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4. The Simplex Method

4. The Simplex Method

4.1. Vector Inequalities and Notational Conventions

Let v be an element of the real vector space Rn. We denote by
(v)j the jth component of the vector v. The vector v can be
represented in the usual fashion as an n-tuple (v1, v2, . . . , vn),
where vj = (v)j for j = 1, 2, . . . , n. However where an
n-dimensional vector appears in matrix equations it will usually be
considered to be an n × 1 column vector. The row vector
corresponding to an element v of Rn will be denoted by vT

because, considered as a matrix, it is the transpose of the column
vector representing v. We denote the zero vector (in the
appropriate dimension) by 0.
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Let x and y be vectors belonging to the real vector space Rn for
some positive integer n. We write x ≤ y (and y ≥ x) when
(x)j ≤ (y)j for j = 1, 2, . . . , n. Also we write x� y (and y� x)
when (x)j < (y)j for j = 1, 2, . . . , n.

These notational conventions ensure that x ≥ 0 if and only if
(x)j ≥ 0 for j = 1, 2, . . . , n.

The scalar product of two n-dimensional vectors u and v can be
represented as the matrix product uT v. Thus

uT v = u1v1 + u2v2 + · · ·+ unvn

for all u, v ∈ Rn, where uj = (u)j and vj = (v)j for j = 1, 2, . . . , n.

Given an m × n matrix A, where m and n are positive integers, we
denote by (A)i ,j the coefficient in the ith row and jth column of
the matrix A.
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4.2. Feasible and Optimal Solutions

A general linear programming problem is one that seeks values of
real variables x1, x2, . . . , xn that maximize or minimize some
objective function

c1x1 + c2x2 + · · · cnxn
that is a linear functional of x1, x2, . . . , xn determined by real
constants c1, c2, . . . , cn, where the variables x1, x2, . . . , xn are
subject to a finite number of constraints that each place bounds on
the value of some linear functional of the variables.
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These constraints can then be numbered from 1 to m, for an
appropriate value of m, such that, for each value of i between 1
and m, the ith constraint takes the form of an equation or
inequality that can be expressed in one of the following three
forms:—

ai ,1x1 + ai ,2x2 + · · ·+ ai ,nxn = bi ,

ai ,1x1 + ai ,2x2 + · · ·+ ai ,nxn ≥ bi ,

ai ,1x1 + ai ,2x2 + · · ·+ ai ,nxn ≤ bi

for appropriate values of the real constants ai ,1, ai ,2, . . . , ai ,n and
bi . In addition some, but not necessarily all, of the variables
x1, x2, . . . , xn may be required to be non-negative. (Of course a
constraint requiring a variable to be non-negative can be expressed
by an inequality that conforms to one of the three forms described
above. Nevertheless constraints that simply require some of the
variables to be non-negative are usually listed separately from the
other constraints.)
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Definition

Consider a general linear programming problem with n real
variables x1, x2, . . . , xn whose objective is to maximize or minimize
some objective function subject to appropriate constraints. A
feasible solution of this linear programming problem is specified by
an n-dimensional vector x whose components satisfy the
constraints but do not necessarily maximize or minimize the
objective function.

Definition

Consider a general linear programming problem with n real
variables x1, x2, . . . , xn whose objective is to maximize or minimize
some objective function subject to appropriate constraints. A
optimal solution of this linear programming problem is specified by
an n-dimensional vector x that is a feasible solution that optimizes
the value of the objective function amongst all feasible solutions to
the linear programming problem.
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4.3. Programming Problems in Dantzig Standard Form

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, and let b ∈ Rm and c ∈ Rn be vectors of dimensions m and
n respectively. We consider the following linear programming
problem:—

Determine an n-dimensional vector x so as to minimize
cT x subject to the constraints Ax = b and x ≥ 0.

We refer to linear programming problems presented in this form as
being in Dantzig standard form. We refer to the m × n matrix A,
the m-dimensional vector b and the n-dimensional vector c as the
constraint matrix, target vector and cost vector for the linear
programming problem.
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Remark
Nomenclature in Linear Programming textbooks varies. Problems
presented in the above form are those to which the basic
algorithms of George B. Dantzig’s Simplex Method are applicable.
In the series of textbooks by George B. Dantzig and Mukund N.
Thapa entitled Linear Programming, such problems are said to be
in standard form. In the textbook Introduction to Linear
Programming by Richard B. Darst, such problems are said to be
standard-form LP. On the other hand, in the textbook Methods of
Mathematical Economics by Joel N. Franklin, such problems are
said to be in canonical form, and the term standard form is used
for problems which match the form above, except that the vector
equality Ax = b is replaced by a vector inequality Ax ≥ b.
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Accordingly the term Danztig standard form is used in these notes
both to indicate that such problems are in standard form at that
term is used by textbooks of which Dantzig is the author, and also
to emphasize the connection with the contribution of Dantzig in
creating and popularizing the Simplex Method for the solution of
linear programming problems.
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A linear programming problem in Dantzig standard form specified
by an m × n constraint matrix A of rank m, an m-dimensional
target vector b and an n-dimensional cost vector c has the
objective of finding values of real variables x1, x2, . . . , xn that
minimize the value of the cost

c1x1 + c2x2 + · · ·+ cnxn

subject to constraints

A1,1x1 + A1,2x2 + · · ·+ A1,nxn = b1,

A2,1x1 + A2,2x2 + · · ·+ A2,nxn = b2,

...

Am,1x1 + Am,2x2 + · · ·+ Am,nxn = bm

and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.
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In the above programming problem, the function sending the
n-dimensional vector x to the corresponding cost cT x is the
objective function for the problem. A feasible solution to the
problem consists of an n-dimensional vector (x1, x2, . . . , xn) whose
components satisfy the above constraints but do not necessarily
minimize cost. An optimal solution is a feasible solution whose
cost does not exceed that of any other feasible solution.



4. The Simplex Method (continued)

4.4. Basic Feasible Solutions

We define the notion of a basis for a linear programming problem
in Dantzig standard form.
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Definition

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:

find x ∈ Rn so as to minimize cT x subject to constraints
Ax = b and x ≥ 0.

For each integer j between 1 and n, let a(j) denote the
m-dimensional vector determined by the jth column of the
matrix A, so that (a(j))i = (A)i ,j for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n. A basis for this linear programming problem is a
set consisting of m distinct integers j1, j2, . . . , jm between 1 and n
for which the corresponding vectors

a(j1), a(j2), . . . , a(jm)

constitute a basis of the vector space Rm.
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We next define what is meant by saying that a feasible solution of
a programming problem Dantzig standard form is a basic feasible
solution for the programming problem.

Definition

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:—

find x ∈ Rn so as to minimize cT x subject to constraints
Ax = b and x ≥ 0.

A feasible solution x for this programming problem is said to be
basic if there exists a basis B for the linear programming problem
such that (x)j = 0 when j 6∈ B.
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Lemma 4.1

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:

find x ∈ Rn so as to minimize cT x subject to constraints
Ax = b and x ≥ 0.

Let a(j) denote the vector specified by the jth column of the
matrix A for j = 1, 2, . . . , n. Let x be a feasible solution of the
linear programming problem. Suppose that the m-dimensional
vectors a(j) for which (x)j > 0 are linearly independent. Then x is a
basic feasible solution of the linear programming problem.



4. The Simplex Method (continued)

Proof
Let x be a feasible solution to the programming problem, let
xj = (x)j for all j ∈ J, where J = {1, 2, . . . , n}, and let
K = {j ∈ J : xj > 0}. If the vectors a(j) for which j ∈ K are
linearly independent then basic linear algebra ensures that further
vectors a(j) can be added to the linearly independent set
{a(j) : j ∈ K} so as to obtain a finite subset of Rm whose elements
constitute a basis of that vector space (see Proposition 2.2). Thus
exists a subset B of J satisfying K ⊂ B ⊂ J such that the
m-dimensional vectors a(j) for which j ∈ B constitute a basis of the
real vector space Rm. Moreover (x)j = 0 for all j ∈ J \ B. It
follows that x is a basic feasible solution to the linear programming
problem, as required.
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Theorem 4.2

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:

find x ∈ Rn so as to minimize cT x subject to constraints
Ax = b and x ≥ 0.

If there exists a feasible solution to this programming problem then
there exists a basic feasible solution to the problem. Moreover if
there exists an optimal solution to the programming problem then
there exists a basic optimal solution to the problem.
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Proof
Let J = {1, 2, . . . , n}, and let a(j) denote the vector specified by
the jth column of the matrix A for all j ∈ J.

Let x be a feasible solution to the programming problem, let
xj = (x)j for all j ∈ J, and let K = {j ∈ J : xj > 0}. Suppose that
x is not basic. Then the vectors a(j) for which j ∈ K must be
linearly dependent. We show that there then exists a feasible
solution with fewer non-zero components than the given feasible
solution x.
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Now there exist real numbers yj for j ∈ K , not all zero, such that∑
j∈K

yja
(j) = 0, because the vectors a(j) for j ∈ K are linearly

dependent. Let yj = 0 for all j ∈ J \ K , and let y ∈ Rn be the
n-dimensional vector satisfying (y)j = yj for j = 1, 2, . . . , n. Then

Ay =
∑
j∈J

yja
(j) =

∑
j∈K

yja
(j) = 0.

It follows that A(x− λy) = b for all real numbers λ, and thus
x− λy is a feasible solution to the programming problem for all
real numbers λ for which x− λy ≥ 0.
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Now y is a non-zero vector. Replacing y by −y, if necessary, we
can assume, without loss of generality, that at least one
component of the vector y is positive. Let

λ0 = minimum

(
xj
yj

: j ∈ K and yj > 0

)
,

and let j0 be an element of K for which λ0 = xj0/yj0 . Then
xj
yj
≥ λ0 for all j ∈ J for which yj > 0. Multiplying by the positive

number yj , we find that xj ≥ λ0yj and thus xj − λ0yj ≥ 0 when
yj > 0. Also λ0 > 0 and xj ≥ 0, and therefore xj − λ0yj ≥ 0 when
yj ≤ 0. Thus xj − λ0yj ≥ 0 for all j ∈ J. Also xj0 − λ0yj0 = 0, and
xj − λ0yj = 0 for all j ∈ J \ K . Let x′ = x− λ0y. Then x′ ≥ 0 and
Ax′ = b, and thus x′ is a feasible solution to the linear
programming problem with fewer non-zero components than the
given feasible solution.
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Suppose in particular that the feasible solution x is optimal. Now
there exist both positive and negative values of λ for which
x− λy ≥ 0. If it were the case that cT y 6= 0 then there would exist
values of λ for which both x− λy ≥ 0 and λcT y > 0. But then
cT (x − λy) < cT x, contradicting the optimality of x. It follows
that cT y = 0, and therefore x− λy is an optimal solution of the
linear programming problem for all values of λ for which
x− λy ≥ 0. The previous argument then shows that there exists a
real number λ0 for which x− λ0y is an optimal solution with fewer
non-zero components than the given optimal solution x.
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We have shown that if there exists a feasible solution x which is
not basic then there exists a feasible solution with fewer non-zero
components than x. It follows that if a feasible solution x is chosen
such that it has the smallest possible number of non-zero
components then it is a basic feasible solution of the linear
programming problem.

Similarly we have shown that if there exists an optimal solution x
which is not basic then there exists an optimal solution with fewer
non-zero components than x. It follows that if an optimal solution
x is chosen such that it has the smallest possible number of
non-zero components then it is a basic optimal solution of the
linear programming problem.
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4.5. A Simplex Method Example

Example
We consider the following linear programming problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.
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The constraints require that x1, x2, x3, x4, x5 be non-negative real
numbers satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components
x1, x2, x3, x4 and x5 satisfying the equation Ax = b, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
.
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Let

a(1) =

(
5
4

)
, a(2) =

(
3
1

)
, a(3) =

(
4
3

)
,

a(4) =

(
7
8

)
and a(5) =

(
3
4

)
.

For a feasible solution to the problem we must find non-negative
real numbers x1, x2, x3, x4, x5 such that

x1a(1) + x2a(2) + x3a(3) + x4a(4) + x5a(5) = b.

