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1. Möbius Transformations and Cross-Ratios (continued)

1.1. Stereographic Projection
Let a sphere in three-dimensional space be given, let C be the
centre of that sphere, let AB be a diameter of that sphere with
endpoints A and B, and let P be the plane through the centre of
the sphere that is perpendicular to the diameter AB. Given a
point D of the sphere distinct from the point A, the image of D
under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D
intersects the plane P.
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Proposition 1.1

Let S2 be the unit sphere in R3, consisting of those points
(u, v ,w) of R3 that satisfy the equation u2 + v2 + w2 = 1, and let
P be the plane consisting of those points (u, v ,w) of R3 for which
w = 0. Then, for each point (u, v ,w) of S2 distinct from the point
(0, 0,−1), the straight line passing through the points (u, v ,w)
and (0, 0,−1) intersects the plane P at the point (x , y , 0) at which

x = u

w + 1 and y = v

w + 1 .
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Proof
Let A = (0, 0,−1), D = (u, v ,w) and E = (x , y , 0). Then the
displacements of the points D and E from the point A are
represented by the vectors (u, v ,w + 1) and (x , y , 1) respectively.
These vectors are parallel because the points A, D and E are
collinear. Consequently

x

u
= y

v
= 1

w + 1 .

The result follows.
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Definition
Let (u, v ,w) be a point on the unit sphere distinct from the point
(0, 0,−1), where u2 + v2 +w2 = 1, and let (x , y) be a point of the
plane R2. We say that the point (x , y) is the image of the point
(u, v ,w) under stereographic projection from the point (0, 0,−1) if

x = u

w + 1 and y = v

w + 1 .
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Proposition 1.2

Each point (x , y) of R2 is the image, under stereographic
projection from the point (0, 0,−1), of the point (u, v ,w) of the
unit sphere for which

u = 2x
1 + x2 + y2 , v = 2y

1 + x2 + y2 and w = 1 − x2 − y2

1 + x2 + y2 .

This point (u, v ,w) is distinct from the point (0, 0,−1).

Proof
Given a point (x , y) of R2, the straight line passing through the
points (0, 0,−1) and (x , y , 0) is not tangent to the unit sphere,
and therefore intersects the unit sphere at some point distinct from
(0, 0,−1). It follows that every point of R2 is the image, under
stereographic projection from (0, 0,−1), of some point of the unit
sphere distinct from the point (0, 0,−1).
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Let (x , y) be the image, under stereographical projection from the
point (0, 0,−1), of a point (u, v ,w), where u2 + v2 + w2 = 1 and
w ̸= −1. Then

x = u

w + 1 , y = v

w + 1 .

It follows that

x2 + y2 = u2 + v2

(w + 1)2 = 1 − w2

(w + 1)2 = 1 − w

w + 1 .

It follows that

w(x2 + y2) + x2 + y2 = 1 − w ,

and therefore
w = 1 − x2 − y2

1 + x2 + y2 .
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But then

1 + w = 1 + 1 − x2 − y2

1 + x2 + y2 = 2
1 + x2 + y2 ,

and therefore

u = (1 + w)x = 2x
1 + x2 + y2 ,

v = (1 + w)y = 2y
1 + x2 + y2 .
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Conversely if

u = 2x
1 + x2 + y2 , v = 2y

1 + x2 + y2 and w = 1 − x2 − y2

1 + x2 + y2 .

then

u2 + v2 + w2 = 4(x2 + y2) + (1 − x2 − y2)2

(1 + x2 + y2)2 = 1,

because
4(x2 + y2) + (1 − x2 − y2)2

= 4(x2 + y2) + 1 − 2(x2 + y2) + (x2 + y2)2

= 1 + 2(x2 + y2) + (x2 + y2)2

= (1 + x2 + y2)2.

Also w > −1 and
x = u

w + 1 and y = v

w + 1 .

The result follows.
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1. Möbius Transformations and Cross-Ratios

1.2. The Riemann Sphere

The Riemann sphere P1 may be defined as the set C ∪ {∞}
obtained by augmenting the system C of complex numbers with an
additional element, denoted by ∞, where ∞ is not itself a complex
number, but is an additional element added to the set, with the
additional conventions that

z + ∞ = ∞, ∞×∞ = ∞,
z

∞ = 0 and ∞
z

= ∞

for all complex numbers z , and

z ×∞ = ∞, and z

0 = ∞

for all non-zero complex numbers z . The symbol ∞ cannot be
added to, or subtracted from, itself. Also 0 and ∞ cannot be
divided by themselves.
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Note that, because the sum of two elements of P1 is not defined
for every single pair of elements of P1, this set cannot be regarded
as constituting a group under the operation of addition. Similarly
its non-zero elements cannot be regarded as constituting a group
under multiplication. In particular, the Riemann sphere cannot be
regarded as constituting a field.
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Note that any element of the Riemann sphere can be represented
in the form u

v
, where u and v are complex numbers that are not

both equal to zero. Moreover the values of this fraction are
determined as follows:

u

v
= z for some non-zero complex number z if and only if

u ̸= 0, v ̸= 0 and u = zv ;
u

v
= 0 if and only if u = 0 and v ̸= 0;

u

v
= ∞ if and only if u ̸= 0 and v = 0.
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Lemma 1.3

Let u, v , u′ and v ′ be complex numbers, where u and v are not
both zero and also u′ and v ′ are not both zero. Then the following
are true:

(i) u

v
= u′

v ′
if and only if v ′u = u′v ;

(ii) u

v
= u′

v ′
if and only if there exists some non-zero complex

number w for which u′ = wu and v ′ = wv ;

(iii) in cases where u

v
= u′

v ′
it follows that u = 0 if and only if

u′ = 0;

(iv) in cases where u

v
= u′

v ′
it follows that v = 0 if and only if

v ′ = 0.
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Proof
First suppose that the complex numbers u, v , u′ and v ′ are all
non-zero. Then all four properties follow directly.

Next suppose that u = 0. Then v ̸= 0 and u

v
= 0. It follows in this

case that u

v
= u′

v ′
if and only if u′

v ′
= 0, in which case u′ = 0. Thus

in cases where u

v
= u′

v ′
we find that u = 0 implies that u′ = 0.

