MAU34802—The Theory of Linear
Programming
School of Mathematics, Trinity College
Hilary Term 2021
Section 5: Duality and Convexity

David R. Wilkins

2. Finite-Dimensional Vector Spaces

2. Finite-Dimensional Vector Spaces

2.1. Real Vector Spaces

Definition

A real vector space consists of a set V on which there is defined an operation of vector addition, yielding an element v+w of V for each pair v,w of elements of V, and an operation of multiplication-by-scalars that yields an element λv of V for each $v \in V$ and for each real number λ . The operation of vector addition is required to be commutative and associative. There must exist a zero element 0_V of V that satisfies $v+0_V=v$ for all $v \in V$, and, for each $v \in V$ there must exist an element -v of V for which $v+(-v)=0_V$. The following identities must also be satisfied for all $v,w \in V$ and for all real numbers λ and μ :

$$(\lambda + \mu)v = \lambda v + \mu v, \quad \lambda(v + w) = \lambda v + \lambda w,$$

$$\lambda(\mu v) = (\lambda \mu)v, \quad 1v = v.$$

Let n be a positive integer. The set \mathbb{R}^n consisting of all n-tuples of real numbers is then a real vector space, with addition and multiplication-by-scalars defined such that

$$(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

and

$$\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

for all $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}$ and for all real numbers λ .

The set $M_{m,n}(\mathbb{R})$ of all $m \times n$ matrices is a real vector space with respect to the usual operations of matrix addition and multiplication of matrices by real numbers.

2.2. Linear Dependence and Bases

Elements u_1, u_2, \ldots, u_m of a real vector space V are said to be *linearly dependent* if there exist real numbers $\lambda_1, \lambda_2, \ldots, \lambda_m$, not all zero, such that

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \cdots + \lambda_m \mathbf{u}_m = \mathbf{0}_V.$$

If elements u_1, u_2, \ldots, u_m of real vector space V are not linearly dependent, then they are said to be *linearly independent*.

Elements u_1, u_2, \ldots, u_n of a real vector space V are said to span V if, given any element v of V, there exist real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $v = \lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n$.

A vector space is said to be *finite-dimensional* if there exists a finite subset of V whose members span V.

Elements u_1, u_2, \ldots, u_n of a finite-dimensional real vector space V are said to constitute a *basis* of V if they are linearly independent and span V.

Lemma 2.1

Elements u_1, u_2, \ldots, u_n of a real vector space V constitute a basis of V if and only if, given any element v of V, there exist uniquely-determined real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$v = \lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n.$$

Proof

Suppose that u_1, u_2, \ldots, u_n is a basis of V. Let v be an element V. The requirement that u_1, u_2, \ldots, u_n span V ensures that there exist real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$v = \lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n.$$

If $\mu_1, \mu_2, \dots, \mu_n$ are real numbers for which

$$\mathbf{v} = \mu_1 \mathbf{u}_1 + \mu_2 \mathbf{u}_2 + \dots + \mu_n \mathbf{u}_n,$$

then

$$(\mu_1 - \lambda_1)u_1 + (\mu_2 - \lambda_2)u_2 + \cdots + (\mu_n - \lambda_n)u_n = 0_V.$$

It then follows from the linear independence of $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ that $\mu_i - \lambda_i = 0$ for $i = 1, 2, \ldots, n$, and thus $\mu_i = \lambda_i$ for $i = 1, 2, \ldots, n$. This proves that the coefficients $\lambda_1, \lambda_2, \ldots, \lambda_n$ are uniquely-determined.

Conversely suppose that u_1, u_2, \ldots, u_n is a list of elements of V with the property that, given any element v of V, there exist uniquely-determined real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$v = \lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n.$$

Then u_1, u_2, \ldots, u_n span V. Moreover we can apply this criterion when v = 0. The uniqueness of the coefficients $\lambda_1, \lambda_2, \ldots, \lambda_n$ then ensures that if

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n = \mathbf{0}_V$$

then $\lambda_i=0$ for $i=1,2,\ldots,n$. Thus $\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n$ are linearly independent. This proves that $\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n$ is a basis of V, as required.