An optimal solution to the problem is a feasible solution that
minimizes

c1x1 + c2x2 + c3x3 + c4x4 + c5x5

amongst all feasible solutions to the problem, where c1 = 3,
c2 = 4, c3 = 2, c4 = 9 and c5 = 5.
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Let c denote the column vector whose ith component is ci
respectively. Then

cT =
(

3 4 2 9 5
)
,

and an optimal solution is a feasible solution that minimizes cT x
amongst all feasible solutions to the problem. We refer to the
quantity cT x as the cost of the feasible solution x.
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Let I = {1, 2, 3, 4, 5}. A basis for this optimization problem is a
subset {j1, j2} of I , where j1 6= j2, for which the corresponding
vectors a(j1), a(j2) constitute a basis of R2. By inspection we see
that each pair of vectors taken from the list a(1), a(2), a(3), a(4), a(5)

consists of linearly independent vectors, and therefore each pair of
vectors from this list constitutes a basis of R2. It follows that every
subset of I with exactly two elements is a basis for the
optimization problem.

A feasible solution (x1, x2, x3, x4, x5) to this optimization problem is
a basic feasible solution if there exists a basis B for the
optimization problem such that xj = 0 when j 6= B.

In the case of the present problem, all subsets of {1, 2, 3, 4, 5} with
exactly two elements are bases for the problem. It follows that a
feasible solution to the problem is a basic feasible solution if and
only if the number of non-zero components of the solution does
not exceed 2.
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We take as given the following initial basic feasible solution x1 = 1,
x2 = 2, x3 = x4 = x5 = 0. One can readily verify that
a(1) + 2a(2) = b. This initial basic feasible solution is associated
with the basis {1, 2}. The cost of this solution is 11.

We apply the procedures of the simplex method to test whether or
not this basic feasible solution is optimal, and, if not, determine
how to improve it.
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The basis {1, 2} determines a 2× 2 minor MB of A consisting of
the first two columns of A. Thus

MB =

(
5 3
4 1

)
.

We now determine the components of the vector p ∈ R2 whose
transpose

(
p1 p2

)
satisfies the matrix equation(

c1 c2
)

=
(
p1 p2

)
MB .

Now

M−1B = −1

7

(
1 −3
−4 5

)
.

It follows that

pT =
(
p1 p2

)
=
(
c1 c2

)
M−1B

= −1

7

(
3 4

)( 1 −3
−4 5

)
=

(
13
7 −11

7

)
.
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We next compute a vector q ∈ R5, where qT = cT − pTA. Solving
the equivalent matrix equation for the transpose qT of the column
vector q, we find that

qT = cT − pTA

=
(

3 4 2 9 5
)
−
(

13
7 −11

7

)( 5 3 4 7 3
4 1 3 8 4

)
=

(
3 4 2 9 5

)
−
(

3 4 19
7

3
7 −5

7

)
=

(
0 0 −5

7
60
7

40
7

)
.

We denote the jth component of the vector j by qj .

Now q3 < 0. We show that this implies that the initial basic
feasible solution is not optimal, and that it can be improved by
bringing 3 (the index of the third column of A) into the basis.
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Suppose that x is a feasible solution of this optimization problem.
Then Ax = b, and therefore

cT x = pTAx + qT x = pTb + qT x.

The initial basic feasible solution x satisfies

qT x =
5∑

j=1

qjxj = 0,

because q1 = q2 = 0 and x3 = x4 = x5 = 0. This comes about
because the manner in which we determined first p then q ensures
that qj = 0 for all j ∈ B, whereas the components of the basic
feasible solution x associated with the basis B satisfy xj = 0 for
j 6∈ B. We find therefore that pTb is the cost of the initial basic
feasible solution.



4. The Simplex Method (continued)

The cost of the initial basic feasible solution is 11, and this is equal
to the value of pTb. The cost cT x of any other basic feasible
solution satisfies

cT x = 11− 5
7x3 + 60

7 x4 + 40
7 x5,

where x j denotes the jth component of x.

We seek to determine a new basic feasible solution x for which
x3 > 0, x4 = 0 and x5 = 0. The cost of such a basic feasible
solution will then be less than that of our initial basic feasible
solution.
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In order to find our new basic feasible solution we determine the
relationships between the coefficients of a feasible solution x for
which x4 = 0 and x5 = 0. Now such a feasible solution must
satisfy

x1a(1) + x2a(2) + x3a(3) = b = x1a(1) + x2a(2),

where x1 and x2 are the non-zero coefficients of the initial basic
feasible solution. Now the vectors a(1) and a(2) constitute a basis
of the real vector space R2. It follows that there exist real numbers
t1,3 and t2,3 such that a(3) = t1,3a(1) + t2,3a(2). It follows that

(x1 + t1,3x3)a(1) + (x2 + t2,3x3)a(2) = x1a(1) + x2a(2).
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The linear independence of a(1) and a(2) then ensures that
x1 + t1,3x3 = x1 and x2 + t2,3x3 = x2. Thus if x3 = λ, where
λ ≥ 0 then

x1 = x1 − λt1,3, x2 = x2 − λt2,3.

Thus, once t1,3 and t2,3 have been determined, we can determine
the range of values of λ that ensure that x1 ≥ 0 and x2 ≥ 0.
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In order to determine the values of t1,3 and t2,3 we note that

a(1) =

(
5
4

)
=

(
5 3
4 1

)(
1
0

)
a(2) =

(
3
1

)
=

(
5 3
4 1

)(
0
1

)

and therefore

a(3) = t3,1a(1) + t3,2a(2) =

(
5 3
4 1

)(
t3,1
t3,2

)
= MB

(
t3,1
t3,2

)
,

where

MB =

(
5 3
4 1

)
.
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It follows that(
t3,1
t3,2

)
= M−1B a(3) = −1

7

(
1 −3
−4 5

)(
4
3

)
=

(
5
7
1
7

)
.

Thus t3,1 = 5
7 and t3,2 = 1

7 .
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We now determine the feasible solutions x of this optimization
problem that satisfy x3 = λ and x4 = x5 = 0. we have already
shown that

x1 = x1 − λt1,3, x2 = x2 − λt2,3.

Now x1 = 1, x2 = 2, t1,3 = 5
7 and t2,3 = 1

7 . It follows that
x1 = 1− 5

7λ and x2 = 2− 1
7λ. Now the components of a feasible

solution must satisfy x1 ≥ 0 and x2 ≥ 0. it follows that
0 ≤ λ ≤ 7

5 . Moreover on setting λ = 7
5 we find that x1 = 0 and

x2 = 9
5 . We thus obtain a new basic feasible solution x associated

to the basis {2, 3}, where

xT =
(

0 9
5

7
5 0 0

)
.

The cost of this new basic feasible solution is 10.
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We now let B ′ and x′ denote the new basic and new associated
basic feasible solution respectively, so that B ′ = {2, 3} and

x′T =
(

0 9
5

7
5 0 0

)
.

We also let MB′ be the 2× 2 minor of the matrix A with columns
indexed by the new basis B, so that

MB′ =

(
3 4
1 3

)
and M−1B′ =

1

5

(
3 −4
−1 3

)
.
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We now determine the components of the vector p′ ∈ R2 whose
transpose

(
p′1 p′2

)
satisfies the matrix equation(

c2 c3
)

=
(
p′1 p′2

)
MB′ .

We find that(
p′1 p′2

)
=

(
c2 c3

)
M−1B′

=
1

5

(
4 2

)( 3 −4
−1 3

)
=

(
2 −2

)
.
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We next compute the components of the vector q′ ∈ R5 so as to
ensure that

q′T = cT − p′TA

=
(

3 4 2 9 5
)
−
(

2 −2
)( 5 3 4 7 3

4 1 3 8 4

)
=

(
3 4 2 9 5

)
−
(

2 4 2 −2 −2
)

=
(

1 0 0 11 7
)
.

The components of the vector q′ determined using the new basis
{2, 3} are all non-negative. This ensures that the new basic
feasible solution is an optimal solution.
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Indeed let x be a feasible solution of this optimization problem.
Then Ax′ = b, and therefore

cT x = p′TAx + q′T x′ = p′Tb + q′T x.

Moreover p′Tb = 10. It follows that

cT x = 10 + x1 + 11x4 + 7x5 ≥ 10,

and thus the new basic feasible solution x′ is optimal.
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We summarize the result we have obtained. The optimization
problem was the following:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We have found the following basic optimal solution to the problem:

x1 = 0, x2 =
9

5
, x3 =

7

5
, x4 = 0, x5 = 0.
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We now investigate all bases for this linear programming problem
in order to determine which bases are associated with basic feasible
solutions.

The problem is to find x ∈ R5 that minimizes cT x subject to the
constraints Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
and

cT =
(

3 4 2 9 5
)
.

For each two-element subset B of {1, 2, 3, 4, 5} we compute MB ,
M−1B and M−1B b, where MB is the 2× 2 minor of the matrix A
whose columns are indexed by the elements of B. We find the
following:—
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B MB M−1B M−1B b cTM−1B b

{1, 2}
(

5 3
4 1

)
−1

7

(
1 −3
−4 5

) (
1
2

)
11

{1, 3}
(

5 4
4 3

)
−
(

3 −4
−4 5

) (
−9
14

)
1

{1, 4}
(

5 7
4 8

)
1
12

(
8 −7
−4 5

) (
23
6

−7
6

)
1

{1, 5}
(

5 3
4 4

)
1
8

(
4 −3
−4 5

) (
13
4

−7
4

)
1

{2, 3}
(

3 4
1 3

)
1
5

(
3 −4
−1 3

) (
9
5
7
5

)
10
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B MB M−1B M−1B b cTM−1B b

{2, 4}
(

3 7
1 8

)
1
17

(
8 −7
−1 3

) (
46
17
7
17

)
247
17

{2, 5}
(

3 3
1 4

)
1
9

(
4 −3
−1 3

) (
26
9
7
9

)
139
9

{3, 4}
(

4 7
3 8

)
1
11

(
8 −7
−3 4

) (
46
11

− 9
11

)
1

{3, 5}
(

4 3
3 4

)
1
7

(
4 −3
−3 4

) (
26
7

−9
7

)
1

{4, 5}
(

7 3
8 4

)
1
4

(
4 −3
−8 7

) (
13
2

−23
2

)
1
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From this data, we see that there are four basic feasible solutions
to the problem. We tabulate them below:—

B x Cost

{1, 2} (1, 2, 0, 0, 0) 11

{2, 3} (0, 95 ,
7
5 , 0, 0) 10

{2, 4} (0, 4617 , 0,
7
17 , 0) 247

17 = 14.529 . . .

{2, 5} (0, 269 , 0, 0,
7
9) 139

9 = 15.444 . . .
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4.6. A Linear Tableau Example

Example
Consider the problem of minimizing cT x subject to constraints
Ax = b and x ≥ 0, where

A =

 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4

 , b =

 13
13
20

 ,

cT =
(

2 4 3 1 4
)
.

As usual, we denote by Ai ,j the coefficient of the matrix A in the
ith row and jth column, we denote by bi the ith component of the
m-dimensional vector b, and we denote by cj the jth component of
the n-dimensional vector c.
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We let a(j) be the m-dimensional vector specified by the jth
column of the matrix A for j = 1, 2, 3, 4, 5. Then

a(1) =

 1
2
4

 , a(2) =

 2
3
2

 , a(3) =

 3
1
5

 ,

a(4) =

 3
2
1

 and a(5) =

 5
3
4

 .
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A basis B for this linear programming problem is a subset of
{1, 2, 3, 4, 5} consisting of distinct integers j1, j2, j3 for which the
corresponding vectors a(j1), a(j2), a(j3) constitute a basis of the real
vector space R3.

Given a basis B for the linear programming programming problem,
where B = {j1, j2, j3}, we denote by MB the matrix whose columns
are specified by the vectors a(j1), a(j2) and a(j3). Thus
(MB)i ,k = Ai ,jk for i = 1, 2, 3 and k = 1, 2, 3. We also denote by
cB the 3-dimensional vector defined such that

cTB =
(
cj1 cj2 cj3

)
.

