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1. Möbius Transformations and Cross-Ratios (continued)

1.1. Stereographic Projection

Let a sphere in three-dimensional spaces be given, let C be the
centre of that sphere, let AB be a diameter of that sphere with
endpoints A and B, and let P be the plane through the centre of
the sphere that is perpendicular to the diameter AB. Given a
point D of the sphere distinct from the point A, the image of D
under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D
intersects the plane P.
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Proposition 1.1

Let S2 be the unit sphere in R3, consisting of those points
(u, v ,w) of R3 that satisfy the equation u2 + v2 + w2 = 1, and let
P be the plane consisting of those points (u, v ,w) of R3 for which
w = 0. Then, for each point (u, v ,w) of S2 distinct from the point
(0, 0,−1), the straight line passing through the points (u, v ,w)
and (0, 0,−1) intersects the plane P at the point (x , y , 0) at which

x =
u

w + 1
and y =

v

w + 1
.
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Proof
Let A = (0, 0,−1), D = (u, v ,w) and E = (x , y , 0). Then the
displacements of the points D and E from the point A are
represented by the vectors (u, v ,w + 1) and (x , y , 1) respectively.
These vectors are parallel because the points A, D and E are
collinear. Consequently

x

u
=

y

v
=

1

w + 1
.

The result follows.
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Definition

Let (u, v ,w) be a point on the unit sphere distinct from the point
(0, 0,−1), where u2 + v2 +w2 = 1, and let (x , y) be a point of the
plane R2. We say that the point (x , y) is the image of the point
(u, v ,w) under stereographic projection from the point (0, 0,−1) if

x =
u

w + 1
and y =

v

w + 1
.
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Proposition 1.2

Each point (x , y) of R2 is the image, under stereographic
projection from the point (0, 0,−1), of the point (u, v ,w) of the
unit sphere for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

This point (u, v ,w) is distinct from the point (0, 0,−1).

Proof
Given a point (x , y) of R2, the straight line passing through the
points (0, 0,−1) and (x , y , 0) is not tangent to the unit sphere,
and therefore intersects the unit sphere at some point distinct from
(0, 0,−1). It follows that every point of R2 is the image, under
stereographic projection from (0, 0,−1), of some point of the unit
sphere distinct from the point (0, 0,−1).
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Let (x , y) be the image, under stereographical projection from the
point (0, 0,−1), of a point (u, v ,w), where u2 + v2 + w2 = 1 and
w 6= −1. Then

x =
u

w + 1
, y =

v

w + 1
.

It follows that

x2 + y2 =
u2 + v2

(w + 1)2
=

1− w2

(w + 1)2
=

1− w

w + 1
.

It follows that

w(x2 + y2) + x2 + y2 = 1− w ,

and therefore

w =
1− x2 − y2

1 + x2 + y2
.
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But then

1 + w = 1 +
1− x2 − y2

1 + x2 + y2
=

2

1 + x2 + y2
,

and therefore

u = (1 + w)x =
2x

1 + x2 + y2
,

v = (1 + w)y =
2y

1 + x2 + y2
.
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Conversely if

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

then

u2 + v2 + w2 =
4(x2 + y2) + (1− x2 − y2)2

(1 + x2 + y2)2
= 1,

because

4(x2 + y2) + (1− x2 − y2)2

= 4(x2 + y2) + 1− 2(x2 + y2) + (x2 + y2)2

= 1 + 2(x2 + y2) + (x2 + y2)2

= (1 + x2 + y2)2.

Also w > −1 and

x =
u

w + 1
and y =

v

w + 1
.

The result follows.
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1. Möbius Transformations and Cross-Ratios

1.2. The Riemann Sphere

The Riemann sphere P1 may be defined as the set C ∪ {∞}
obtained by augmenting the system C of complex numbers with an
additional element, denoted by ∞, where ∞ is not itself a complex
number, but is an additional element added to the set, with the
additional conventions that

z +∞ =∞, ∞×∞ =∞, z

∞ = 0 and
∞
z

=∞

for all complex numbers z , and

z ×∞ =∞, and
z

0
=∞

for all non-zero complex numbers z . The symbol ∞ cannot be
added to, or subtracted from, itself. Also 0 and ∞ cannot be
divided by themselves.
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Note that, because the sum of two elements of P1 is not defined
for every single pair of elements of P1, this set cannot be regarded
as constituting a group under the operation of addition. Similarly
its non-zero elements cannot be regarded as constituting a group
under multiplication. In particular, the Riemann sphere cannot be
regarded as constituting a field.