Proposition 2.2

Let V be a finite-dimensional real vector space, let

$$u_1, u_2, \ldots, u_n$$

be elements of V that span V, and let K be a subset of $\{1,2,\ldots,n\}$. Suppose either that $K=\emptyset$ or else that those elements u_i for which $i\in K$ are linearly independent. Then there exists a basis of V whose members belong to the list u_1,u_2,\ldots,u_n which includes all the vectors u_i for which $i\in K$.

Proof

We prove the result by induction on the number of elements in the list u_1, u_2, \ldots, u_n of vectors that span V. The result is clearly true when n=1. Thus suppose, as the induction hypothesis, that the result is true for all lists of elements of V that span V and that have fewer than n members.

If the elements u_1, u_2, \ldots, u_n are linearly independent, then they constitute the required basis. If not, then there exist real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, not all zero, such that

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \cdots + \lambda_n \mathbf{u}_n = \mathbf{0}_V.$$

Now there cannot exist real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$, not all zero, such that both $\sum\limits_{i=1}^n\lambda_i u_i=0_V$ and also $\lambda_i=0$ whenever $i\neq K$. Indeed, in the case where $K=\emptyset$, this conclusion follows from the requirement that the real numbers λ_i cannot all be zero, and, in the case where $K\neq\emptyset$, the conclusion follows from the linear independence of those u_i for which $i\in K$. Therefore there must exist some integer i satisfying $1\leq i\leq n$ for which $\lambda_i\neq 0$ and $i\notin K$.

Without loss of generality, we may suppose that u_1, u_2, \dots, u_n are ordered so that $n \notin K$ and $\lambda_n \neq 0$. Then

$$\mathbf{u}_n = -\sum_{i=1}^{n-1} \frac{\lambda_i}{\lambda_n} \, \mathbf{u}_i.$$

Let v be an element of V. Then there exist real numbers $\mu_1, \mu_2, \ldots, \mu_n$ such that $\mathbf{v} = \sum_{i=1}^n \mu_i \mathbf{u}_i$, because $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ span V. But then

$$\mathbf{v} = \sum_{i=1}^{n-1} \left(\mu_i - \frac{\mu_n \lambda_i}{\lambda_n} \right) \mathbf{u}_i.$$

We conclude that $u_1, u_2, \ldots, u_{n-1}$ span the vector space V. The induction hypothesis then ensures that there exists a basis of V consisting of members of this list that includes the linearly independent elements u_1, u_2, \ldots, u_m , as required.

Corollary 2.3

Let V be a finite-dimensional real vector space, and let

$$u_1, u_2, \ldots, u_n$$

be elements of V that span the vector space V. Then there exists a basis of V whose elements are members of the list u_1, u_2, \ldots, u_n .

Proof

This result is a restatement of Proposition 2.2 in the special case where the set K in the statement of that proposition is the empty set.

2.3. Dual Spaces

Definition

Let V be a real vector space. A linear functional $\varphi \colon V \to \mathbb{R}$ on V is a linear transformation from the vector space V to the field \mathbb{R} of real numbers.

Given linear functionals $\varphi\colon V\to\mathbb{R}$ and $\psi\colon V\to\mathbb{R}$ on a real vector space V, and given any real number λ , we define $\varphi+\psi$ and $\lambda\varphi$ to be the linear functionals on V defined such that

$$(\varphi + \psi)(v) = \varphi(v) + \psi(v)$$
 and $(\lambda \varphi)(v) = \lambda \varphi(v)$ for all $v \in V$.

The set V^* of linear functionals on a real vector space V is itself a real vector space with respect to the algebraic operations of addition and multiplication-by-scalars defined above.

Definition

Let V be a real vector space. The *dual space* V^* of V is the vector space whose elements are the linear functionals on the vector space V.