The ordering of the columns of MB and cB is determined by the
ordering of the elements j1, j2 and j3 of the basis. However we
shall proceed on the basis that some ordering of the elements of a
given basis has been chosen, and the matrix MB and vector cB will
be determined so as to match the chosen ordering.
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Let j1 = 1, j2 = 2 and j3 = 3, and let B = {j1, j2, j3} = {1, 2, 3}.
Then B is a basis of the linear programming problem, and the
invertible matrix MB determined by a(jk ) for k = 1, 2, 3 is the
following 3× 3 matrix:—

MB =

 1 2 3
2 3 1
4 2 5

 .

This matrix has determinant −23, and

M−1B =
−1

23

 13 −4 −7

−6 −7 5

−8 6 −1

 =

 −
13
23

4
23

7
23

6
23

7
23 − 5

23
8
23 − 6

23
1
23

 .
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Then

M−1B a(1) =

 1
0
0

 , M−1B a(2) =

 0
1
0

 , M−1B a(3) =

 0
0
1

 ,

M−1B a(4) =

 −
24
23

27
23
13
23

 and M−1B a(5) =

 −
25
23

31
23
26
23

 .

Also

M−1B b =

 1
3
2

 .

It follows that x is a basic feasible solution of the linear
programming problem, where

xT =
(

1 3 2 0 0
)
.
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The vectors a(1), a(2), a(3), a(4), a(5), b, e(1), e(2) and e(3) can then
be expressed as linear combinations of a(1), a(2), a(3) with
coefficients as recorded in the following tableau:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23 −25

23 1 −13
23

4
23

7
23

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

a(3) 0 0 1 13
23

26
23 2 8

23 − 6
23

1
23

· · · · · · · · ·
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There is an additional row at the bottom of the tableau. This row
is the criterion row of the tableau. The values in this row have not
yet been calculated, but, when calculated according to the rules
described below, the values in the criterion row will establish
whether the current basic feasible solution is optimal and, if not,
how it can be improved.

Ignoring the criterion row, we can represent the structure of the
remainder of the tableau in block form as follows:—

a(1) · · · a(5) b e(1) · · · e(3)

a(j1)

... M−1B A M−1B b M−1B

a(j3)

· · ·
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We now employ the principles of the Simplex Method in order to
determine whether or not the current basic feasible solution is
optimal and, if not, how to improve it by changing the basis.

Let p be the 3-dimensional vector determined so that

pT = cTBM
−1
B .

Then pTMB = cTB , and therefore pTa(jk ) = cjk for k = 1, 2, 3. It
follows that (pTA)j = cj whenever j ∈ B. Putting in the relevant
numerical values, we find that

pTMB = cTB =
(
cj1 cj2 cj3

)
=
(
c1 c2 c3

)
=
(

2 4 3
)
,

and therefore

pT =
(

2 4 3
)
M−1B =

(
22
23

18
23

−3
23

)
.



4. The Simplex Method (continued)

We enter the values of p1, p2 and p3 into the cells of the criterion
row in the columns labelled by e(1), e(2) and e(3) respectively. The
tableau with these values entered is then as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23 −25

23 1 −13
23

4
23

7
23

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

a(3) 0 0 1 13
23

26
23 2 8

23 − 6
23

1
23

· · · · · · 22
23

18
23 − 3

23
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The values in the criterion row in the columns labelled by e(1), e(2)

and e(3) can be calculated from the components of the cost
vector c and the values in these columns of the tableau. Indeed let
ri ,k = (M−1B )i ,k for i = 1, 2, 3 and k = 1, 2, 3. Then each ri ,k is
equal to the value of the tableau element located in the row
labelled by a(ji ) and the column labelled by e(k). The definition of
the vector p then ensures that

pk = cj1r1,k + cj2r2,k + cj3r3,k

for k = 1, 2, 3, where, for the current basis, j1 = 1, j2 = 2 and
j3 = 3.
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The cost C of the current basic feasible solution x satisfies
C = cT x. Now (pTA)j = cj for all j ∈ B, where B = {1, 2, 3}.
Moreover the current basic feasible solution x satisfies xj = 0 when
j 6∈ B, where xj = (x)j for j = 1, 2, 3, 4, 5. It follows that

C − pTb = cT x− pTAx =
5∑

j=1

(cj − (pTA)j)xj

=
∑
j∈B

(cj − (pTA)j)xj = 0,

and thus
C = cT x = pTb.

Putting in the numerical values, we find that C = 20.
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We enter the cost C into the criterion row of the tableau in the
column labelled by the vector b. The resultant tableau is then as
follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23 −25

23 1 −13
23

4
23

7
23

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

a(3) 0 0 1 13
23

26
23 2 8

23 − 6
23

1
23

· · · · · 20 22
23

18
23 − 3

23
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Let si denote the value recorded in the tableau in the row labelled
by a(ji ) and the column labelled by b for i = 1, 2, 3. Then the
construction of the tableau ensures that

b = s1a(j1) + s2a(j2) + s3a(j3),

and thus si = xji for i = 1, 2, 3, where (x1, x2, x3, x4, x5) is the
current basic feasible solution. It follows that

C = cj1s1 + cj2s2 + cj3s3,

where, for the current basis, j1 = 1, j2 = 2 and j3 = 3. Thus the
cost of the current basic feasible solution can be calculated from
the components of the cost vector c and the values recorded in the
rows above the criterion row of the tableau in the column labelled
by the vector b.
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We next determine a 5-dimensional vector q such that
cT = pTA + qT . We find that

−qT = pTA− cT

=
(

22
23

18
23

−3
23

) 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4


−
(

2 4 3 1 4
)

=
(

2 4 3 99
23

152
23

)
−
(

2 4 3 1 4
)

=
(

0 0 0 76
23

60
23

)
Thus

q1 = 0, q2 = 0, q3 = 0, q4 = −76
23 , q5 = −60

23 .
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The 4th and 5th components of the vector q are negative. It
follows that the current basic feasible solution is not optimal.
Indeed let x be a feasible solution to the problem, and let x j = (x)j
for j = 1, 2, 3, 4, 5. Then the cost C of the feasible solution x
satisfies

C = cT x = pTAx + qT x = pTb + qT x = C + qT x

= C − 76

23
x4 −

60

23
x5.

It follows that the feasible solution x will have lower cost if either
x4 > 0 or x5 > 0.
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We enter the value of −qj into the criterion row of the tableau in
the column labelled by a(j) for j = 1, 2, 3, 4, 5. The completed
tableau associated with basis {1, 2, 3} is then as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23 −25

23 1 −13
23

4
23

7
23

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

a(3) 0 0 1 13
23

26
23 2 8

23 − 6
23

1
23

0 0 0 76
23

60
23 20 22

23
18
23 − 3

23

We refer to this tableau as the extended simplex tableau associated
with the basis {1, 2, 3}.
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The general structure of the extended simplex tableau is then as
follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(j1) t1,1 t1,2 t1,3 t1,4 t1,5 s1 r1,1 r1,2 r1,3
a(j2) t2,1 t2,2 t2,3 t2,4 t2,5 s2 r2,1 r2,2 r2,3
a(j3) t3,1 t3,2 t3,3 t3,4 t3,5 s3 r3,1 r3,2 r3,3

−q1 −q2 −q3 −q4 −q5 C p1 p2 p3

where j1, j2 and j3 are the elements of the current basis, and where
the coefficients ti ,j si and ri ,k are determined so that

a(j) =
3∑

i=1

ti ,ja
(ji ), b =

3∑
i=1

sia
(ji ), e(k) =

3∑
i=1

ri ,ka(ji )

for j = 1, 2, 3, 4, 5 and k = 1, 2, 3.
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The coefficients of the criterion row can then be calculated
according to the following formulae:—

pk =
3∑

i=1

cji ri ,k , C =
3∑

i=1

pibi , −qj =
3∑

i=1

piAi ,j − cj .
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The extended simplex tableau can therefore be presented in block
form as follows:—

a(1) · · · a(5) b e(1) · · · e(3)

a(j1)

... M−1B A M−1B b M−1B

a(j3)

pTA− cT pTb pT
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The values in the criterion row in any column labelled by some a(j)

can also be calculated from the values in the relevant column in
the rows above the criterion row.

To see this we note that the value entered into the tableau in the
row labelled by a(ji ) and the column labelled by a(j) is equal to ti ,j ,
where ti ,j is the coefficient in the ith row and jth column of the
matrix M−1B A. Also pT = cTBM

−1
B , where (cB)i = cji for i = 1, 2, 3.

It follows that

(pTA)j = (cTBM
−1
B A)j =

3∑
i=1

cji ti ,j .
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Therefore

−qj = (pTA)j − cj

= cj1t1,j + cj2t2,j + cj3t3,j − cj

for j = 1, 2, 3, 4, 5.

The coefficients of the criterion row can then be calculated
according to the formulae

pk =
3∑

i=1

cji ri ,k , C =
3∑

i=1

cji si , −qj =
3∑

i=1

cji ti ,j − cj .
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The extended simplex tableau can therefore also be presented in
block form as follows:—

a(1) · · · a(5) b e(1) · · · e(3)

a(j1)

... M−1B A M−1B b M−1B

a(j3)

cTBM
−1
B A− cT cTBM

−1
B b cTBM

−1
B
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We now carry through procedures for adjusting the basis and
calculating the extended simplex tableau associated with the new
basis.

We recall that the extended simplex tableau corresponding to the
old basis {1, 2, 3} is as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23 −25

23 1 −13
23

4
23

7
23

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

a(3) 0 0 1 13
23

26
23 2 8

23 − 6
23

1
23

0 0 0 76
23

60
23 20 22

23
18
23 − 3

23
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We now consider which of the indices 4 and 5 to bring into the
basis.

Suppose we look for a basis which includes the vector a(4) together
with two of the vectors a(1), a(2) and a(3). A feasible solution x
with x5 = 0 will satisfy

xT =
(

1 + 24
23λ 3− 27

23λ 2− 13
23λ λ 0

)
,

where λ = x4. Indeed A(x− x) = 0, where x is the current basic
feasible solution, and therefore

(x1 − 1)a(1) + (x2 − 3)a(2) + (x3 − 2)a(3) + x4a(4) = 0.
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Now
a(4) = −24

23a(1) + 27
23a(2) + 13

23a(3),

It follows that

(x1− 1− 24
23x4)a(1) + (x2− 3 + 27

33x4)a(2) + (x3− 2 + 13
23x4)a(3) = 0.

But the vectors a(1), a(2) and a(3) are linearly independent. Thus if
x4 = λ and x5 = 0 then

x1 − 1− 24
23λ = 0, x2 − 3 + 27

23λ = 0, x3 − 2 + 13
23λ = 0,

and thus

x1 = 1 + 24
23λ, x2 = 3− 27

23λ, x3 = 2− 13
23λ.
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For the solution x to be feasible the components of x must all be
non-negative, and therefore λ must satisfy

λ ≤ min
(
3× 23

27 , 2× 23
13

)
.

Now 3× 23
27 = 69

27 ≈ 2.56 and 2× 23
13 = 46

13 ≈ 3.54. It follows that
the maximum possible value of λ is 69

27 . The feasible solution
corresponding to this value of λ is a basic feasible solution with
basis {1, 3, 4}, and passing from the current basic feasible solution
x to the new feasible basic solution would lower the cost by −q4λ,
where −q4λ = 76

23 ×
69
27 = 228

27 ≈ 8.44.
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We examine this argument in more generality to see how to
calculate the change in the cost that arises if an index j not in the
current basis is brought into that basis. Let the current basis be
{j1, j2, j3}. Then

b = s1a(j1) + s2a(j2) + s3a(j3)

and
a(j) = t1,ja

(j1) + t2,ja
(j2) + t3,ja

(j3).

Now if x is a feasible solution, and if (x)j ′ = 0 for j ′ 6∈ {j1, j2, j3, j},
then

x j1a(j1) + x j2a(j2) + x j3a(j3) + x ja
(j) − b = 0.
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Let λ = x j . Then

(x j1 +λt1,j−s1)a(j1)+(x j2 +λt2,j−s2)a(j2)+(x j3 +λt3,j−s3)a(j3) = 0.