Similarly u′ = 0 if and only if u = 0, and thus u = 0 if and only if
u′ = 0. Note also that in cases where u = 0 and u

v
= u′

v ′
, the

complex numbers v and v ′ are both non-zero, and consequently
the identities u′ = wu and v ′ = wv hold simultaneously on taking
w = v ′

v
.
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Next suppose that v = 0. Then u ̸= 0 and u

v
= ∞. It follows in

this case that u

v
= u′

v ′
if and only if u′

v ′
= ∞, in which case v ′ = 0.

Thus in cases where u

v
= u′

v ′
we find that v = 0 implies that

v ′ = 0. Similarly v ′ = 0 if and only if v = 0, and thus v = 0 if and
only if v ′ = 0. Note also that in cases where v = 0 and u

v
= u′

v ′
,

the complex numbers u and u′ are both non-zero, and
consequently the identities u′ = wu and v ′ = wv hold
simultaneously on taking w = u′

u
.

Consequently all four properties (i), (ii), (iii) and (iv) have been
established, as required.
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Lemma 1.4

Let p1 and p2 be elements of the Riemann sphere that are not
both equal to ∞, and let u1, u2, v1 and v2 be complex numbers,
where u1 and v1 are not both zero, u2 and v2 are not both zero,
and v1 and v2 are not both zero, such that

p1 = u1
v1

and p2 = u2
v2

.

Then the sum p1 + p2 of the elements p1 and p2 of the Riemann
sphere is defined so as to ensure that

p1 + p2 = v1u2 + v2u1
v1v2

.
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Proof
If v1 = 0 then v2u1 ̸= 0, and consequently v1u2 + v2u1 ̸= 0.
Similarly if v2 = 0 then v1u2 ̸= 0, and consequently
v1u2 + v2u1 ̸= 0. It follows that, in all cases, the complex numbers
v1u2 + v2u1 and v1v2 are not both zero, and consequently there is
a well-defined element of the Riemann sphere that is determined
by the fraction

v1u2 + v2u1
v1v2

.

If neither of p1 and p2 is the element ∞ of the Riemann sphere,
then both p1 and p2 are complex numbers, and the above fraction
represents the sum of those complex numbers, determined in the
usual fashion within the algebra of complex numbers.
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On the other hand, if exactly one of the elements p1 and p2 of the
Riemann sphere concides with ∞ then exactly one of the complex
numbers v1 and v2 is equal to zero, and the above fraction
represents the element ∞ of the Riemann sphere. The result
follows.
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The following proposition follows directly from Proposition 1.2.
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Proposition 1.5

Let φ : P1 → R3 be the mapping from the Riemann sphere P1 to
R3 defined such that φ(∞) = (0, 0,−1) and

φ(x + y
√
−1) =

(
2x

1 + x2 + y2 ,
2y

1 + x2 + y2 ,
1 − x2 − y2

1 + x2 + y2

)
for all real numbers x and y . Then the map φ sets up a one-to-one
correspondence between points of the Riemann sphere P1 and
points of the unit sphere S2 in R3. To each point of the Riemann
sphere P1 there corresponds exactly one point of the unit
sphere S2 in three-dimensional Euclidean space, and vice versa.
Moreover if (u, v ,w) is a point of the unit sphere S2 distinct from
(0, 0,−1) then (u, v ,w) = φ(x + y

√
−1), where

x = u

w + 1 and y = v

w + 1 .
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1.3. Möbius Transformations

Lemma 1.6

Let a, b, c and d be complex numbers satisfying ad − bc ̸= 0.
Then these complex numbers determine a well-defined function
µ : P1 → P1 mapping the Riemann sphere P1 into itself that is
characterized by the property that

µ
(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero.
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Proof
Let u and v be complex numbers that are not both zero. Then

d(au + bv) − b(cu + dv) = (ad − bc)u

and
a(cu + dv) − c(au + bv) = (ad − bc)v

Now ad − bc ̸= 0 and also u and v are not both zero. It must
therefore be the case that au + bv and cu + dv are not both zero.
It therefore follows that u and v determine a well-defined element
of the Riemann sphere represented by the fraction au + bv

cu + dv
.

Moreover if u, v , u′ and v ′ are complex numbers, where u and v
are not both zero, and where u′ and v ′ are not both zero, and if
u/v = u′/v ′, then there exists some non-zero complex number w
for which u′ = wu and v ′ = wv . But it then follows that

au + bv

cu + dv
= au′ + bv ′

cu′ + dv ′
.
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It follows from what has been shown that a quadruple of complex
numbers a, b, c and d satisfying the condition ad − bc ̸= 0 does
indeed determine a well-defined function µ mapping the Riemann
sphere into itself that is characterized by the property that

µ
(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero, as
claimed.
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A Möbius transformation of the Riemann sphere is determined by
its coefficients. It is convenient to specify these coefficients in the
form of a non-singular 2 × 2 matrix.

Accordingly let A be a non-singular 2 × 2 matrix. Then there exist
complex numbers a, b, c and d for which

A =
(

a b
c d

)
.

Moreover the requirement that A be non-singular (i.e., invertible)
ensures that ad − bc ̸= 0. We denote by µA the Möbius
transformation of the Riemann sphere defined so that

µA

(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero.
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It then follows that
µA(z) = az + b

cz + d

for all complex numbers z for which cz + d ̸= 0. If c ̸= 0 then

µA

(
−d

c

)
= ∞ and

µA(∞) = a

c
.

If c = 0 then d ̸= 0 and accordingly µA(∞) = ∞ and
µA(z) = (az + b)/d for all complex numbers z .
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Proposition 1.7

The composition of any two Möbius transformations is a Möbius
transformation. Specifically let A and B be non-singular 2 × 2
matrices with complex coefficients, and let µA and µB be the
corresponding Möbius transformations of the Riemann sphere.
Then the composition µA ◦ µB of these Möbius transformations is
the Möbius transformation µAB of the Riemann sphere determined
by the product AB of the matrices A and B.



1. Möbius Transformations and Cross-Ratios (continued)

Proof
Let

A =
(

a b
c d

)
and B =

(
f g
h k

)
,

and let
AB =

(
m n
p q

)
.

Then
m = af + bh, n = ag + bk,

p = cf + dh and q = cg + dk.
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Now let u and v be complex numbers that are not both zero.
Then fu + gv and hu + kv are not both zero, because the matrix B
is non-singular. The definition of the Möbius transformations µA,
µB and µAB associated with the non-singular 2 × 2 matrices A, B
and AB respectively ensures that

µA

(
µB

(u
v

))
= µA

(
fu + gv

hu + kv

)
= a(fu + gv) + b(hu + kv)

c(fu + gv) + d(hu + kv)

= mu + nv

pu + qv
= µAB

(u
v

)
.