Now suppose that the real vector space V is finite-dimensional. Let u_1, u_2, \ldots, u_n be a basis of V, where $n = \dim V$. Given any $v \in V$ there exist uniquely-determined real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $v = \sum_{j=1}^n \lambda_j u_j$. It follows that there are well-defined functions $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ from V to the field $\mathbb R$ defined such that

$$\varepsilon_i \left(\sum_{j=1}^n \lambda_j \mathsf{u}_j \right) = \lambda_i$$

for $i=1,2,\ldots,n$ and for all real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$. These functions are linear transformations, and are thus linear functionals on V.

Lemma 2.4

Let V be a finite-dimensional real vector space, let

$$u_1, u_2, \ldots, u_n$$

be a basis of V, and let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ be the linear functionals on V defined such that

$$\varepsilon_i \left(\sum_{j=1}^n \lambda_j \mathbf{u}_j \right) = \lambda_i$$

for $i=1,2,\ldots,n$ and for all real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$. Then $\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n$ constitute a basis of the dual space V^* of V.

Moreover
$$\varphi = \sum_{i=1}^n \varphi(\mathsf{u}_i)\varepsilon_i$$
 for all $\varphi \in V^*$.

Proof

Let μ_1,μ_2,\ldots,μ_n be real numbers with the property that $\sum_{i=1}^n \mu_i \varepsilon_i = 0_{V^*}.$ Then

$$0 = \left(\sum_{i=1}^{n} \mu_{i} \varepsilon_{i}\right) (\mathbf{u}_{j}) = \sum_{i=1}^{n} \mu_{i} \varepsilon_{i} (\mathbf{u}_{j}) = \mu_{j}$$

for $j=1,2,\ldots,n$. Thus the linear functionals $\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n$ on V are linearly independent elements of the dual space V^* .

Now let $\varphi \colon V \to \mathbb{R}$ be a linear functional on V, and let $\mu_i = \varphi(\mathsf{u}_i)$ for $i = 1, 2, \ldots, n$. Now

$$\varepsilon_i(\mathsf{u}_j) = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

It follows that

$$\left(\sum_{i=1}^{n} \mu_{i} \varepsilon_{i}\right) \left(\sum_{j=1}^{n} \lambda_{j} \mathbf{u}_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i} \lambda_{j} \varepsilon_{i}(\mathbf{u}_{j}) = \sum_{j=1}^{n} \mu_{j} \lambda_{j}$$
$$= \sum_{j=1}^{n} \lambda_{j} \varphi(\mathbf{u}_{j}) = \varphi\left(\sum_{j=1}^{n} \lambda_{j} \mathbf{u}_{j}\right)$$

for all real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$.

It follows that

$$\varphi = \sum_{i=1}^{n} \mu_{i} \varepsilon_{i} = \sum_{i=1}^{n} \varphi(\mathsf{u}_{i}) \varepsilon_{i}.$$

We conclude from this that every linear functional on V can be expressed as a linear combination of $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$. Thus these linear functionals span V^* . We have previously shown that they are linearly independent. It follows that they constitute a basis of V^* . Moreover we have verified that $\varphi = \sum_{i=1}^n \varphi(\mathbf{u}_i)\varepsilon_i$ for all $\varphi \in V^*$,

as required.

Definition

Let V be a finite-dimensional real vector space, let u_1, u_2, \ldots, u_n be a basis of V. The corresponding *dual basis* of the dual space V^* of V consists of the linear functionals $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ on V, where

$$\varepsilon_i \left(\sum_{j=1}^n \lambda_j \mathbf{u}_j \right) = \lambda_i$$

for $i=1,2,\ldots,n$ and for all real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$.

Corollary 2.5

Let V be a finite-dimensional real vector space, and let V^* be the dual space of V. Then dim $V^* = \dim V$.

Proof

We have shown that any basis of V gives rise to a dual basis of V^* , where the dual basis of V has the same number of elements as the basis of V to which it corresponds. The result follows immediately from the fact that the dimension of a finite-dimensional real vector space is the number of elements in any basis of that vector space.