But the vectors a(j1), a(j2), a(j3) are linearly independent, because
{j1, j2, j3} is a basis for the linear programming problem. It follows
that

x ji = si − λti ,j
for i = 1, 2, 3.
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For a feasible solution we require λ ≥ 0 and si − λti ,j ≥ 0 for
i = 1, 2, 3. We therefore require

0 ≤ λ ≤ min

(
si
ti ,j

: ti ,j > 0

)
.

We could therefore obtain a new basic feasible solution by ejecting

from the current basis an index ji for which the ratio
si
ti ,j

has its

minimum value, where this minimum is taken over those values of
i for which ti ,j > 0. If we set λ equal to this minimum value, then
the cost is then reduced by −qjλ.
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With the current basis we find that s2/t4,2 = 69
27 and s3/t4,3 = 46

13 .
Now 69

27 <
46
13 . It follows that we could bring the index 4 into the

basis, obtaining a new basis {1, 3, 4}, to obtain a cost reduction
equal to 228

27 , given that 76
23 ×

69
27 = 76

9 ≈ 8.44.

We now calculate the analogous cost reduction that would result
from bringing the index 5 into the basis. Now s2/t5,2 = 69

31 and
s3/t5,3 = 46

26 . Moreover 46
26 <

69
31 . It follows that we could bring the

index 5 into the basis, obtaining a new basis {1, 2, 5}, to obtain a
cost reduction equal to 60

23 ×
46
26 = 120

26 ≈ 4.62.

We thus obtain the better cost reduction by changing basis to
{1, 3, 4}.
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We need to calculate the tableau associated with the basis
{1, 3, 4}. We will initially ignore the change to the criterion row,
and calculate the updated values in the cells of the other rows.
The current tableau with the values in the criterion row deleted is
as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23 −25

23 1 −13
23

4
23

7
23

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

a(3) 0 0 1 13
23

26
23 2 8

23 − 6
23

1
23

· · · · · · · · ·
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Let v be a vector in R3 and suppose that

v = µ1a(1) + µ2a(2) + µ3a(3) = µ′1a(1) + µ′2a(4) + µ′3a(3).

Now
a(4) = −24

23a(1) + 27
23a(2) + 13

23a(3).

On multiplying this equation by 23
27 , we find that

23
27a(4) = −24

27a(1) + a(2) + 13
27a(3),

and therefore

a(2) = 24
27a(1) + 23

27a(4) − 13
27a(3).
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It follows that

v = (µ1 + 24
27µ2)a(1) + 23

27µ2a(4) + (µ3 − 13
27µ2)a(3),

and thus

µ′1 = µ1 + 24
27µ2, µ′2 = 23

27µ2, µ′3 = µ3 − 13
27µ2.
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Now each column of the tableau specifies the coefficients of the
vector labelling the column of the tableau with respect to the basis
specified by the vectors labelling the rows of the tableau.

The pivot row of the old tableau is that labelled by the vector a(2)

that is being ejected from the basis. The pivot column of the old
tableau is that labelled by the vector a(4) that is being brought into
the basis. The pivot element of the tableau is the element or value
in both the pivot row and the pivot column. In this example the
pivot element has the value 27

23 .
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We see from the calculations above that the values in the pivot
row of the old tableau are transformed by multiplying them by the
reciprocal 23

27 of the pivot element; the entries in the first row of
the old tableau are transformed by adding to them the entries
below them in the pivot row multiplied by the factor 24

27 ; the values
in the third row of the old tableau are transformed by subtracting
from them the entries above them in the pivot row multiplied by
the factor 13

27 .
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Indeed the coefficients ti ,j , si , ri ,k , t ′i ,j , s
′
i and r ′i ,k are defined for

i = 1, 2, 3, j = 1, 2, 3, 4, 5 and k = 1, 2, 3 so that

a(j) =
3∑

i=1

ti ,ja
(ji ) =

3∑
i=1

t ′i ,ja
(j ′i ),

b =
3∑

i=1

sia
(ji ) =

3∑
i=1

s ′i a
(j ′i ),

e(k) =
3∑

i=1

ri ,ka(ji ) =
3∑

i=1

r ′i ,ka(j
′
i ),

where j1 = j ′1 = 1, j3 = j ′3 = 3, j2 = 2 and j ′2 = 4.
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The general rule for transforming the coefficients of a vector when
changing from the basis a(1), a(2), a(3) to the basis a(1), a(4), a(3)

ensure that

t ′2,j =
1

t2,4
t2,j ,

t ′i ,j = ti ,j −
ti ,4
t2,4

t2,j (i = 1, 3).

s ′2 =
1

t2,4
s2,

s ′i = si −
ti ,4
t2,4

s2 (i = 1, 3).
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r ′2,k =
1

t2,4
r2,j ,

r ′i ,k = ri ,k −
ti ,4
t2,4

r2,k (i = 1, 3).

The quantity t2,4 is the value of the pivot element of the old
tableau. The quantities t2,j , s2 and r2,k are those that are recorded
in the pivot row of that tableau, and the quantities ti ,4 are those
that are recorded in the pivot column of the tableau.
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We thus obtain the following tableau:–

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27 0 0 3

27
99
27 − 9

27
12
27

3
27

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

a(3) 0 −13
27 1 0 13

27
15
27

6
27 −11

27
4
27

· · · · · · · · ·
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The values in the column of the tableau labelled by the vector b
give us the components of a new basic feasible solution x′. Indeed
the column specifies that

b = 99
27a(1) + 69

27a(4) + 15
27a(3),

and thus Ax′ = b where

x′T =
(

99
27 0 15

27
69
27 0

)
.
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We continue the discussion of how the extended simplex tableau
transforms under a change of basis.

We now calculate the new values for the criterion row. The new
basis B ′ is given by B ′ = {j ′1, j ′2, j ′3}, where j ′1 = 1, j ′2 = 4 and
j ′3 = 3. The values p′1, p′2 and p′3 that are to be recorded in the
criterion row of the new tableau in the columns labelled by e(1),
e(2) and e(3) respectively are determined by the equation

p′k = cj ′1r
′
1,k + cj ′2r

′
2,k + cj ′3r

′
3,k

for k = 1, 2, 3, where

cj ′1 = c1 = 2, cj ′2 = c4 = 1, cj ′3 = c3 = 3,

and where r ′i ,k denotes the ith component of the vector e(k) with

respect to the basis a(1), a(4), a(3) of R3.
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We find that

p′1 = cj ′1r
′
1,1 + cj ′2r

′
2,1 + cj ′3r

′
3,1

= 2×
(
− 9

27

)
+ 1× 6

27 + 3× 6
27 = 6

27 ,

p′2 = cj ′1r
′
1,2 + cj ′2r

′
2,2 + cj ′3r

′
3,2

= 2× 12
27 + 1× 7

27 + 3×
(
−11

27

)
= − 2

27 ,

p′3 = cj ′1r
′
1,3 + cj ′2r

′
2,3 + cj ′3r

′
3,3

= 2× 3
27 + 1×

(
− 5

27

)
+ 3× 4

27 = 13
27 .
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We next calculate the cost C ′ of the new basic feasible solution.
The quantities s ′1, s ′2 and s ′3 satisfy s ′i = x ′ji for i = 1, 2, 3, where
(x ′1, x

′
2, x
′
3, x
′
4, x
′
5) is the new basic feasible solution. It follows that

C ′ = cj ′1s
′
1 + cj ′2s

′
2 + cj ′3s

′
3,

where s ′1, s ′2 and s ′3 are determined so that

b = s ′1a(j
′
1) + s ′2a(j

′
2) + s ′3a(j

′
3).

The values of s ′1, s ′2 and s ′3 have already been determined, and
have been recorded in the column of the new tableau labelled by
the vector b.
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We can therefore calculate C ′ as follows:—

C ′ = cj ′1s
′
1 + cj ′2s

′
2 + cj ′3s

′
3 = c1s

′
1 + c4s

′
2 + c3s

′
3

= 2× 99
27 + 69

27 + 3× 15
27 = 312

27 .

Alternatively we can use the identity C ′ = p′Tb to calculate C ′ as
follows:

C ′ = p′1b1 + p′2b2 + p′3b3 = 6
27 × 13− 2

27 × 13 + 13
27 × 20 = 312

27 .
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We now enter the values of p′1, p′2, p′3 and C ′ into the tableau
associated with basis {1, 4, 3}. The tableau then takes the
following form:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27 0 0 3

27
99
27 − 9

27
12
27

3
27

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

a(3) 0 −13
27 1 0 13

27
15
27

6
27 −11

27
4
27

· · · · · 312
27

6
27 − 2

27
13
27
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In order to complete the extended tableau, it remains to calculate
the values −q′j for j = 1, 2, 3, 4, 5, where q′j satisfies the equation

−q′j = p′Taj − cj for j = 1, 2, 3, 4, 5.

Now q′j is the jth component of the vector q′ that satisfies the

matrix equation −q′T = p′TA− cT . It follows that

−q′
T

= p′TA− cT

=
(

6
27

−2
27

13
27

) 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4


−
(

2 4 3 1 4
)

=
(

2 32
27 3 1 76

27

)
−
(

2 4 3 1 4
)

=
(

0 −76
27 0 0 −32

27

)



4. The Simplex Method (continued)

Thus

q′1 = 0, q′2 = 76
27 , q′3 = 0, q′4 = 0, q′5 = 32

27 .

The value of each q′j can also be calculated from the other values
recorded in the column of the extended simplex tableau labelled by
the vector a(j). Indeed the vector p′ is determined so as to satisfy
the equation p′Ta(j

′) = cj ′ for all j ′ ∈ B ′. It follows that

p′Ta(j) =
3∑

i=1

t ′i ,jp
′Ta(j

′
i ) =

3∑
i=1

cj ′i t
′
i ,j ,

and therefore

−q′j =
3∑

i=1

cj ′i t
′
i ,j − cj .
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The extended simplex tableau for the basis {1, 4, 3} has now been
computed, and the completed tableau is as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27 0 0 3

27
99
27 − 9

27
12
27

3
27

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

a(3) 0 −13
27 1 0 13

27
15
27

6
27 −11

27
4
27

0 −76
27 0 0 −32

27
312
27

6
27 − 2

27
13
27
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The fact that q′j ≥ 0 for j = 1, 2, 3, 4, 5 shows that we have now

found our basic optimal solution. Indeed the cost C of any feasible
solution x satisfies

C = cT x = p′TAx + q′T x = p′Tb + q′T x

= C ′ + q′T x

= C ′ +
76

27
x2 +

32

27
x5,

where x2 = (x)2 and x5 = (x)5.

Therefore x′ is a basic optimal solution to the linear programming
problem, where

x′T =
(

99
27 0 15

27
69
27 0

)
.
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It is instructive to compare the pivot row and criterion row of the
tableau for the basis {1, 2, 3} with the corresponding rows of the
tableau for the basis {1, 4, 3}.

These rows in the old tableau for the basis {1, 2, 3} contain the
following values:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

0 0 0 76
23

60
23 20 22

23
18
23 − 3

23
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The corresponding rows in the new tableau for the basis {1, 4, 3}
contain the following values:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

0 −76
27 0 0 −32

27
312
27

6
27 − 2

27
13
27
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If we examine the values of the criterion row in the new tableau we
find that they are obtained from corresponding values in the
criterion row of the old tableau by subtracting off the corresponding
elements of the pivot row of the old tableau multiplied by the
factor 76

27 . As a result, the new tableau has value 0 in the cell of

the criterion row in column a(4). Thus the same rule used to
calculate values in other rows of the new tableau would also have
yielded the correct elements in the criterion row of the tableau.