The result follows.
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Corollary 1.8

Let a, b, c and d be complex numbers satisfying ad − bc ̸= 0, let

A =
(

a b
c d

)
and C =

(
d −b
−c a

)
,

and let µA and µC be the corresponding Möbius transformations,
defined so that

µA

(u
v

)
= au + bv

cu + dv
and µC (z) = du − bv

−cu + av

for all complex numbers u and v that are not both zero. Then the
mapping µA : P1 → P1 is invertible, and its inverse is the Möbius
transformation µC : P1 → P1.
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Proof
Let

M =
(

ad − bc 0
0 ad − bc

)
.

Then AC = CA = M. It follows from Proposition 1.7 that

µA ◦ µC = µC ◦ µA = µM = IdP1 ,

where IdP1 denotes the identity map of the Riemann sphere. The
result follows.
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Proposition 1.9

Let a, b, c , d , f , g , h and k be complex numbers satisfying
ad ̸= bc and fk ̸= gh, and let µ1 and µ2 be the Möbius
transformations of the Riemann sphere defined so that

µ1(z) = az + b

cz + d
, µ2(z) = fz + g

hz + k

for all complex numbers with cz + d ̸= 0 and hz2 + k ̸= 0. Then
the Möbius transformations µ1 and µ2 coincide if and only if there
exists some non-zero complex number m such that f = ma,
g = mb, h = mc and k = md .
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Proof
Clearly if there exists a complex number m with the stated
properties then the Möbius transformations µ1 and µ2 coincide.

Conversely suppose that there is some Möbius transformation µ of
the Riemann sphere with the property that

µ(z) = az + b

cz + d
= fz + g

hz + k

whenever cz + d ̸= 0 and hz + k ̸= 0.
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First consider the case when c = 0. Then no real number is
mapped by µ to the point ∞ of the Riemann sphere “at infinity”
and therefore h = 0. But then d ̸= 0, k ̸= 0, b/d = g/k and
a/d = f /k . Therefore if we take m = k/d in this case we find that
m ̸= 0, f = ma, g = mb, h = mc and k = md . The existence of
the required non-zero complex number m has therefore been
verified in the case when c = 0.
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Suppose then that c ̸= 0. Then h ̸= 0 and
µ(−k/h) = ∞ = µ(−d/c), and therefore k/h = d/c . Let
m = h/c . Then k = md . It then follows that

fz + g = (hz + k)µ(z) = m(cz + d)µ(z) = m(az + b)

for all complex numbers z distinct from −d/c , and therefore
f = ma and g = mb. The result follows.
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1.4. Straight Lines and Circles in the Complex Plane

We consider the forms of the equations that are commonly used to
represent straight lines and circles in the complex plane.
Straight lines in the plane are represented with respect to standard
Cartesian coordinates x and y by equations of the form
px + qy + h = 0 where p, q and h are real numbers for which p
and q are not both zero. If we represent the point (x , y) by the
complex number x + iy , where i =

√
−1, then the equation of the

line px + qy + h = 0 can be expressed, in the algebra of complex
numbers, by the equation

2Re[bz ] + h = 0,

where b = 1
2(p + iq). Moreover equations of this form, in which b

is a non-zero complex number and h is a real number, determine
straight lines in the complex plane.
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Next we consider the form taken by the equation of a circle in the
complex plane. If the centre of the circle is represented by the
complex number m, and if the real number r represents the radius
of the circle, where r > 0, then the circle consists of those complex
numbers z that satisfy the equation |z −m|2 = r2. Expanding out,
this equation can be presented in the form

|z |2 − 2Re[mz ] + |m|2 − r2 = 0.

It follows from this that, given an equation of the form

g |z |2 + 2Re[bz ] + h = 0,

in which g and h are real numbers, and b is a complex number,
that equation represents a circle in the complex plane if and only if
g ̸= 0 and |b|2 > gh. (In cases where |b|2 = gh the equation is
satisfied only at a single point; and if |b|2 < gh then the equation
is not satisfied anywhere in the complex plane.)
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We conclude from this discussion that straight lines and circles in
the complex plane are those loci (or subsets) of the complex plane
that can be specified by equations of the form

g |z |2 + 2Re[bz ] + h = 0,

in which g and h are real numbers, b is a complex number, and
|b|2 > gh. The equation represents a circle if g ̸= 0, but represents
a straight line if g = 0.
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Proposition 1.10

Any Möbius transformation maps straight lines and circles in the
complex plane to straight lines and circles.

Proof
The equation of a line or circle in the complex plane can be
expressed in the form

g |z |2 + 2Re[bz ] + h = 0,

where g and h are real numbers, b is a complex number, and
|b|2 > gh. Moreover a locus of points in the complex plane
satisfying an equation of this form is a circle if g ̸= 0 and is a line
if g = 0.
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Let g and h be real constants, let b be a complex constant, and let
z = 1/w , where w ̸= 0 and w satisfies the equation

g |w |2 + 2Re[bw ] + h = 0,

Then
g |w |2 + bw + bw + h = 0,

and therefore

g + Re[bz ] + h|z |2 = g + bz + bz + h|z |2

= 1
|w |2

(
g |w |2 + bw + bw + h

)
= 0.

We deduce from this that the Möbius transformation that sends z
to 1/z for all non-zero complex numbers z maps lines and circles
to lines and circles.
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Let µ : P1 → P1 be a Möbius transformation of the Riemann
sphere. Then there exist complex numbers a, b, c and d satisfying
ad − bc ̸= 0 such that

µ(z) = az + b

cz + d

for all complex numbers z for which cz + d ̸= 0. The result is
immediate when c = 0. We therefore suppose that c ̸= 0. Then
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µ(z) = az + b

cz + d
= a

c
− ad − bc

c
× 1

cz + d

when cz + d ̸= 0. The Möbius transformation µ is thus the
composition of three maps that each send circles and straight lines
to circles and straight lines, namely the maps

z 7→ cz + d , z 7→ 1
z

and z 7→ a

c
− (ad − bc)z

c
.