The following proposition follows directly from Proposition 1.2.
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Proposition 1.3

Let ϕ : P1 → R3 be the mapping from the Riemann sphere P1 to
R3 defined such that ϕ(∞) = (0, 0,−1) and

ϕ(x + y
√
−1) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,

1− x2 − y2

1 + x2 + y2

)
for all real numbers x and y . Then the map ϕ sets up a one-to-one
correspondence between points of the Riemann sphere P1 and
points of the unit sphere S2 in R3. To each point of the Riemann
sphere P1 there corresponds exactly one point of the unit
sphere S2 in three-dimensional Euclidean space, and vice versa.
Moreover if (u, v ,w) is a point of the unit sphere S2 distinct from
(0, 0,−1) then (u, v ,w) = ϕ(x + y

√
−1), where

x =
u

w + 1
and y =

v

w + 1
.
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1.3. Möbius Transformations

Definition

Let a, b, c and d be complex numbers satisfying ad − bc 6= 0. The
Möbius transformation µa,b,c,d : P1 → P1 with coefficients a, b, c
and d is defined to be the function from the Riemann sphere P1 to
itself determined by the following properties:

µa,b,c,d(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0;
µa,b,c,d(−d/c) =∞ and µa,b,c,d(∞) = a/c if c 6= 0;
µa,b,c,d(∞) =∞ if c = 0.
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Note that the requirement in the above definition of a Möbius
transformation that its coefficients a, b, c and d satisfy the
condition ad − bc 6= 0 ensures that there is no complex number for
which az + b and cz + d are both zero.
Let A be a non-singular 2× 2 matrix whose coefficients are
complex numbers, and let

A =

(
a b
c d

)
.

We denote by µA the Möbius transformation µa,b,c,d with
coefficients a, b, c , d , defined so that

µA(z) =


az + b

cz + d
if cz + d 6= 0;

∞ if c 6= 0 and z = −d/c ;

µA(∞) =

{ a

c
if c 6= 0;

∞ if c = 0.
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Lemma 1.4

Let A be a non-singular 2× 2 matrix with complex coefficients,
and let

A =

(
a b
c d

)
.

The corresponding Möbius transformation µA can then be
characterized as the unique function mapping the Riemann sphere
P1 to itself with the property that

µA

(u
v

)
=

au + bv

cu + dv

for all complex numbers u and v that are not both zero (where
u/v =∞ in all cases, and in only those cases, where u 6= 0 and
v = 0).
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Proof
Every point of the Riemann sphere may be expressed as a quotient
of the form u/v , where u and v are complex numbers that are not
both zero, and where u/v =∞ in all cases, and in only those
cases, where u 6= 0 and v = 0. Let u, v , u′ and v ′ are complex
numbers, where u and v are not both zero, where u′ and v ′ are not
both zero, and where u/v = u′/v ′. Then either v and v ′ are both
non-zero or else u/v =∞, in which case v = v ′ = 0. If v and v ′

are both non-zero then there exists a unique non-zero complex
number w for which v ′ = wv , and then u′ = v ′u/v = wu. If
v = v ′ = 0 then u 6= 0 and u′ 6= 0, and then u′ = wu and v ′ = wv ,
where w = u′/u.
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We conclude that, in all cases with u and v not both zero, u′ and
v ′ not both zero and u/v = u′/v ′, there exists some non-zero
complex number w such that u′ = wu and v ′ = wv . But then
au + bv and cu + dv are not both zero, because the matrix A is
non-singular, au′ + bv ′ and cu′ + dv ′ are not both zero, for the
same reason, and

au′ + bv ′

cu′ + dv ′
=

w(au + bv)

w(cu + dv)
=

au + bv

cu + dv
.

Consequently there exists a well-defined function µ : P1 → P1,
mapping the Riemann sphere to itself, characterized by the
property that

µ
(u
v

)
=

au + bv

cu + dv

for all complex numbers u and v with the property that u and v
are both zero.
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Now if v 6= 0 and z = u/v then

µ(z) = µ
(u
v

)
=

au + bv

cu + dv
=

azv + bv

czv + dv
=

az + b

cz + d
= µA(z).