We now investigate the reasons why this is so.
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First we consider the transformation of the elements of the
criterion row in the columns labelled by a(j) for j = 1, 2, 3, 4, 5.
Now the coefficients ti ,j and t ′i ,j are defined for i = 1, 2, 3 and
j = 1, 2, 3, 4, 5 so that

a(j) =
3∑

i=1

ti ,ja
(ji ) =

3∑
i=1

t ′i ,ja
(j ′i ),

where j1 = j ′1 = 1, j3 = j ′3 = 3, j2 = 2 and j ′2 = 4. Moreover

t ′2,j =
1

t2,4
t2,j

and

t ′i ,j = ti ,j −
ti ,4
t2,4

t2,j (i = 1, 3).
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Now

−qj =
3∑

i=1

cji ti ,j − cj

= c1t1,j + c2t2,j + c3t3,j − cj ,

−q′j =
3∑

i=1

cj ′i t
′
i ,j − cj .

= c1t
′
1,j + c4t

′
2,j + c3t

′
3,j − cj .



4. The Simplex Method (continued)

Therefore

qj − q′j = c1(t ′1,j − t1,j) + c4t
′
2,j − c2t2,j + c3(t ′3,j − t3,j)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) t2,j

=
q4
t2,4

t2,j

and thus
−q′j = −qj +

q4
t2,4

t2,j

for j = 1, 2, 3, 4, 5.
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Next we note that

C =
3∑

i=1

cji si = c1s1 + c2s2 + c3s3,

C ′ =
3∑

i=1

cj ′i s
′
i = c1s

′
1 + c4s

′
2 + c3s

′
3.

Therefore

C ′ − C = c1(s ′1 − s1) + c4s
′
2 − c2s2 + c3(s ′3 − s3)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) s2

=
q4
t2,4

s2

and thus
C ′ = C +

q4
t2,4

s2

for k = 1, 2, 3.
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To complete the verification that the criterion row of the extended
simplex tableau transforms according to the same rule as the other
rows we note that

pk =
3∑

i=1

cji ri ,k = c1r1,k + c2r2,k + c3r3,k ,

p′k =
3∑

i=1

cj ′i r
′
i ,k = c1r

′
1,k + c4r

′
2,k + c3r

′
3,k .
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Therefore

p′k − pk = c1(r ′1,k − r1,k) + c4r
′
2,k − c2r2,k + c3(r ′3,k − r3,k)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) r2,k

=
q4
t2,4

r2,k

and thus
p′k = pk +

q4
t2,4

r2,k

for k = 1, 2, 3.

This completes the discussion of the structure and properties of
the extended simplex tableau associated with the optimization
problem under discussion.
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4.7. The Extended Simplex Tableau

We now consider the construction of a tableau for a linear
programming problem in Dantzig standard form. Such a problem is
specified by an m × n matrix A, an m-dimensional target vector
b ∈ Rm and an n-dimensional cost vector c ∈ Rn. We suppose
moreover that the matrix A is of rank m. We consider procedures
for solving the following linear program in Danzig standard form.

Determine x ∈ Rn so as to minimize cT x subject to the
constraints Ax = b and x ≥ 0.

We denote by Ai ,j the component of the matrix A in the ith row
and jth column, we denote by bi the ith component of the target
vector b for i = 1, 2, . . . ,m, and we denote by cj the jth
component of the cost vector c for j = 1, 2, . . . , n.
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We recall that a feasible solution to this problem consists of an
n-dimensional vector x that satisfies the constraints Ax = b and
x ≥ 0 (see Subsection 2). A feasible solution of the linear
programming problem then consists of non-negative real numbers
x1, x2, . . . , xn for which

n∑
j=1

xja
(j) = b.

A feasible solution determined by x1, x2, . . . , xn is optimal if it

minimizes cost
n∑

j=1
cjxj amongst all feasible solutions to the linear

programming problem.
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Let j1, j2, . . . , jm be distinct integers between 1 and n that are the
elements of a basis B for the linear programming problem. Then
the vectors a(j) for j ∈ B constitute a basis of the real vector space
Rm. (see Subsection 4).

We denote by MB the invertible m ×m matrix whose component
(M)i ,k in the ith row and jth column satisfies (MB)i ,k = (A)i ,jk for
i , k = 1, 2, . . . ,m. Then the kth column of the matrix MB is
specified by the column vector a(jk ) for k = 1, 2, . . . ,m, and thus
the columns of the matrix MB coincide with those columns of the
matrix A that are determined by elements of the basis B.



4. The Simplex Method (continued)

Proposition 4.3

Let A be an real m× n matrix of rank m with columns represented
by the column vectors a(1), a(2), . . . , a(n), let b be an m-dimensional
column vector, and let B = {j1, j2, . . . , jm}, where j1, j2, . . . , jm are
integers between 1 and n for which the corresponding columns
a(j1), a(j2), . . . , a(jm) of the matrix A are linearly independent. Let
MB be the invertible m ×m matrix defined so that (MB)i ,k = Ai ,jk

for i , k = 1, 2, . . . ,m. Then there are uniquely determined real
numbers ti ,j and si for i = 1, 2, . . . ,m and j = 1, 2, . . . , n for which

a(j) =
m∑
i=1

ti ,ja
(ji ) and b =

m∑
i=1

sia
(ji ).
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Moreover

ti ,j =
m∑

k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑

k=1

ri ,kbk

for j = 1, 2, . . . , n, where ri ,k = (M−1B )i ,k for i , k = 1, 2, . . . ,m.
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Proof
Every vector in Rm can be expressed as a linear combination of the
basis vectors a(j1), a(j2), . . . , a(jm). It follows that there exist
uniquely determined real numbers ti ,j and si for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n such that

a(j) =
m∑
i=1

ti ,ja
(ji ) and b =

m∑
i=1

sia
(ji ).

Then

Ai ,j =
n∑

k=1

tk,jAi ,jk =
n∑

k=1

(MB)i ,ktk,j

and

bi =
m∑

k=1

skAi ,jk =
n∑

k=1

(MB)i ,ksk .
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Thus a(j) = MBt(j) and b = MBs for j = 1, 2, . . . , n, where t(j) and
s denote the column vectors that satisfy (t(j))i = ti ,j and (s)i = si
for i = 1, 2, . . . ,m. It follows that

t(j) = M−1B a(j) and s = M−1B b

for j = 1, 2, . . . , n. Thus

ti ,j = (M−1B a(j))i =
m∑

k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si = (M−1B b)i =
m∑

k=1

ri ,kbk

for i = 1, 2, . . . ,m, where ri ,k = (M−1B )i ,k for i , k = 1, 2, . . . ,m.
This completes the proof.
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Let A be an m × n matrix with real coefficients that is of rank m
whose columns are represented by the column vectors
a(1), a(2), . . . , a(n), and let B = {j1, j2, . . . , jm}, where j1, j2, . . . , jm
are integers between 1 and n for which the corresponding columns
a(j1), a(j2), . . . , a(jm) of the matrix A are linearly independent. Let
MB be the invertible m ×m matrix defined so that (MB)i ,k = Ai ,jk

for i , k = 1, 2, . . . ,m.

The standard basis e(1), e(2), . . . , e(m) of Rm is defined such that
(e(k))i = δi ,k for i , k = 1, 2, . . . ,m, where δi ,k is the Kronecker
delta, defined such that

δi ,k =

{
1 if k = i ;
0 if k 6= i .
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It follows from Proposition 4.3 (with the column vector b of that
proposition set equal to e(k)) that

e(k) =
m∑
i=1

m∑
h=1

ri ,h(e(k))ha(ji ) =
m∑
i=1

ri ,ka(ji ),

where ri ,k is the coefficient (M−1B )i ,k in the ith row and kth
column of the inverse M−1B of the matrix MB .
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Let A be an m × n matrix of rank m with real coefficients, and let
b be an m-dimensional vector, and let {j1, j2, . . . , jm} be a subset
of {1, 2, . . . , n} for which the corresponding columns
a(j1), a(j2), . . . , a(jm) of the matrix A are linearly independent. We
can then record the coefficients of the m-dimensional vectors

a(1), a(2), . . . , a(n), b, e(1), e(2), . . . , e(m)

with respect to the basis a(j1), a(j2), . . . , a(jm), of Rm in a tableau of
the following form:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

· · · · · · · · · · · · ·
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The definition of the quantities ti ,j ensures that ti ,jk = δi ,k for
i = 1, 2, . . . ,m, where

δi ,k =

{
1 if i = k ;
0 if i 6= k .

Also it follows from Proposition 4.3 that

ti ,j =
m∑

k=1

ri ,kAi ,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑

k=1

ri ,kbk

for i = 1, 2, . . . ,m.
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If the quantities s1, s2, . . . , sm are all non-negative then they
determine a basic feasible solution x of the linear programming
problem associated with the basis B with components
x1, x2, . . . , xn, where xji = si for i = 1, 2, . . . ,m and xj = 0 for all
integers j between 1 and n that do not belong to the basis B.
Indeed

n∑
j=1

xja
(j) =

m∑
i=1

xji a
(ji ) =

m∑
i=1

sia
(ji ).
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The cost C of the basic feasible solution x is defined to be the
value cT x of the objective function. The definition of the
quantities s1, s2, . . . , sm ensures that

C =
n∑

j=1

cjxj =
m∑
i=1

cji si .

If the quantities s1, s2, . . . , sn are not all non-negative then there is
no basic feasible solution associated with the basis B.
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The criterion row at the bottom of the tableau has cells to record
quantities p1, p2, . . . , pm associated with the vectors that
constitute the standard basis e(1), e(2), . . . , e(m) of Rm. These
quantities are defined so that

pk =
m∑
i=1

cji ri ,k

for k = 1, 2, . . . ,m, where cji is the cost associated with the basis
vector a(ji ) for i = 1, 2, . . . , k , Now the quantities ri ,k are the
components of the inverse of the matrix MB , and therefore

m∑
k=1

rh,kAk,ji = δh,i

for h, i = 1, 2, . . . ,m, where

δh,i =

{
1 if h = i ;
0 if h 6= i .
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It follows that

m∑
k=1

pkAk,ji =
m∑

k=1

m∑
h=1

cjhrh,kAk,ji =
m∑

h=1

cjh

(
m∑

k=1

rh,kAk,ji

)
= cji

On combining the identities

si =
m∑

k=1

ri ,kbk , pk =
m∑
i=1

cji ri ,k and C =
m∑
i=1

cji si

derived above, we find that

C =
m∑
i=1

cji si =
m∑
i=1

m∑
k=1

cji ri ,kbk =
m∑

k=1

pkbk .
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The tableau also has cells in the criterion row to record quantities

−q1,−q2, . . . ,−qn,

where q1, q2, . . . , qn are the components of the unique
n-dimensional vector q characterized by the following properties:

qji = 0 for i = 1, 2, . . . ,m;

cT x = C + qT x for all x ∈ Rm satisfying the matrix equation
Ax = b.
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First we show that if q ∈ Rn is defined such that qT = cT − pTA
then the vector q has the required properties.

The definition of p1, p2, . . . , pk ensures (as noted above) that

m∑
k=1

pkAk,ji = cji

for i = 1, 2, . . . , k . It follows that

qji = cji − (pTA)ji = cji −
m∑

k=1

pkAk,ji = 0

for i = 1, 2, . . . , n.
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Also pTb = C . It follows that if x ∈ Rn satisfies Ax = b then

cT x = pTAx + qT x = pTb + qT x = C + qT x.

Thus if qT = cT − pTA then the vector q satisfies the properties
specified above.

We next show that

(pTA)j =
m∑
i=1

cji ti ,j

for j = 1, 2, . . . , n.
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Now

ti ,j =
m∑

k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (see Proposition 4.3). Also
the definition of pk ensures that

pk =
m∑
i=1

cji ri ,k

for k = 1, 2, . . . ,m. These results ensure that

m∑
i=1

cji ti ,j =
m∑
i=1

m∑
k=1

cji ri ,kAk,j =
m∑

k=1

pkAk,j = (pTA)j .

