an open set in X which contains \mathbf{p} . It follows that there exists some $\delta > 0$ such that $B_X(\mathbf{p}, \delta) \subset f^{-1}(B_Y(f(\mathbf{p}), \varepsilon))$. Thus, given any $\varepsilon > 0$, there exists some $\delta > 0$ such that f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$. We conclude that f is continuous at \mathbf{p} , as required.

Corollary 1.15

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively, and let $\varphi \colon X \to Y$ be a continuous function from X to Y. Then $\varphi^{-1}(F)$ is closed in X for every subset F of Y that is closed in Y.

Proof of Corollary 1.15

Let F be a subset of Y that is closed in Y, and let let $V=Y\setminus F$. Then V is open in Y. It follows from Proposition 1.14 that $\varphi^{-1}(V)$ is open in X. But

$$\varphi^{-1}(V) = \varphi^{-1}(Y \setminus F) = X \setminus \varphi^{-1}(F).$$

Indeed let $\mathbf{x} \in X$. Then

$$\mathbf{x} \in \varphi^{-1}(V)$$

$$\iff \mathbf{x} \in \varphi^{-1}(Y \setminus F)$$

$$\iff \varphi(\mathbf{x}) \in Y \setminus F$$

$$\iff \varphi(\mathbf{x}) \notin F$$

$$\iff \mathbf{x} \notin \varphi^{-1}(F)$$

$$\iff \mathbf{x} \in X \setminus \varphi^{-1}(F).$$

It follows that the complement $X \setminus \varphi^{-1}(F)$ of $\varphi^{-1}(F)$ in X is open in X, and therefore $\varphi^{-1}(F)$ itself is closed in X, as required.

Lemma 1.16

Let X be a closed subset of n-dimensional Euclidean space \mathbb{R}^n . Then a subset of X is closed in X if and only if it is closed in \mathbb{R}^n .

Proof of Lemma 1.16

Let F be a subset of X. Then F is closed in X if and only if, given any point \mathbf{p} of X for which $\mathbf{p} \not\in F$, there exists some strictly positive real number δ such that there is no point of F whose distance from the point \mathbf{p} is less than δ . It follows easily from this that is F is closed in \mathbb{R}^n then F is closed in X.

Conversely suppose that F is closed in X, where X itself is closed in \mathbb{R}^n . Let \mathbf{p} be a point of \mathbb{R}^n that satisfies $\mathbf{p} \notin F$. Then either $\mathbf{p} \in X$ or $\mathbf{p} \notin X$.

Suppose that $\mathbf{p} \in X$. Then there exists some strictly positive real number δ such that there is no point of F whose distance from the point \mathbf{p} is less than δ .

Otherwise $\mathbf{p} \not\in X$. Then there exists some strictly positive real number δ such that there is no point of X whose distance from the point \mathbf{p} is less than δ , because X is closed in \mathbb{R}^n . But $F \subset X$. It follows that there is no point of F whose distance from the point \mathbf{p} is less than δ . We conclude that the set F is closed in \mathbb{R}^n , as required.

Lemma A.3

Let X be a closed bounded set in \mathbb{R}^m , and let $f: X \to \mathbb{R}$ be a continuous real-valued function defined on X. Suppose that the set of values of the function f on X is bounded below. Then there exists a point \mathbf{u} of X such that $f(\mathbf{u}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in X$.

Proof

Let

$$m = \inf\{f(\mathbf{x}) : \mathbf{x} \in X\}.$$

Then there exists an infinite sequence x_1, x_2, x_3, \ldots in X such that

$$f(\mathbf{x}_j) < m + \frac{1}{j}$$

for all positive integers j. It follows from the multidimensional Bolzano-Weierstrass Theorem (Theorem 1.2) that this sequence has a subsequence $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$ which converges to some point \mathbf{u} of \mathbb{R}^m .

Now the point \mathbf{u} belongs to X because X is closed (see Lemma 1.8). Also

$$m \leq f(\mathbf{x}_{k_j}) < m + \frac{1}{k_j}$$

for all positive integers j. It follows that $\lim_{j \to +\infty} f(\mathbf{x}_{k_j}) = m$. Consequently

$$f(\mathbf{u}) = f\left(\lim_{j \to +\infty} \mathbf{x}_{k_j}\right) = \lim_{j \to +\infty} f(\mathbf{x}_{k_j}) = m$$

(see Proposition 1.10). It follows therefore that $f(\mathbf{x}) \geq f(\mathbf{u})$ for all $\mathbf{x} \in X$, Thus the function f attains a minimum value at the point \mathbf{u} of X, which is what we were required to prove.

Lemma A.4

Let X be a closed bounded set in \mathbb{R}^m , and let $\varphi \colon X \to \mathbb{R}^n$ be a continuous function mapping X into \mathbb{R}^n . Then there exists a positive real number M with the property that $|\varphi(\mathbf{x})| \leq M$ for all $\mathbf{x} \in X$.

Proof

Let $g: X \to \mathbb{R}$ be defined such that

$$g(\mathbf{x}) = \frac{1}{1 + |\varphi(\mathbf{x})|}$$

for all $\mathbf{x} \in X$. Now the real-valued function mapping each $\mathbf{x} \in X$ to $|\varphi(\mathbf{x})|$ is continuous (see Lemma 1.13) and quotients of continuous real-valued functions are continuous where they are defined (see Lemma 1.12). It follows that the function $g \colon X \to \mathbb{R}$ is continuous. Moreover the values of this function are bounded below by zero. Consequently there exists some point \mathbf{w} of X with the property that $g(\mathbf{x}) \geq g(\mathbf{w})$ for all $\mathbf{x} \in X$ (see Lemma A.3). Let $M = |\varphi(\mathbf{w})|$. Then $|\varphi(\mathbf{x})| \leq M$ for all $\mathbf{x} \in X$. The result follows.

Theorem 1.17

Let X be a closed bounded set in \mathbb{R}^m , and let $f: X \to \mathbb{R}$ be a continuous real-valued function defined on X. Then there exist points \mathbf{u} and \mathbf{v} of X such that $f(\mathbf{u}) \leq f(\mathbf{x}) \leq f(\mathbf{v})$ for all $\mathbf{x} \in X$.

Proof of Theorem 1.17

It follows from Lemma A.4 that there exists positive real number M with the property that $-M \leq f(\mathbf{x}) \leq M$ for all $\mathbf{x} \in X$. Thus the set of values of the function f is bounded above and below on X. Consequently there exist points \mathbf{u} and \mathbf{v} where the functions f and -f respectively attain their minimum values on the set X (see Lemma A.3). The result follows.