On the other hand, if v = 0 then u 6= 0 and u/v =∞, and
therefore

µ(∞) = µ
(u
v

)
=

au

cu
=

a

c
= µA(∞).

We conclude therefore that µ = µA. The result follows.
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Proposition 1.5

The composition of any two Möbius transformations is a Möbius
transformation. Specifically let A and B be non-singular 2× 2
matrices with complex coefficients, and let µA and µB be the
corresponding Möbius transformations of the Riemann sphere.
Then the composition µA ◦ µB of these Möbius transformations is
the Möbius transformation µAB of the Riemann sphere determined
by the product AB of the matrices A and B.
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Proof
Let

A =

(
a b
c d

)
and B =

(
f g
h k

)
,

and let

AB =

(
m n
p q

)
.

Then
m = af + bh, n = ag + bk,

p = cf + dh and q = cg + dk.



1. Möbius Transformations and Cross-Ratios (continued)

Now let u and v be complex numbers that are not both zero.
Then fu + gv and hu + kv are not both zero, because the matrix B
is non-singular. Applying Lemma 1.4, we see that

µA

(
µB

(u
v

))
= µA

(
fu + gv

hu + kv

)
=

a(fu + gv) + b(hu + kv)

c(fu + gv) + d(hu + kv)

=
mu + nv

pu + qv
= µAB

(u
v

)
.

The result follows.
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Corollary 1.6

Let a, b, c and d be complex numbers satisfying ad − bc 6= 0, let

A =

(
a b
c d

)
and C =

(
d −b
−c a

)
,

and let µA and µC be the corresponding Möbius transformations,
defined so that

µA

(u
v

)
=

au + bv

cu + dv
and µC (z) =

du − bv

−cu + av

for all complex numbers u and v that are not both zero. Then the
mapping µA : P1 → P1 is invertible, and its inverse is the Möbius
transformation µC : P1 → P1.
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Proof
Let

M =

(
ad − bc 0

0 ad − bc

)
.

Then AC = CA = M. It follows from Proposition 1.5 that

µA ◦ µC = µC ◦ µA = µM = IdP1 ,

where IdP1 denotes the identity map of the Riemann sphere. The
result follows.
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1.4. Inversion of the Riemann Sphere in its Equatorial Circle

Let S2 denote the unit sphere in R3, defined so that

S2 = {(u, v ,w) ∈ R3 : u2 + v2 + w2 = 1},

and let us refer to the points (0, 0, 1) and (0, 0,−1) as the North
Pole and South Pole respectively. Let E denote the Equatorial
Plane in R3, consisting of those points whose Cartesian coordinates
are of the form (x , y , 0), where x and y are real numbers.
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Stereographic projection from the South Pole maps each point
(u, v ,w) of the unit sphere S2 distinct from the South Pole to the
point (x , y , 0) of the equatorial plane E for which

x =
u

w + 1
and y =

v

w + 1
.

Moreover a point (x , y , 0) of the Equatorial Plane E is the image
under stereographic projection from the South Pole of the point
(u, v ,w) of the unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

1− x2 − y2

1 + x2 + y2
.
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We can also stereographically project from the North Pole. Note
that, given a point in the Equatorial Plane, reflection in that
Equatorial Plane will interchange the points of the sphere
corresponding to it under stereographic projection from the North
and South Poles. Thus a point (u, v ,w) of the unit sphere S2

distinct from the North Pole corresponds under stereographic
projection to the point (x , y , 0) of the Equatorial Plane E for which

x =
u

1− w
and y =

v

1− w
.

In the other direction, a point (x , y , 0) of the Equatorial Plane E
corresponds under stereographic projection from the North Pole to
the point (u, v ,w) of the unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

x2 + y2 − 1

1 + x2 + y2
.
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Proposition 1.7

Let O denote the origin (0, 0, 0) of the Equatorial Plane E , where

E = {(x , y , z) ∈ R3 : z = 0},

and let A be a point (x , y , 0) of E distinct from the origin O. Let
C be the point on the unit sphere S2 that corresponds to A under
stereographic projection from the North Pole (0, 0, 1), and let B be
the point of the Equatorial Plane E that corresponds to C under
stereographic projection from the South Pole. Then B = (p, q, 0),
where

p =
x

x2 + y2
and q =

y

x2 + y2
.