It follows that

−qj =
m∑

k=1

pkAk,j − cj =
m∑
i=1

cji ti ,j − cj

for j = 1, 2, . . . , n.
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The extended simplex tableau associated with the basis B is
obtained by entering the values of the quantities −qj (for
j = 1, 2, . . . , n), C and pk (for k = 1, 2, . . . ,m) into the bottom
row to complete the tableau described previously. The extended
simplex tableau has the following structure:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

−q1 −q2 · · · −qn C p1 p2 · · · pm
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The extended simplex tableau can be presented in block form as
follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1B A M−1B b M−1B

a(jm)

pTA− cT pTb pT
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Let cB denote the m-dimensional vector defined so that

cTB =
(
cj1 cj2 · · · cjm

)
.

The identities we have verified ensure that the extended simplex
tableau can therefore also be represented in block form as
follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1B A M−1B b M−1B

a(jm)

cTBM
−1
B A− cT cTBM

−1
B b cTBM

−1
B
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Given an m × n matrix A of rank m, an m-dimensional target
vector b, and an n-dimensional cost vector c, there exists an
extended simplex tableau associated with any basis B for the linear
programming problem, irrespective of whether or not there exists a
basic feasible solution associated with the given basis B.

The crucial requirement that enables the construction of the
tableau is that the basis B should consist of m distinct integers
j1, j2, . . . , jm between 1 and m for which the corresponding columns
of the matrix A constitute a basis of the vector space Rm.

A basis B is associated with a basic feasible solution of the linear
programming problem if and only if the values in the column
labelled by the target vector b and the rows labelled by
a(j1), a(j2), . . . , a(jm) should be non-negative. If so, those values will
include the non-zero components of the basic feasible solution
associated with the basis.
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If there exists a basic feasible solution associated with the basis B
then that solution is optimal if and only if all the values in the
criterion row in the columns labelled by a(1), a(2), . . . , a(n) are all
non-positive.

Versions of the Simplex Tableau Algorithm for determining a basic
optimal solution to the linear programmming problem, given an
initial basic feasible solution, rely on the transformation rules that
determine how the values in the body of the extended simplex
tableau are transformed on passing from an old basis B to an new
basis B ′, where the new basis B ′ contains all but one of the
members of the old basis B.
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Let us refer to the rows of the extended simplex tableau labelled by
the basis vectors a(1), a(2), . . . , a(n) as the basis rows of the tableau.
The following lemma determines how elements of the basis rows of
the tableau transform under changes of column bases that replace
a single column of an initial basis by another column that is
linearly independent of the remaining columns of that initial basis.
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Lemma 4.4

Let A be an m × n matrix of rank m with real coefficients, let
j1, j2, . . . , jm be distinct integers between 1 and n, let h be an
integer between 1 and m, and let j ′1, j

′
2, . . . , j

′
m be distinct integers

between 1 and n, where j ′h 6= jh and ji = j ′i for i 6= h. Suppose that
the column vectors a(j1), a(j2), . . . , a(jm) are linearly independent,
and that the column vectors a(j

′
1), a(j

′
2), . . . , a(j

′
m) are also linearly

independent, where a(j) denotes the jth column of the matrix A.
Let v be an element of Rm, let z1, z2, . . . , zm, z ′1, z

′
2, . . . , z

′
m,

t1,j ′h , t2,j
′
h
, . . . , tm,j ′h

denote the uniquely-determined real numbers
for which

v =
m∑
i=1

zia
(ji ) =

m∑
i=1

z ′i a
(j ′i )

and

a(j
′
h) =

m∑
i=1

ti ,j ′ha(ji ).
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Then

z ′h =
1

th,j ′h
zh

and

z ′i = zi −
ti ,j ′h
th,j ′h

zh (i 6= h).

Proof
Expressing the vector v as a linear combination of a(j

′
h) and the

vectors a(ji ) for i 6= j , and then substituting in the representation of
a(j

′
h) as a linear combination of a(j1), a(j2), a(jm), and using the

requirement that j ′i = ji when i 6= h, we find that
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v =
m∑
i=1

z ′i a
(j ′i )

= z ′ha(j
′
h) +

∑
1≤i≤m
i 6=h

z ′i a
(ji )

= z ′hth,j ′ha(jh) +
∑

1≤i≤m
i 6=h

(z ′i + z ′hti ,j ′h)a(ji ).

Equating coefficients of a(j1), a(j2), . . . a(jm), we deduce that

zh = z ′hth,j ′h

and
zi = z ′i + z ′hti ,j ′h (1 ≤ i ≤ m and i 6= h).
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It follows that

z ′h =
1

th,j ′h
zh

and

z ′i = zi −
ti ,j ′h
th,j ′h

zh (i 6= h),

as required.

We now apply Lemma 4.4 in order to determine how entries in the
basis rows of the extended simplex tableau transform which one
element of the basis is replaced by an element not belonging to the
basis.
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Thus we consider the manner in which the basis rows of the
extended simplex tableau transform under such a change of basis.
Let A be be m × n matrix of rank m and let b be the
m-dimensional target vector that are employed in the specification
of the linear programming problem. Let the old basis B consist of
distinct integers j1, j2, . . . , jm between 1 and n, and let the new
basis B ′ also consist of distinct integers j ′1, j

′
2, . . . , j

′
m between 1

and n. We suppose that the new basis B ′ is obtained from the old
basis by replacing an element jh of the old basis B by some integer
j ′h between 1 and n that does not belong to the old basis. We
suppose therefore that ji = j ′i when i 6= h, and that j ′h is some
integer between 1 and n that does not belong to the basis B.
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Let the coefficients ti ,j , t
′
i ,j , si , s

′
i , ri ,k and r ′i ,k be determined for

i = 1, 2, . . . ,m, j = 1, 2, . . . , n and k = 1, 2, . . . ,m so that

a(j) =
m∑
i=1

ti ,ja
(ji ) =

m∑
i=1

t ′i ,ja
(j ′i )

for j = 1, 2, . . . , n,

b =
m∑
i=1

sia
(ji ) =

m∑
i=1

s ′i a
(j ′i )

and

e(k) =
m∑
i=1

ri ,ka(ji ) =
m∑
i=1

r ′i ,ka(j
′
i )

for k = 1, 2, . . . ,m.
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It then follows from direct applications of Lemma 4.4 that

t ′h,j =
1

th,j ′h
th,j ,

t ′i ,j = ti ,j −
ti ,j ′h
th,j ′h

th,j (i 6= h).

s ′h =
1

th,j ′h
sh,

s ′i = si −
ti ,j ′h
th,j ′h

sh (i 6= h),

r ′h,k =
1

th,j ′h
rh,k ,

r ′i ,k = ri ,k −
ti ,j ′h
th,j ′h

rh,k (i 6= h).
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The pivot row of the extended simplex tableau for this change of
basis from B to B ′ is the row labelled by the basis vector a(jh) that
is to be removed from the current basis. The pivot column of the
extended simplex tableau for this change of basis is the column
labelled by the vector a(j

′
h) that is to be added to the current basis.

The pivot element for this change of basis is the element th,j ′h of the
tableau located in the pivot row and pivot column of the tableau.
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The identities relating the components of a(j), b and e(k) with
respect to the old basis to the components of those vectors with
respect to the new basis ensure that the rules for transforming the
rows of the tableau other than the criterion row can be stated as
follows:—

a value recorded in the pivot row is transformed by dividing it
by the pivot element;

an value recorded in a basis row other than the pivot row is
transformed by substracting from it a constant multiple of the
value in the same column that is located in the pivot row,
where this constant multiple is the ratio of the values in the
basis row and pivot row located in the pivot column.
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In order to complete the discussion of the rules for transforming
the values recorded in the extended simplex tableau under a
change of basis that replaces an element of the old basis by an
element not in that basis, it remains to analyse the rule that
determines how the elements of the criterion row are transformed
under this change of basis.
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First we consider the transformation of the elements of the
criterion row in the columns labelled by a(j) for j = 1, 2, . . . , n.
Now the coefficients ti ,j and t ′i ,j are defined for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n so that

a(j) =
m∑
i=1

ti ,ja
(ji ) =

m∑
i=1

t ′i ,ja
(j ′i )

for j = 1, 2, . . . , n. Moreover

t ′h,j =
1

th,j ′h
th,j

and

t ′i ,j = ti ,j −
ti ,j ′h
th,j ′h

th,j

for all integers i between 1 and m for which i 6= h.
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Now

−qj =
m∑
i=1

cji ti ,j − cj and − q′j =
m∑
i=1

cj ′i t
′
i ,j − cj .

Therefore

qj − q′j =
∑

1≤i≤m
i 6=h

cji (t
′
i ,j − ti ,j) + cj ′ht

′
h,j − cjhth,j

=
1

th,j ′h

(
−

m∑
i=1

cji ti ,j ′h + cj ′h

)
th,j

=
qj ′h
th,j ′h

th,j

and thus

−q′j = −qj +
qj ′h
th,j ′h

th,j

for j = 1, 2, . . . , n.
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Next we note that

C =
m∑
i=1

cji si and C ′ =
m∑
i=1

cj ′i s
′
i .

Therefore

C ′ − C =
∑

1≤i≤m
i 6=h

cji (s
′
i − si ) + cj ′hs

′
h − cjhsh

=
1

th,j ′h

(
−

m∑
i=1

cji ti ,j ′h + cj ′h

)
sh

=
qj ′h
th,j ′h

sh

and thus

C ′ = C +
qj ′h
th,j ′h

sh

for k = 1, 2, . . . ,m.
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To complete the verification that the criterion row of the extended
simplex tableau transforms according to the same rule as the other
rows we note that

pk =
m∑
i=1

cji ri ,k and p′k =
m∑
i=1

cj ′i r
′
i ,k .

Therefore

p′k − pk =
∑

1≤i≤m
i 6=h

cji (r
′
i ,k − ri ,k) + cj ′hr

′
h,k − cjhrh,k

=
1

th,j ′h

(
−

m∑
i=1

cji ti ,j ′h + cj ′h

)
rh,k =

qj ′h
th,j ′h

rh,k

and thus

p′k = pk +
qj ′h
th,j ′h

rh,k

for k = 1, 2, . . . ,m.
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We conclude that the criterion row of the extended simplex tableau
transforms under changes of basis that replace one element of the
basis according to a rule analogous to that which applies to the
basis rows. Indeed an element of the criterion row is transformed
by subtracting from it a constant multiple of the element in the
pivot row that belongs to the same column, where the multiplying
factor is the ratio of the elements in the criterion row and pivot
row of the pivot column.
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We have now discussed how the extended simplex tableau
associated with a given basis B is constructed from the constraint
matrix A, target vector b and cost vector c that characterizes the
linear programming problem. We have also discussed how the
tableau transforms when one element of the given basis is replaced.

It remains how to replace an element of a basis associated with a
non-optimal feasible solution so as to obtain a basic feasible
solution of lower cost where this is possible.

We use the notation previously established. Let j1, j2, . . . , jm be the
elements of a basis B that is associated with some basic feasible
solution of the linear programming problem. Then there are
non-negative numbers s1, s2, . . . , sm such that

b =
m∑
i=1

sia
(ji ),

where a(ji ) is the m-dimensional vector determined by column ji of
the constraint matrix A.
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Let j0 be an integer between 1 and n that does not belong to the
basis B. Then

a(j0) −
m∑
i=1

ti ,j0a(ji ) = 0.

and therefore

λa(j0) +
m∑
i=1

(si − λti ,j0)a(ji ) = b.
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This expression representing b as a linear combination of the basis
vectors a(j0), a(j1), a(j2), . . . , a(jm) determines an n-dimensional
vector x(λ) satisfying the matrix equation Ax(λ) = b. Let x j(λ)
denote the jth component of the vector x(λ) for j = 1, 2, . . . , n.
Then

x j0(λ) = λ;

x ji (λ) = si − λti ,j0 for i = 1, 2, . . . ,m;

x j = 0 when j 6∈ {j0, j1, j2, . . . , jm}.
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The n-dimensional vector x(λ) represents a feasible solution of the
linear programming problem if and only if all its coefficients are
non-negative. The cost is then C + qj0λ, where C is the cost of
the basic feasible solution determined by the basis B.