Thus the Möbius transformation µ must itself map circles and
straight lines to circles and straight lines, as required.
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1.5. Cross Ratios
Let p1, p2, p3 and p4 be elements of the Riemann sphere, and, for
j = 1, 2, 3, 4, let uj , vj , u′j and v ′j be complex numbers that are
such as to ensure that uj and vj are not both zero, u′j and v ′j are
not both zero and

pj = uj
vj

=
u′j
v ′j

for j = 1, 2, 3, 4. Then there exist non-zero complex numbers w1,
w2, w3 and w4 that are such as to ensure that u′j = wjuj and
v ′j = wjvj for j = 1, 2, 3, 4 (see Lemma 1.3). Let complex numbers
ρ, ρ′, σ and σ′ be defined so that

ρ = (u1v3 − u3v1)(u2v4 − u4v2),
σ = (u2v3 − u3v2)(u1v4 − u4v1),
ρ′ = (u′1v ′3 − u′3v

′
1)(u′2v ′4 − u′4v

′
2),

σ′ = (u′2v ′3 − u′3v
′
2)(u′1v ′4 − u′4v

′
1).

Then ρ′ = w1w2w3w4ρ and Then σ′ = w1w2w3w4σ.
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It follows that ρ′ = 0 if and only if ρ = 0, σ′ = 0 if and only if
σ = 0, and ρ

σ
= ρ′

σ′ in all cases where ρ and σ are not both zero.

Now ρ = 0 if and only if either p1 = p3 or p2 = p4. (This follows
on applying Lemma 1.3.) Moreover p1 = p3 and σ = 0 if and only
if either p1 = p2 = p3 or p1 = p3 = p4. Also p2 = p4 and σ = 0 if
and only if either p2 = p3 = p4 or p1 = p2 = p4. If follows that ρ
and σ are both equal to zero if and only if three of the elements
p1, p2, p3, p4 coincide with one another.
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We conclude that, in all cases where no three of the elements p1,
p2, p3 and p4 of the Riemann sphere coincide with one another,
there exists a well-defined element (p1, p2; p3, p4) of the Riemann
sphere that is determined so as to ensure that if uj and vj are
complex numbers determined for j = 1, 2, 3, 4 so as to ensure that
uj and vj are not both zero and pj = uj

vj
, then

(p1, p2; p3, p4) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1) .

This element (p1, p2; p3, p4) of the Riemann sphere is referred to as
the cross-ratio of p1, p2, p3 and p4.
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Proposition 1.11

Let p1, p2, p3 and p4 be distinct elements of the Riemann sphere
P1, and let q = (p1, p2; p3, p4). Then

(p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2), (p4, p3; p2, p1)
are all equal to q;

(p1, p2; p4, p3), (p2, p1; p3, p4), (p4, p3; p1, p2), (p3, p4; p2, p1)
are all equal to 1

q
.

(p1, p3; p2, p4), (p3, p1; p4, p2), (p2, p4; p1, p3), (p4, p2; p3, p1)
are all equal to 1 − q;

(p1, p4; p2, p3), (p4, p1; p3, p2), (p2, p3; p1, p4), (p3, p2; p4, p1)
are all equal to q − 1

q
;
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(p1, p3; p4, p2), (p3, p1; p2, p4), (p4, p2; p1, p3), (p2, p4; p3, p1)
are all equal to 1

1 − q
;

(p1, p4; p3, p2), (p4, p1; p2, p3), (p3, p2; p1, p4), (p2, p3; p4, p1)
are all equal to q

q − 1;
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Proof
Let u1, v1, u2, v2, u3, v3, u4 and v4 be complex numbers with the
properties that uj and vj are not both zero and pj = uj/vj for
j = 1, 2, 3, 4 (where uj/vj = ∞ in cases where uj ̸= 0 and vj = 0).
Then

q = (p1, p2; p3, p4) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1) .

It follows directly that

(p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2) and (p4, p3; p2, p1)

are all equal to q. Also

(p1, p2; p4, p3) = (u2v3 − u3v2)(u1v4 − u4v1)
(u1v3 − u3v1)(u2v4 − u4v2) = 1

q
.
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Next we note that

(p4, p2; p3, p1) = (u4v3 − u3v4)(u2v1 − u1v2)
(u2v3 − u3v2)(u4v1 − u1v4) .

It follows that

1 − (p4, p2; p3, p1)

= (u2v3 − u3v2)(u1v4 − u4v1) + (u4v3 − u3v4)(u2v1 − u1v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= u1u2v3v4 − v1u2v3u4 − u1v2u3v4 + v1v2u3u4
(u2v3 − u3v2)(u1v4 − u4v1)

+ v1u2v3u4 − v1u2u3v4 − u1v2v3u4 + u1v2u3v4
(u2v3 − u3v2)(u1v4 − u4v1)

= u1u2v3v4 + v1v2u3u4 − v1u2u3v4 − u1v2v3u4
(u2v3 − u3v2)(u1v4 − u4v1)

= (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= q.
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Consequently
(p4, p2; p3, p1) = 1 − q.

It then follows that

(p4, p2; p1, p3) = 1
1 − q

.

Furthermore

(p3, p2; p1, p4) = 1 − (p4, p2; p1, p3) = 1 − 1
1 − q

= q

q − 1 ,

and therefore
(p3, p2; p4, p1) = q − 1

q
.

The remaining identities follow directly.
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Lemma 1.12

Let z1, z2 z3 and z4 be distinct complex numbers. Then

(z1, z2; z3, z4) = (z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

Proof
This follows directly from the definition of cross ratios of
quadruples of elements of the Riemann sphere on representing the
complex number zj as the fraction uj/vj with uj = zj and vj = 1
for j = 1, 2, 3, 4.
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Lemma 1.13

Let z1, z2 and, z3 be distinct complex numbers. Then

(z1, z2; z3,∞) = z1 − z3
z2 − z3

Proof
Let u1 = z1, u2 = z2, u3 = z3, u4 = 1, v1 = v2 = v3 = 1 and
v4 = 0. Then zj = uj/vj for j = 1, 2, 3 and ∞ = u4/v4. It follows
from the definition of cross-ratios that

(z1, z2; z3,∞) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1) = z1 − z3

z2 − z3
,

as required.
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Lemma 1.14

Let p1, p2, p3, p4 be a quadruple of points of the Riemann sphere
satisfying the condition that no three of the points all coincide
with one another. Then the following identities hold when two of
the points coincide with one another:

(p1, p2; p3, p4) = ∞ whenever p2 = p3 or p1 = p4;

(p1, p2; p3, p4) = 0 whenever p1 = p3 or p2 = p4;

(p1, p2; p3, p4) = 1 whenever p1 = p2 or p3 = p4.
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Proof
Let complex numbers uj and vj be chosen for j = 1, 2, 3, 4 such
that uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4.
The definition of cross-ratios ensures that

(p1, p2; p3, p4) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1) .