Let V be a real-vector space, and let V^* be the dual space of V. Then V^* is itself a real vector space, and therefore has a dual space V^{**} . Now each element v of V determines a corresponding linear functional $E_v \colon V^* \to \mathbb{R}$ on V^* , where $E_v(\varphi) = \varphi(v)$ for all $\varphi \in V^*$. It follows that there exists a function $\iota \colon V \to V^{**}$ defined so that $\iota(v) = E_v$ for all $v \in V$. Then $\iota(v)(\varphi) = \varphi(v)$ for all $v \in V$ and $v \in V^*$.

Now

$$\iota(\mathsf{v} + \mathsf{w})(\varphi) = \varphi(\mathsf{v} + \mathsf{w}) = \varphi(\mathsf{v}) + \varphi(\mathsf{w}) = (\iota(\mathsf{v}) + \iota(\mathsf{w}))(\varphi)$$

and

$$\iota(\lambda \mathsf{v})(\varphi) = \varphi(\lambda \mathsf{v}) = \lambda \varphi(\mathsf{v}) = (\lambda \iota(\mathsf{v}))(\varphi)$$

for all $v, w \in V$ and $\varphi \in V^*$ and for all real numbers λ . It follows that $\iota(v+w) = \iota(v) + \iota(w)$ and $\iota(\lambda v) = \lambda \iota(v)$ for all $v, w \in V$ and for all real numbers λ . Thus $\iota \colon V \to V^{**}$ is a linear transformation.

Proposition 2.6

Let V be a finite-dimensional real vector space, and let $\iota\colon V\to V^{**}$ be the linear transformation defined such that $\iota(\mathsf{v})(\varphi)=\varphi(\mathsf{v})$ for all $\mathsf{v}\in V$ and $\varphi\in V^*$. Then $\iota\colon V\to V^{**}$ is an isomorphism of real vector spaces.

Proof

Let u_1, u_2, \ldots, u_n be a basis of V, let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ be the dual basis of V^* , where

$$\varepsilon_i(\mathsf{u}_j) = \left\{ \begin{array}{ll} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{array} \right.$$

and let $v \in V$. Then there exist real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that $v = \sum_{i=1}^n \lambda_i u_i$.

Suppose that $\iota(\mathsf{v}) = \mathsf{0}_{V^{**}}$. Then $\varphi(\mathsf{v}) = E_\mathsf{v}(\varphi) = \mathsf{0}$ for all $\varphi \in V^*$. In particular $\lambda_i = \varepsilon_i(\mathsf{v}) = \mathsf{0}$ for $i = 1, 2, \ldots, n$, and therefore $\mathsf{v} = \mathsf{0}_V$. We conclude that $\iota \colon V \to V^{**}$ is injective. Now let $F \colon V^* \to \mathbb{R}$ be a linear functional on V^* , let $\lambda_i = F(\varepsilon_i)$ for $i = 1, 2, \ldots, n$, let $\mathsf{v} = \sum_{i=1}^n \lambda_i \mathsf{u}_i$, and let $\varphi \in V^*$. Then $\varphi = \sum_{i=1}^n \varphi(\mathsf{u}_i)\varepsilon_i$ (see Lemma 2.4), and therefore

$$\iota(\mathsf{v})(\varphi) = \varphi(\mathsf{v}) = \sum_{i=1}^{n} \lambda_{i} \varphi(\mathsf{u}_{i}) = \sum_{i=1}^{n} F(\varepsilon_{i}) \varphi(\mathsf{u}_{i})$$
$$= F\left(\sum_{i=1}^{n} \varphi(\mathsf{u}_{i}) \varepsilon_{i}\right) = F(\varphi).$$

Thus $\iota(\mathsf{v}) = F$. We conclude that the linear transformation $\iota \colon V \to V^{**}$ is surjective. We have previously shown that this linear transformation is injective. There $\iota \colon V \to V^{**}$ is an isomorphism between the real vector spaces V and V^{**} as required.

The following corollary is an immediate consequence of Proposition 2.6.

Corollary 2.7

Let V be a finite-dimensional real vector space, and let V^* be the dual space of V. Then, given any linear functional $F: V^* \to \mathbb{R}$, there exists some $v \in V$ such that $F(\varphi) = \varphi(v)$ for all $\varphi \in V^*$.