Suppose that qj0 < 0 and that ti ,j0 ≤ 0 for i = 1, 2, . . . ,m. Then
x(λ) is a feasible solution with cost C + qj0λ for all non-negative
real numbers λ. In this situation there is no optimal solution to the
linear programming problem, because, given any real number K , it
is possible to choose λ so that C + qj0λ < K , thereby obtaining a
feasible solution whose cost is less than K .

If there does exist an optimal solution to the linear programming
problem then there must exist at least one integer i between 1 and
m for which ti ,j0 > 0. We suppose that this is the case. Then x(λ)
is a feasible solution if and only if λ satisfies 0 ≤ λ ≤ λ0, where

λ0 = minimum

(
si
ti ,j0

: ti ,j0 > 0

)
.
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We can then choose some integer h between 1 and n for which

sh
th,j0

= λ0.

Let j ′i = ji for i 6= h, and let j ′h = j0, and let B ′ = {j ′1, j ′2, . . . , j ′m}.
Then x(λ0) is a basic feasible solution of the linear programming
problem associated with the basis B ′. The cost of this basic
feasible solution is

C +
shqj0
th,j0

.

It makes sense to select the replacement column so as to obtain
the greatest cost reduction. The procedure for finding this
information from the tableau can be described as follows.
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We suppose that the simplex tableau for a basic feasible solution
has been prepared. Examine the values in the criterion row in the
columns labelled by a(1), a(2), . . . , a(n). If all those are non-positive
then the basic feasible solution is optimal. If not, then consider in
turn those columns a(j0) for which the value −qj0 in the criterion
row is positive. For each of these columns, examine the coefficients
recorded in the column in the basis rows. If these coefficients are
all non-positive then there is no optimal solution to the linear
programming problem. Otherwise choose h to be the value of i

that minimizes the ratio
si
ti ,j0

amongst those values of i for which

ti ,j0 > 0. The row labelled by a(jh) would then be the pivot row if
the column a(j0) were used as the pivot column.
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Calculate the value of the cost reduction
sh(−qj0)

th,j0
that would

result if the column labelled by a(j0) were used as the pivot column.
Then choose the pivot column to maximize the cost reduction
amongst all columns a(j0) for which −qj0 > 0. Choose the row
labelled by a(jh), where h is determined as described above. Then
apply the procedures for transforming the simplex tableau to that
determined by the new basis B ′, where B ′ includes j0 together with
ji for all integers i between 1 and m satisfying i 6= h.
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4.8. Further Analysis of the Criterion Row Transformation Rule

We investigate further the reasons why, in a linear programming
problem expressed in Dantzig standard form, the criterion row of
the extended simplex tableau transforms in the same fashion under
change of basis as the other rows of the tableau. Thus let A be an
m× n matrix of rank m with real coefficients, where m ≤ n, and let
b ∈ Rm and c ∈ Rn be vectors of dimensions m and n respectively.
We consider the following linear programming problem:—

Determine an n-dimensional vector x so as to minimize
cT x subject to the constraints Ax = b and x ≥ 0.
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Let ρ : Rm → Rm+1 and σ : Rn → Rn+1 be the embeddings of Rm

and Rn in Rm+1 and Rn+1 respectively defined such that

ρ(w1,w2, . . . ,wm) = (w1,w2, . . . ,wm, 0)

σ(x1, x2, . . . , xn) = (x1, x2, . . . , xn, 0)

for all (w1,w2, . . . ,wm) ∈ Rm. and (x1, x2, . . . , xn) ∈ Rn. Also let
f ∈ Rm+1 and g ∈ Rn+1 be defined so that

f = (0, 0, . . . , 0, 1) and g = (0, 0, . . . , 0, 1).
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Every element of Rm+1 can then be expressed, uniquely, in the
form ρ(w) + zf for some w ∈ Rn and z ∈ R. Similarly every
element of Rn+1 can then be expressed, uniquely, in the form
σ(x) + yg for some x ∈ Rn and y ∈ R. The linear transformation
A : Rn → Rm determined by the constraint matrix of the linear
programming problem and the cost vector c ∈ Rm then together
determine a linear transformation Â : Rn+1 → Rm+1 from Rn+1 to
Rm+1, where

Â(σ(x) + yg) = ρ(Ax) + (y − cT x)f

for all x ∈ Rn and y ∈ R.
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This linear transformation Â is specified in matrix form as follows:

Â =


A1,1 A1,2 . . . A1,n 0
A2,1 A2,2 . . . A2,n 0

...
...

. . .
...

...
Am,1 Am,2 . . . Am,n 0
−c1 −c2 . . . −cn 1

 .

Let
b̂ = ρ(b) = (b1, b2, . . . , bm, 0)T ,

where b denotes that target vector of the linear programming
problem, and let

x̂ = σ(x) + yg = (x1, x2, . . . , xn, y)T

for some x ∈ Rn and y ∈ R. Then Âx̂ = b̂ if and only if Ax = b
and y = cT x.
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Indeed the equation Âx̂ = b̂, expressed in matrix notation, takes
the following form:

A1,1 A1,2 . . . A1,n 0
A2,1 A2,2 . . . A2,n 0

...
...

. . .
...

...
Am,1 Am,2 . . . Am,n 0
−c1 −c2 . . . −cn 1




x1
x2
...
xn
y

 =


b1
b2
...
bn
0


and this matrix equation is clearly equivalent to the two
simultaneous equations Ax = b and cT x = y . The problem of
minimizing cT x subject to the constraints Ax = b and x ≥ 0 is
thus equivalent to the problem of minimizing y subject to the
constraints Âx̂ = b̂ and x ≥ 0, where b̂ = ρ(b) and x̂ = σ(x) + yg.
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Now let â(1), â(2), . . . â(n) denote the first n columns of the
(m + 1)× (n + 1) matrix Â. Then

â(j) = ρ(a(j))− cj f

for j = 1, 2, . . . , n, where a(j) denotes the jth column of the
constraint matrix A.
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Let j1, j2, . . . , jm be a basis for the linear programming problem.
Then the m-dimensional vectors a(j1), a(j2), . . . , a(jm) are linearly
independent. It then follows that the (m + 1)-dimensional vectors

ρ(a(j1)), ρ(a(j2)), . . . , ρ(a(jm)), f

are linearly independent, and therefore the (m + 1)-dimensional
vectors

â(j1), â(j2), . . . , â(jm), f

are linearly independent, and therefore constitute a basis of Rm+1.
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The standard basis of Rm+1 consists of the vectors
ê(1), ê(2), . . . , ê(m), f, where e(1), e(2), . . . , e(m) is the standard basis
of Rm and ê(k) = ρ(e(k)) for k = 1, 2, . . . ,m. Let coefficients ri ,k
be determined for i , k = 1, 2, . . . ,m so that

e(k) =
m∑
i=1

ri ,ka(ji )

for k = 1, 2, . . . ,m. Then
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ê(k) = ρ(e(k)) =
m∑
i=1

ri ,kρ(a(ji )) =
m∑
i=1

ri ,k â(ji ) +
m∑
i=1

cji ri ,k f

=
m∑
i=1

ri ,k â(ji ) + pk f,

where pk =
m∑
i=1

cji ri ,k for k = 1, 2, . . . ,m.
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Also let s1, s2, . . . , sk be the components of the target vector b
with respect to the basis a(j1), a(j2), . . . , a(jm) of Rm, so that

b =
m∑
i=1

sia
(ji ),

Then

b̂ = ρ(b) =
m∑
i=1

siρ(a(ji )) =
m∑
i=1

si â
(ji ) +

m∑
i=1

cji si f

=
m∑
i=1

si â
(ji ) + C f,

where C =
m∑
i=1

cji si .
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Next let coefficients ti ,j be determined so that

a(j) =
m∑
i=1

ti ,ja
(ji )

for j = 1, 2, . . . , n. Then

â(j) = ρ(a(j))− cj f =
m∑
i=1

ti ,jρ(a(ji ))− cj f

=
m∑
i=1

ti ,j â
(ji ) +

(
m∑
i=1

cji ti ,j − cj

)
f

=
m∑
i=1

ri ,k â(ji ) − qj f,

where qj = cj −
m∑
i=1

cji ti ,j for j = 1, 2, . . . , n.
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These identities show that the coefficients ti ,j and −qj in the
column of the extended simplex tableau labelled by the vector a(j)

are the coefficients of â(j) with respect to the basis

â(j1), â(j2), . . . , â(jm), f

of Rm+1 for j = 1, 2, . . . , n. Similarly the coefficients si and C in
the column of the extended simplex tableau labelled by the target
vector b are the coefficients of b̂ with respect to the same basis of
Rm+1. Also the coefficients ri ,k and pk in the column of the
extended simplex tableau labelled by the standard basis vector e(k)

are the coefficients of ê(k) with respect to the above basis of Rm+1.

The results just described ensure that the criterion row of the
extended simplex tableau transforms according to the same rules as
the rows above it under change of basis.
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4.9. The Simplex Tableau Algorithm

In describing the Simplex Tableau Algorithm, we adopt notation
previously introduced. Thus we are concerned with the solution of
a linear programming problem in Dantzig standard form, specified
by positive integers m and n, an m× n constraint matrix A of rank
m, a target vector b ∈ Rm and a cost vector c ∈ Rn. The
optimization problem requires us to find a vector x ∈ Rn that
minimizes cT x amongst all vectors x ∈ Rn that satisfy the
constraints Ax = b and x ≥ 0.

We denote by Ai ,j the coefficient in the ith row and jth column of
the matrix A, we denote the ith component of the target vector b
by bi and we denote the jth component of the cost vector c by cj
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

As usual, we define vectors a(j) ∈ Rm for j = 1, 2, . . . , n such that
(a(j))i = Ai ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.



4. The Simplex Method (continued)

Distinct integers j1, j2, . . . , jm between 1 and n determine a
basis B, where

B = {j1, j2, . . . , jm},

if and only if the corresponding vectors a(j1), a(j2), . . . , a(jm)

constitute a basis of Rm. Given such a basis B we let MB denote
the invertible m ×m matrix defined such that (MB)i ,k = Ai ,jk for
all integers i and k between 1 and m.

We let ti ,j = (M−1B A)i ,j and si = (M−1B b)i for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n. Then

a(j) =
m∑
i=1

ti ,ja
(ji )

for j = 1, 2, . . . , n, and

b =
m∑
i=1

sia
(ji ).



4. The Simplex Method (continued)

A basis B determines an associated basic feasible solution if and
only if si ≥ 0 for i = 1, 2, . . . ,m. We suppose in what follows that
the basis B determines a basic feasible solution.

Let

C =
m∑
i=1

cji si .

Then C is the cost of the basic feasible solution associated with
the basis B.

Let

−qj =
m∑
i=1

cji ti ,j − cj .

Then qj = 0 for all j ∈ {j1, j2, . . . , jm}. Also the cost of any feasible
solution (x1, x2, . . . , xn) of the linear programming problem is

C +
n∑

j=1

qjx j .



4. The Simplex Method (continued)

The simplex tableau associated with the basis B is that portion of
the extended simplex tableau that omits the columns labelled by
e(1), e(2), . . . , e(m). The simplex table has the following structure:

a(1) a(2) · · · a(n) b

a(j1) t1,1 t1,2 · · · t1,n s1
a(j2) t2,1 t2,2 · · · t2,n s2

...
...

...
. . .

...
...

a(jm) tm,1 tm,2 · · · tm,n sm

−q1 −q2 · · · −qn C



4. The Simplex Method (continued)

Let cB denote the m-dimensional vector defined such that

cTB =
(
cj1 cj2 · · · cjm

)
.

Then the simplex tableau can be presented in block form as
follows:—

a(1) · · · a(n) b

a(j1)

... M−1B A M−1B b

a(jm)

cTBM
−1
B A− cT cTBM

−1
B b



4. The Simplex Method (continued)

Example
We consider again the following linear programming problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We are given the following initial basic feasible solution
(1, 2, 0, 0, 0). We need to determine whether this initial basic
feasible solution is optimal and, if not, how to improve it till we
obtain an optimal solution.



4. The Simplex Method (continued)

The constraints require that x1, x2, x3, x4, x5 be non-negative real
numbers satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components
x1, x2, x3, x4 and x5 that maximizes cT x subject to the constraints
Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
,

and
cT =

(
3 4 2 9 5

)
.