Now, for distinct integers j and k between 1 and 4, pj = pk if and
only if ujvk = ukvj . Also there exists a non-zero complex
number w for which u2 = wu1 and v2 = wv1 if and only if p1 = p2,
and there exists a non-zero complex number w for which u4 = wu3
and v4 = wv3 if and only if p3 = p4. The required identities
therefore follow directly.
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1.6. The Action of Möbius Transformations on the Riemann Sphere

Lemma 1.15

Let p1, p2 and p3 be distinct elements of the Riemann sphere, and
let µ∗

p1,p2,p3 : P1 → P1 be the function mapping the Riemann
sphere into itself defined such that

µ∗
p1,p2,p3(p) = (p1, p2; p3, p)

for all elements p of the Riemann sphere. Then µ∗
p1,p2,p3 is Möbius

transformation, and moreover µ∗
p1,p2,p3(p1) = ∞, µ∗

p1,p2,p3(p2) = 0
and µ∗

p1,p2,p3(p3) = 1.
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Proof
Let pj = uj/vj for j = 1, 2, 3, where, for each of these values of j ,
the elements uj and vj are complex numbers that are not both
zero. It then follows from the definition of cross-ratio that

µ∗
p1,p2,p3

(u
v

)
= (u1v3 − u3v1)(u2v − uv2)

(u2v3 − u3v2)(u1v − uv1) .

Consequently µ∗
p1,p2,p3 is the Möbius transformation corresponding

to the coefficient matrix(
−(u1v3 − u3v1)v2 (u1v3 − u3v1)u2
−(u2v3 − u3v2)v1 (u2v3 − u3v2)u1

)
.

It then follows from Lemma 1.14 that µ∗
p1,p2,p3(p1) = ∞,

µ∗
p1,p2,p3(p2) = 0 and µ∗

p1,p2,p3(p3) = 1. as required.
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Proposition 1.16

Let p1, p2, p3 be distinct points of the Riemann sphere P1, and let
q1, q2, q3 also be distinct points of P1. Then there exists a unique
Möbius transformation µ : P1 → P1 of the Riemann sphere with
the property that µ(pj) = qj for j = 1, 2, 3.
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Proof
Let µ∗

p1,p2,p3 : P1 → P1 and µ∗
q1,q2,q3 : P1 → P1 be the Möbius

transformations of the Riemann sphere defined so that

µ∗
p1,p2,p3(p) = (p1, p2; p3, p) and µ∗

q1,q2,q3(p) = (q1, q2; q3, p)

for all elements p of the Riemann sphere. Then

µ∗
p1,p2,p3(p1) = µ∗

q1,q2,q3(q1) = ∞,

µ∗
p1,p2,p3(p2) = µ∗

q1,q2,q3(q2) = 0,
µ∗
p1,p2,p3(p3) = µ∗

q1,q2,q3(q3) = 1.

It follows that µ(pj) = qj for j = 1, 2, 3, where µ : P1 → P1 is the
Möbius transformation of the Riemann sphere defined such that

µ(p) = µ∗−1
q1,q2,q3(µ

∗
p1,p2,p3(p))

for all elements p of the Riemann sphere.
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Now let µ̂ : P1 → P1 be a Möbius transformation of the Riemann
sphere with the property that µ̂(pj) = qj for j = 1, 2, 3, and let

λ(p) = µ∗
q1,q2,q3(µ̂(µ∗−1

p1,p2,p3(p)))

for all elements p of the Riemann sphere. Then

λ(∞) = µ∗
q1,q2,q3(µ̂(µ∗−1

p1,p2,p3(∞))) = µ∗
q1,q2,q3(µ̂(p1))

= µ∗
q1,q2,q3(q1) = ∞,

and similarly λ(0) = 0 and λ(1) = 1.



1. Möbius Transformations and Cross-Ratios (continued)

Now λ is a Möbius transformation. It follows that there exist
complex coefficients a, b, c and d , where ad − bc ̸= 0, such that

λ
(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero. Then the
identity λ(∞) = ∞ implies that c = 0, the identity λ(0) = 0
implies that b = 0, and consequently the identity λ(1) = 1 implies
that a = d . Consequently λ(p) = p for all elements p of the
Riemann sphere.
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It follows from this that

µ̂(p) = µ∗−1
q1,q2,q3(µ

∗
p1,p2,p3(p)) = µ(p),

for all elements p of the Riemann sphere. Thus the Möbius
transformation µ is the unique Möbius transformation of the
Riemann sphere that sends pj to qj for j = 1, 2, 3, as asserted.

The following corollary follows immediately from Proposition 1.16).

Corollary 1.17

Two distinct Möbius transformations cannot coincide at three or
more points of the Riemann sphere
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Proposition 1.18

Let p1, p2, p3, p4 be distinct elements of the Riemann sphere P1,
and let q1, q2, q3, q4 also be distinct elements of P1. Then a
necessary and sufficient condition for the existence of a Möbius
transformation µ : P1 → P1 of the Riemann sphere with the
property that µ(pj) = qj for j = 1, 2, 3, 4 is that

(p1, p2; p3, p4) = (q1, q2; q3, q4).
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Proof
Let µ∗

p1,p2,p3 : P1 → P1 and µ∗
q1,q2,q3 : P1 → P1 be the Möbius

transformations of the Riemann sphere defined so that

µ∗
p1,p2,p3(p) = (p1, p2; p3, p) and µ∗

q1,q2,q3(p) = (q1, q2; q3, p)

for all elements p of the Riemann sphere, and let µ : P1 → P1 be
the Möbius transformation of the Riemann sphere defined such that

µ(p) = µ∗−1
q1,q2,q3(µ

∗
p1,p2,p3(p))

for all elements p of the Riemann sphere. Then (as shown in the
proof of Proposition 1.16) the Möbius transformation µ is the
unique Möbius transformation that satisfies µ(pj) = qj for
j = 1, 2, 3. Now µ(p4) = µ(q4) if and only if
µ∗
p1,p2,p3(p4) = µ∗

q1,q2,q3(q4), and this is the case if and only if

(p1, p2; p3, p4) = (q1, q2; q3, q4).

The result follows.
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Proposition 1.19

Four distinct complex numbers z1, z2, z3 and z4 lie on a single line
or circle in the complex plane if and only if their cross-ratio
(z1, z2; z3, z4) is a real number.

Proof
Let µ : P1 → P1 be the Möbius transformation of the Riemann
sphere defined such that µ(p) = (z1, z2; z3, p) for all p ∈ P1. Then
µ(z1) = ∞, µ(z2) = 0 and µ(z3) = 1. Möbius transformations
map lines and circles to lines and circles (Propostion 1.10). It
follows that a complex number z distinct from z1, z2 and z3 lies on
the circle in the complex plane passing through the points z1, z2
and z3 if and only if µ(z) lies on the unique line in the complex
plane that passes through 0 and 1, in which case µ(z) is a real
number. The result follows.
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1.7. Cross-Ratios and Angles
We recall some basic properties of the algebra of complex
numbers. Any complex number z can be written in the form

z = |z | (cos θ +
√
−1 sin θ)

where |z | is the modulus of z and θ is the angle in radians,
measured anticlockwise, between the positive real axis and the line
segment whose endpoints are represented by the complex numbers
0 and z . Moreover

1
cosα +

√
−1 sinα

= cosα−
√
−1 sinα

and

(cosα +
√
−1 sinα)(cosβ +

√
−1 sinβ)

= cos(α + β) +
√
−1 sin(α + β)

for all real numbers α and β.
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Proposition 1.20

Let z1, z2, z3 and z4 be distinct complex numbers lying on a circle
in the complex plane, listed in anticlockwise around the circle.
Then the angle between the lines joining z2 to z4 and z1 is equal to
the angle between the lines joining z3 to z4 and z1.

αα′

z1

z2
z3

z4
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Proof
Let α denote the angle between the lines joining z2 to z4 and z1,
and let α′ be the angle between the lines joining z3 to z4 and z1.
We must show that α = α′. Now it follows from the standard
properties of complex numbers that

z1 − z2
z4 − z2

= |z1 − z2|
|z4 − z2|

(cosα +
√
−1 sinα),

z1 − z3
z4 − z3

= |z1 − z3|
|z4 − z3|

(cosα′ +
√
−1 sinα′).

It now follows from the definition of cross-ratio that

(z2, z3; z1, z4) = (z1 − z2)(z4 − z3)
(z1 − z3)(z4 − z2) = z1 − z2

z4 − z2
÷ z1 − z3

z4 − z3

= |z1 − z2| |z4 − z3|
|z1 − z3| |z4 − z2|

× cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′ .
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Now
1

cosα′ +
√
−1 sinα′ = cosα′ −

√
−1 sinα′,

and therefore

cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′

= (cosα +
√
−1 sinα)(cosα′ −

√
−1 sinα′)

= cos(α− α′) +
√
−1 sin(α− α′).

Consequently

(z2, z3; z1, z4)
= |(z2, z3; z1, z4)|(cos(α− α′) +

√
−1 sin(α− α′)).
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But the cross ratio (z2, z3; z1, z4) is a real number, because the
complex numbers z1, z2, z3 and z4 lie on a circle (see
Proposition 1.19), and consequently α− α′ must be an integer
multiple of π. Also 0 < α < π and 0 < α′ < π, and therefore
−π < α− α′ < π. It follows that α− α′ = 0, and thus α = α′, as
required.
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Proposition 1.21

Let z1, z2, z3 and z4 be distinct complex numbers lying on a circle
in the complex plane, listed in anticlockwise around the circle, let
β be the angle between the lines joining z2 to z3 and z1, and let γ
be the angle between the lines joining z4 to z1 and z3. Then
β + γ = π.

β

γ

z1

z2z3

z4
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Proof
It follows from the standard properties of complex numbers that

z1 − z2
z3 − z2

= |z1 − z2|
|z3 − z2|

(cosβ +
√
−1 sinβ),

z3 − z4
z1 − z4

= |z3 − z4|
|z1 − z4|

(cos γ +
√
−1 sin γ).

It now follows from the definition of cross-ratio that

(z2, z4; z1, z3)

= (z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2) = z1 − z2

z3 − z2
× z3 − z4

z1 − z4

= |z1 − z2| |z3 − z4|
|z1 − z4| |z3 − z2|

(cosβ +
√
−1 sinβ)(cos γ +

√
−1 sin γ)

= |(z2, z4; z1, z3)| (cos(β + γ) +
√
−1 sin(β + γ)).
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But the cross ratio (z2, z4; z1, z3) is a real number, because the
complex numbers z1, z2, z4 and z3 lie on a circle (see
Proposition 1.19), and consequently β + γ must be an integer
multiple of π. Also 0 < β < π and 0 < γ < π, and therefore
0 < β + γ < 2π. It follows that β + γ = π, as required.
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Proposition 1.22

Let z1, z2 and z3 distinct complex numbers lying on a circle in the
complex plane, listed in anticlockwise around the circle. Then the
angle between the lines joining z2 to z3 and z1 is equal to the angle
between the line joining z3 to z1 and the ray tangent to the circle
at z1 that is directed so that the point z2 and the tangent ray lie on
opposite sides of the line that passes through the points z1 and z3.

β

β ′ z1

z2
z3
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Proof
Let β denote the angle between the lines joining z2 to z3 and z1.
Also let a point z4 be taken on the circle so that z1, z2, z3 and z4
are distinct and moreover the points z2 and z4 lie on opposite sides
of the line that passes through z1 and z3, and let γ denote the
angle between the lines joining z4 to z1 and z3. It follows from
Proposition 1.21 that β + γ = π.

β

γ

β ′
γ′

z1

z2
z3

z4
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Now suppose that the point z4 moves along the circle towards the
point z1. As the point z4 approaches z1 the direction of the chord
of the circle from z4 to z1 approaches the direction of the ray
tangent to the circle at z1 that points into the side of the line
through z1 and z3 in which z2 lies. But the angle between the rays
joining z4 to z1 and z3 remains constant as z4 approaches z1.
Consequently the angle γ′ between the tangent ray at z1 pointing
into the side of the chord joining z1 to z3 and that chord itself is
equal to the angle γ. The angle β′ between the chord joining z1
and z3 and the tangent ray pointing into the side of that chord
opposite to z2 is then the supplement of the angle γ′, where
γ′ = γ, and therefore β′ + γ = π = β + γ. Consequently β′ = β.
The result follows.
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Proposition 1.23

Let a geometrical configuration be as depicted in the accompanying
figure. Thus let ACB and ADB be circular arcs that cut at the
points A and B. Let the line joining points A and B be produced
beyond A and B to E and F respectively. Let AG and AH be
tangent to the circular arcs BCA and BDA respectively at A, where
C and H lie on one side of AB and D and G lie on the other. Also
let the lines AC and AD be produced to K and L respectively.
Then the angle GAH is the sum of the angles KCB and LDB.