4. The Simplex Method (continued)

Our initial basis B satisfies B = {j1, j2}, where j1 = 1 and j2 = 2.
The first two columns of the matrix A provide the corresponding
invertible 2× 2 matrix MB . Thus

MB =

(
5 3
4 1

)
.

Inverting this matrix, we find that

M−1B = −1

7

(
1 −3
−4 5

)
.

For each integer j between 1 and 5, let a(j) denote the
m-dimensional vector whose ith component is Ai ,j for i = 1, 2.
Then

a(j) =
2∑

i=1

ti ,ja
(ji ) and b =

2∑
i=1

sia
(ji ),

where ti ,j = (M−1B A)i ,j and si = (M−1B b)i for j = 1, 2, 3, 4, 5 and
i = 1, 2.



4. The Simplex Method (continued)

Calculating M−1B A we find that

M−1B A =

(
1 0 5

7
17
7

9
7

0 1 1
7 −12

7 −8
7

)
.

Also

M−1B b =

(
1
2

)
.

The coefficients of these matrices determine the values of ti ,j and
si to be entered into the appropriate cells of the simplex tableau.



4. The Simplex Method (continued)

The basis rows of the simplex tableau corresponding to the basis
{1, 2} are thus as follows:—

a(1) a(2) a(3) a(4) a(5) b

a(1) 1 0 5
7

17
7

9
7 1

a(2) 0 1 1
7 −12

7 −8
7 2

· · · · · ·



4. The Simplex Method (continued)

Now the cost C of the current feasible solution satisfies the
equation

C =
2∑

i=1

cji si = c1s1 + c2s2,

where c1 = 3, c2 = 4, s1 = 1 and s2 = 2. It follows that C = 11.

To complete the simplex tableau, we need to compute −qj for
j = 1, 2, 3, 4, 5, where

−qj =
2∑

i=1

cji ti ,j − cj .

Let cB denote the 2-dimensional vector whose ith component is
(cji ). Then cB = (3, 4). Let q denote the 5-dimensional vector
whose jth component is qj for j = 1, 2, 3, 4, 5. Then

−qT = cTBM
−1
B A− cT .



4. The Simplex Method (continued)

It follows that

−qT =
(

3 4
)( 1 0 5

7
17
7

9
7

0 1 1
7 −12

7 −8
7

)
−
(

3 4 2 9 5
)

=
(

0 0 5
7 −60

7 −40
7

)
.

The simplex tableau corresponding to basis {1, 2} is therefore
completed as follows:—

a(1) a(2) a(3) a(4) a(5) b

a(1) 1 0 5
7

17
7

9
7 1

a(2) 0 1 1
7 −12

7 −8
7 2

0 0 5
7 −60

7 −40
7 11



4. The Simplex Method (continued)

The values of −qj for j = 1, 2, 3, 4, 5 are not all non-positive
ensures that the initial basic feasible solution is not optimal.
Indeed the cost of a feasible solution (x1, x2, x3, x4, x5) is

11− 5
7x3 + 60

7 x4 + 40
7 x5.

Thus a feasible solution with x3 > 0 and x4 = x5 = 0 will have
lower cost than the initial feasible basic solution. We therefore
implement a change of basis whose pivot column is that labelled by
the vector a(3).



4. The Simplex Method (continued)

We must determine which row to use as the pivot row. We need to

determine the value of i that minimizes the ratio
si
ti ,3

, subject to

the requirement that ti ,3 > 0. This ratio has the value 7
5 when

i = 1 and 14 when i = 2. Therefore the pivot row is the row
labelled by a(1). The pivot element t1,3 then has the value 5

7 .

The simplex tableau corresponding to basis {2, 3} is then obtained
by subtracting the pivot row multiplied by 1

5 from the row labelled

by a(2), subtracting the pivot row from the criterion row, and
finally dividing all values in the pivot row by the pivot element 5

7 .



4. The Simplex Method (continued)

The simplex tableau for the basis {2, 3} is thus the following:—

a(1) a(2) a(3) a(4) a(5) b

a(3) 7
5 0 1 17

5
9
5

7
5

a(2) −1
5 1 0 −11

5 −7
5

9
5

−1 0 0 −11 −7 10

All the values in the criterion row to the left of the new cost are
non-positive. It follows that we have found a basic optimal solution
to the linear programming problem. The values recorded in the
column labelled by b show that this basic optimal solution is

(0, 95 ,
7
5 , 0, 0).



4. The Simplex Method (continued)

4.10. The Revised Simplex Algorithm

The Simplex Tableau Algorithm restricts attention to the columns
to the left of the extended simplex tableau. The Revised Simplex
Algorithm proceeds by maintaining the columns to the right of the
extended simplex tableau, calculating values in the columns to the
left of that tableau only as required.

We show how the Revised Simplex Algorithm is implemented by
applying it to the example used to demonstrate the
implementation of the Simplex Algorithm.



4. The Simplex Method (continued)

Example
We apply the Revised Simplex Algorithm to determine a basic
optimal solution to the the following linear programming
problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We are given the following initial basic feasible solution
(1, 2, 0, 0, 0). We need to determine whether this initial basic
feasible solution is optimal and, if not, how to improve it till we
obtain an optimal solution.



4. The Simplex Method (continued)

The constraints require that x1, x2, x3, x4, x5 be non-negative real
numbers satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components
x1, x2, x3, x4 and x5 that maximizes cT x subject to the constraints
Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
,

and
cT =

(
3 4 2 9 5

)
.



4. The Simplex Method (continued)

Our initial basis B satisfies B = {j1, j2}, where j1 = 1 and j2 = 2.
The first two columns of the matrix A provide the corresponding
invertible 2× 2 matrix MB . Thus

MB =

(
5 3
4 1

)
.

Inverting this matrix, we find that

M−1B = −1

7

(
1 −3
−4 5

)
.

For each integer j between 1 and 5, let a((j) denote the
m-dimensional vector whose ith component is Ai ,j for i = 1, 2.
Then

a(j) =
2∑

i=1

ti ,ja
(ji ) and b =

2∑
i=1

sia
(ji ),

where ti ,j = (M−1B A)i ,j and si = (M−1B b)i for j = 1, 2, 3, 4, 5 and
i = 1, 2.



4. The Simplex Method (continued)

Let ri ,k = (M−1B )i ,k for i = 1, 2 and k = 1, 2, and let

C = cj1s1 + cj2s2 = c1s1 + c2s2 = 11

p1 = cj1r1,1 + cj2r2,1 = c1r1,1 + c2r2,1 = 13
7

p2 = cj1r1,2 + cj2r2,2 = c1r1,2 + c2r2,2 = −11
7

The values of si , ri ,k , C and pk are inserted into the following
tableau, which consists of the columns to the right of the extended
simplex tableau:—

b e(1) e(2)

a(1) 1 −1
7

3
7

a(2) 2 4
7 −5

7

11 13
7 −11

7



4. The Simplex Method (continued)

To proceed with the algorithm, one computes values −qj for j 6∈ B
using the formula

−qj = p1A1,j + p2A2,j − cj ,

seeking a value of j for which −qj > 0. Were all the values −qj are
non-positive (i.e., if all the qj are non-negative), then the initial
solution would be optimal. Computing −qj for j = 5, 4, 3, we find
that

−q5 = 13
7 × 3− 11

7 × 4− 5 = −40
7

−q4 = = 13
7 × 7− 11

7 × 8− 9 = −60
7

−q3 = = 13
7 × 4− 11

7 × 3− 2 = 5
7



4. The Simplex Method (continued)

The inequality q3 > 0 shows that the initial basic feasible solution
is not optimal, and we should seek to change basis so as to include
the vector a(3). Let

t1,3 = r1,1A1,3 + r1,2A2,3 = −1
7 × 4 + 3

7 × 3 = 5
7

t2,3 = r2,1A1,3 + r2,2A2,3 = 4
7 × 4− 5

7 × 3 = 1
7

Then
a(3) = t1,3a(j1) + t2,3a(j2) = 5

7a(1) + 1
7a(2).



4. The Simplex Method (continued)

We introduce a column representing the vector a(3) into the
tableau to serve as a pivot column. The resultant tableau is as
follows:—

a(3) b e(1) e(2)

a(1) 5
7 1 −1

7
3
7

a(2) 1
7 2 4

7 −5
7

5
7 11 13

7 −11
7



4. The Simplex Method (continued)

To determine a pivot row we must pick the row index i so as to

minimize the ratio
si
ti ,3

, subject to the requirement that ti ,3 > 0. In

the context of this example, we should pick i = 1. Accordingly the
row labelled by the vector a(1) is the pivot row. To implement the
change of basis we must subtract from the second row the values
above them in the pivot row, multiplied by 1

5 ; we must subtract
the values in the pivot row from the values below them in the
criterion row, and we must divide the values in the pivot row itself
by the pivot element 5

7 .



4. The Simplex Method (continued)

The resultant tableau corresponding to the basis 2, 3 is then as
follows:—

a(3) b e(1) e(2)

a(3) 1 7
5 −1

5
3
5

a(2) 0 9
5

3
5 −4

7

0 10 2 −2

A straightforward computation then shows that if

pT =
(

2 −2
)

then
pTA− cT =

(
−1 0 0 −11 −7

)
.

The components of this row vector are all non-positive. It follows
that the basis {2, 3} determines a basic optimal solution

(0, 95 ,
7
5 , 0, 0).



4. The Simplex Method (continued)

4.11. Finding Initial Basic Solutions

Suppose that we are given a linear programming problem in
Dantzig standard form, specified by positive integers m and n, an
m × n matrix A of rank m, an m-dimensional target vector b ∈ Rm

and an n-dimensional cost vector c ∈ Rn. The problem requires us
to find an n-dimensional vector x that minimizes the objective
function cT x subject to the constraints Ax = b and x ≥ 0.

Now, in the event that the column vector b has negative
coefficients, the relevant rows of the constraint matrix A and target
vector b can be multiplied by −1 to yield an equivalent problem in
which the coefficients of the target vector are all non-negative.
Therefore we may assume, without loss of generality, that b ≥ 0.



4. The Simplex Method (continued)

The Simplex Tableau Algorithm and the Revised Simplex
Algorithm provided methods for passing from an initial basic
feasible solution to a basic optimal solution, provided that such a
basic optimal solution exists. However, we need first to find an
initial basic feasible solution for this linear programming problem.



4. The Simplex Method (continued)

One can find such an initial basic feasible solution by solving an
auxiliary linear programming problem. This auxiliary problem
requires us to find n-dimensional vectors x and z that minimize the

objective function
n∑

j=1
(z)j subject to the constraints Ax + z = b,

x ≥ 0 and z ≥ 0.

This auxiliary linear programming problem is itself in Dantzig
standard form. Moreover it has an initial basic feasible solution
specified by the simultaneous equations x = 0 and z = b. The
objective function of a feasible solution is always non-negative.
Applications of algorithms based on the Simplex Method should
identify a basic optimal solution (x, z) for this problem. If the cost
n∑

j=1
(z)j of this basic optimal solution is equal to zero then Ax = b

and x ≥ 0. If the cost of the basic optimal solution is positive then
the problem does not have any basic feasible solutions.



4. The Simplex Method (continued)

The process of solving a linear programming problem in Dantzig
standard form thus typically consists of two phases. The Phase I
calculation aims to solve the auxiliary linear programming problem

of seeking n-dimensional vectors x and z that minimize
n∑

i=1
(z)j

subject to the constraints Ax + z = b, x ≥ 0 and z ≥ 0. If the
optimal solution (x, z) of the auxiliary problem satisfies z 6= 0 then
there is no initial basic solution of the original linear programming
problem. But if z = 0 then Ax = b and x ≥ 0, and thus the Phase
I calculation has identified an initial basic feasible solution of the
original linear programmming problem. The Phase II calculation is
the process of successively changing bases to lower the cost of the
corresponding basic feasible solutions until either a basic optimal
solution has been found or else it has been demonstated that no
such basic optimal solution exists.
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