A

B
C

D
E

F

G

H

K

L
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Proof
Applying results of previous propositions, together with standard
geometrical results, we find that

∠GAB = ∠ACB (Proposition 1.22)
⇒ ∠EAG = ∠KCB (supplementary angles)

∠HAB = ∠ADB (Proposition 1.22)
⇒ ∠EAH = ∠LDB (supplementary angles)
⇒ ∠GAH = ∠EAG + ∠EAH

= ∠KCB + ∠LDB,

as required.

A

B
C

D
E

F

G

H

K

L
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Proposition 1.24

Let two circles in the complex plane intersect at points represented
by complex numbers z1 and z2, and let points represented by
complex numbers z3 and z4 be taken on arcs of the respective
circles joining z1 and z2 so that the point representing z3 lies on
the left hand side of the directed line from z1 and z2 and the point
represented by the point z4 lies on the right hand side of that line
(as depicted in the accompanying figure).

z1

z2
z3

z4

α

βγ
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Then

(z1, z2; z3, z4) = |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent lines to the two circles at
the intersection point represented by the complex number z1.

z1

z2
z3

z4

α

βγ
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Proof
The configuration of the points z1, z2, z3 and z4 ensures that
direction of the line from z1 to z3 is transformed into the direction
of the line from z3 to z2 by rotation clockwise through an angle α
less than two right angles. Similarly the direction of the line from
z1 to z4 is transformed into the direction of the line from z4 to z2
by rotation anticlockwise through an angle β less than two right
angles. Basic properties of complex numbers therefore ensure that

z2 − z3
z3 − z1

= |z2 − z3|
|z3 − z1|

(cosα−
√
−1 sinα).

z2 − z4
z4 − z1

= |z2 − z4|
|z4 − z1|

(cosβ +
√
−1 sinβ).
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Now

cosβ +
√
−1 sinβ

cosα−
√
−1 sinα

= (cosα +
√
−1 sinα)(cosβ +

√
−1 sinβ)

= cos(α + β) +
√
−1 sin(α + β).

Moreover the geometry of the configuration ensures that
α + β = γ (Proposition 1.23). Thus

z2 − z4
z4 − z1

× z3 − z1
z2 − z3

= |z2 − z4| |z3 − z1|
|z4 − z1||z2 − z3|

(cos γ +
√
−1 sin γ).
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But

z2 − z4
z4 − z1

× z3 − z1
z2 − z3

= (z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1) = (z1, z2; z3, z4).

The result follows.
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Example
The circles in the complex plane of radius 2 centred on −1 and 1
intersect at the points ±

√
3 i , where i =

√
−1. In this situation,

take z1 = −
√

3 i , z2 =
√

3 i , z3 = −1 and z4 = 1.

z3 z4

z2

z1
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Then

(z1, z2; z3, z4) = (−1 +
√

3 i)(1 −
√

3 i)
(−1 −

√
3 i)(1 +

√
3 i)

= 2 + 2
√

3 i
2 − 2

√
3i

= (2 + 2
√

3 i)2

(2 − 2
√

3i)(2 + 2
√

3i)

= 1
2(−1 +

√
3 i)

It follows that (z1, z2; z3, z4) = cos γ +
√
−1 sin γ, where γ = 2

3π.
Thus the angle between the tangent lines to the circles at the
intersection point z1 is thus 4

3 of a right angle. This is what one
would expect from the basic geometry of the configuration, given
that the triangle with vertices z1, z3 and z4 is equilateral and the
tangent lines to the circles are perpendicular to the lines joining
the point of intersection to the centres of those circles.
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Proposition 1.25

Let z1 and z2 be complex numbers representing the endpoints of a
circular arc in the complex plane. Also, in the case where the
circular arc lies on the left hand side of the directed line from z1 to
z2, let points z3 and z4 be taken between z1 and z2 on the circular
arc and the straight line segment respectively, and, in the case
where the circular arc lies on the right hand side of the directed
line from z1 to z2, let points z3 and z4 be taken between z1 and z2
on the straight line segment and the the circular arc respectively.
Then

(z1, z2; z3, z4) = |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent line to the circle at the
intersection point represented by the complex number z1 and the
line obtained by producing the chord joining z2 and z1 beyond z1.
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Proof
We consider the configuration in which the circular arc lies on the
left hand side of the directed line from z1 to z2. In that case the
configuration is as depicted in the accompanying figure.

z1

z2
z3

z4

γ

γ

In this configuration the angle made at z3 by the lines from z1 and
z2 is equal to the angle between the chord from z1 to z2 and the
depicted tangent line. The complements of those angles are then
also equal to one another; these equal complements have been
labelled γ in the figure.
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Also the direction of the line from z3 to z2 is obtained from the
direction of the line from z1 to z3 by rotation clockwise through an
angle γ less than two right angles. It follows that

z2 − z3
z3 − z1

= |z2 − z3|
|z3 − z1|

(cos γ −
√
−1 sin γ).

Also the direction of z2 − z4 is the same as that of z4 − z1, and
therefore

z2 − z4
z4 − z1

= |z2 − z4|
|z4 − z1|

.

It follows that

(z1, z2; z3, z4) = (z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

= z2 − z4
z4 − z1

× z3 − z1
z2 − z3

= |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).
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We consider now the case in which the circular arc from z1 to z2
lies on the right hand side of the directed line from z1 to z2. In this
case the complex numbers z3 and z4 represent points between z1
and z2 on the line and the circular arc respectively, as depicted in
the following figure.

z1

z2z3

z4
γ

γ

In this configuration, the angle sought is the angle γ, which in this
case is equal both to the angle between the depicted tangent line
to the circle at z1 and the line that produces the chord joining z2
to z1 beyond z1.
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Moreover, in this case

z2 − z4
z4 − z1

= |z2 − z4|
|z4 − z1|

(cos γ +
√
−1 sin γ)

and
z2 − z3
z3 − z1

= |z2 − z3|
|z3 − z1|

.

It follows in this case also that

(z1, z2; z3, z4) = (z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

= z2 − z4
z4 − z1

× z3 − z1
z2 − z3

= |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).

This completes the proof.
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Proposition 1.26

Let two lines in the complex plane intersect at at point represented
by the complex number z1, and let points represented by z3 and z4
be taken distinct from z1, one on each of the two lines, where
these points are labelled so that the direction of z3 − z1 is obtained
from the direction of z4 − z1 by rotation anticlockwise through an
angle γ less than two right angles. Then

(z1,∞; z3, z4) = |z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).
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Proof
The cross-ratio in this situation is defined so that

(z1,∞; z3, z4) = z3 − z1
z4 − z1

.

Furthermore

z3 − z1
z4 − z1

= |z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).

The result follows directly.
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Lines in the complex plane correspond to circles on the Riemann
sphere that pass through the point at infinity. With that in mind,
it can seen that Propositions 1.24, 1.25 and 1.26 conform to a
common pattern, and show that, where two curves intersect at a
point, each of those curves being either a circle or a straight line,
the angle between the tangent lines to those curves at the point of
intersection may be expressed in terms of the argument of an
appropriate cross-ratio.
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Indeed, to determine the angle the tangent lines to two circles on
the Riemann sphere at a point p1 where they intersect, one can
determine the other point of intersection p2, a point p3 on one
circular arc between p1 to p2, and a point p4 on the other circular
arc between p1 and p2. A positive real number R and a real
number γ satisfying −π < γ < π can then be determined so that

(p1, p2; p3, p4) = R(cos γ +
√
−1 sin γ).

Then the angle between the tangent lines to those circles at the
point p1 of intersection, measured in radians, is then the absolute
value |γ| of γ.
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Proposition 1.27

Möbius transformations of the Riemann sphere P1 are
angle-preserving. Thus if two circles on the Riemann sphere
intersect at a point p of the Riemann sphere, and if a Möbius
transformation µ maps p to a point q of the Riemann sphere, then
the angle between the tangent lines to the original circles at the
point p is equal to the angle between the tangent lines to the
corresponding circles at the point q, the corresponding circles being
the images of the original circles under the Möbius transformation.
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Proof
The angle between the tangent lines to the original circles at p is
determined by the value of a cross ratio of the form (p1, p2; p3, p4),
where p1 and p2 are the points of intersection of the original
circles, and p3 and p4 lie on the circular arcs joining p1 to p2, with
p4 on the right hand side as the circle through p3 is traversed in
the direction from p1 through p3 to p2. The angle between the
tangent lines to the corresponding circles at q is determined in the
analogous fashion by the value of the cross ratio (q1, q2; q3, q4),
where qj is the image of pj under the Möbius transformation
sending the original circles to the corresponding circles.
Proposition 1.18 ensures that (p1, p2; p3, p4) = (q1, q2; q3, q4).
The result follows.
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1.8. The Orientation-Preserving Property of Möbius Transformations

A subset X of the complex plane C is said to be open if, given any
complex number w belonging to X , there exists an open disk in
the complex plane of sufficiently small radius centred on w that is
wholly contained within the set X .

Definition
An invertible function φ : X → Y between open subsets X and Y
of the complex plane is said to be orientation-preserving if, given
any point w of X , paths that traverse circles of sufficiently small
radius centred on w once in the anticlockwise direction are
mapped by φ to paths that wind around φ(w) once in the
anticlockwise direction.
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Definition
An invertible function φ : X → Y between open subsets X and Y
of the complex plane is said to be orientation-reversing if, given any
point w of X , paths that traverse circles of sufficiently small radius
centred on w once in the anticlockwise direction are mapped by φ
to paths that wind around φ(w) once in the clockwise direction.

The transformation of the complex plane that maps each complex
number to its complex conjugate is an example of an
orientation-reversing transformation of the complex plane.
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The composition of two orientation-preserving transformations
between open subsets of the complex plane is
orientation-preserving, as is the composition of two
orientation-reversing transformations between such subsets. A
transformation obtained on composing an orientation-preserving
transformation with an orientation-reversing transformation is
orientation-reversing, as is a transformation obtained on composing
an orientation-reversing transformation with an
orientation-preserving transformation.
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Proposition 1.28

A Möbius transformation of the Riemann sphere is
orientation-preserving over the open subset of the complex plane
consisting of those complex numbers that are not mapped to the
element ∞ of the Riemann sphere.

Proof
Given complex numbers a and b, where a ̸= 0, let τa,b denote the
Möbius transformation of the Riemann sphere that maps ∞ to ∞
and maps each complex number z to az + b. Also let κ denote the
Möbius transformation of the Riemann sphere that interchanges 0
and ∞ and maps z to 1/z for all non-zero complex numbers z .
Then any Möbius transformation of the Riemann sphere can be
expressed as a composition of Möbius transformations that are
either of the form τa,b for appropriate coefficients a and b or else
coincide with the Möbius transformation κ. (See the proof of
Proposition 1.10.)
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It is not difficult to see that the transformations τa,b restrict to
orientation-preserving transformations of the complex plane. The
required result therefore follows from the observation that
compositions of orientation-preserving transformations as
orientation-preserving, once we establish that the Möbius
transformation κ, when restricted to the non-zero complex
numbers, is also an orientation-preserving transformation.
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Consider a circle of radius s in the complex plane centred on 1,
where s < 1. If that circle is traversed in the anticlockwise
direction, starting at 1 + s and passing successively through
1 + s

√
−1, 1 − s and 1 − s

√
−1 before returning to 1 + s, then

then that path is mapped by the Möbius transformation κ to a
path traversing a circle surrounding 1 and passing successively
through the points

1
1 + s

,
1 − s

√
−1

1 + s2 ,
1

1 − s
,

1 + s
√
−1

1 + s2 ,
1

1 + s
.

This latter path is traversed in an anticlockwise direction. Thus if
a circle centred on 1 of sufficiently small radius is traversed in an
anticlockwise direction, then its image under the Möbius
transformation κ will also be traversed in an anticlockwise
direction.
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A path traversing a sufficiently small circles centred on any
non-zero complex number w in the anticlockwise direction will
then be mapped to a path traversing a circle centred on w−1 in an
anticlockwise direction, because κ is equal to the composition of
the successive orientation-preserving transformations z 7→ w−1z ,
z 7→ z−1 and z 7→ w−1z . Consequently κ restricts to an
orientation-preserving transformation defined over the set of
non-zero complex numbers. We can therefore conclude that any
Möbius transformation of the Riemann sphere is indeed
orientation-preserving when restricted to the open subset of the
complex plane consisting of those complex numbers that are not
mapped to the element ∞ of the Riemann sphere, as required.
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