Thus the points O, A and B are collinear, and the points A and B
lie on the same side of the origin O. Also the distances |OA| and
|OB| of the points A and B from the origin satisfy
|OA| × |OB| = 1.
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Proof
Let (x , y , 0) be a point of the Equatorial plane E distinct from the
origin. This point is the image, under stereographic projection
from the North Pole (0, 0, 1) of the point (u, v ,w) of the unit
sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

x2 + y2 − 1

1 + x2 + y2
.

This point then gets mapped under stereographic projection from
the South Pole to the point (p, q, 0) of the Equatorial Plane E for
which

p =
u

w + 1
and q =

v

w + 1
.
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Now

w + 1 =
2(x2 + y2)

1 + x2 + y2
.

It follows that

p =
x

x2 + y2
and q =

y

x2 + y2
.

Finally we note that O, A and B are collinear, where 0 = (0, 0, 0),
A = (x , y , 0) and B = (p, q, 0), and the points A and B lie on the
same side of the origin O. Also

|OA| =
√

x2 + y2, and |OB| =
1√

x2 + y2
,

and therefore |OA| × |OB| = 1, as required.
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1.5. The Action of Möbius Transformations on the Riemann Sphere

Proposition 1.8

Let p1, p2, p3 be distinct points of the Riemann sphere P1, and let
q1, q2, q3 also be distinct points of P1. Then there exists a unique
Möbius transformation µ : P1 → P1 of the Riemann sphere with
the property that µ(pj) = qj for j = 1, 2, 3.
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Proof
First we show that, given distinct points p1, p2 and p3 of the
Riemann sphere, there exists a Möbius transformation
µ∗p1,p2,p3 : P1 → P1 with the property that µ∗p1,p2,p3(p1) =∞,
µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1. Now there exist complex
numbers uj and vj for j = 1, 2, 3 such that uj and vj are not both
zero and uj/vj = pj for j = 1, 2, 3. Then u1v3 − u3v1 and
u2v3 − u3v2 are non-zero, because the points p1, p2 and p3 of the
Riemann sphere are specified to be distinct.

Also let u and v be complex numbers that are not both zero. Were
it the case that

u1v − uv1 = u2v − uv2 = 0

then the point u/v of the Riemann sphere would coincide with
both p1 and p2, which is impossible, given that p1 and p2 are
specified to be distinct.
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We conclude therefore that, for distinct points p1, p2, p3 of the
Riemann sphere, and for any complex numbers u and v that are
not both zero, the complex numbers

(u1v3 − u3v1)(u2v − uv2) and (u2v3 − u3v2)(u1v − uv1)

are not both zero, and consequently there is a well-defined element
µ∗p1,p2,p3(u/v) of the Riemann sphere characterized by the property
that

µ∗p1,p2,p3

(u
v

)
=

(u1v3 − u3v1)(u2v − uv2)

(u2v3 − u3v2)(u1v − uv1)

for all complex numbers u and v that are not both zero. Then the
function sending u/v to µ∗p1,p2,p3(u/v) for all complex numbers u
and v that are not both zero is a Möbius transformation of the
Riemann sphere. Moreover

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1.
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Now let p1, p2 and p3 be distinct points of the Riemann sphere and
also let q1, q2 and q3 be distinct points of the Riemann sphere.
Then there exist Möbius transformations µ∗p1,p2,p3 : P1 → P1 and
µ∗q1,q2,q3 : P1 → P1 characterized by the properties that

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0, µ∗p1,p2,p3(p3) = 1,

µ∗q1,q2,q3(q1) =∞, µ∗q1,q2,q3(q2) = 0 and µ∗q1,q2,q3(q3) = 1.

Let µ : P1 → P1 be the Möbius transformation of the Riemann
sphere defined such that

µ = µ∗−1q1,q2,q3 ◦ µ∗p1,p2,p3 .

Then
µ(p1) = q1, µ(p2) = q2 and µ(p3) = q3.
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Now suppose let µ̂ : P1 → P1 be any Möbius transformation of the
Riemann sphere with the properties that

µ̂(p1) = q1, µ̂(p2) = q2 and µ̂(p3) = q3,

and let σ : P1 → P1 be the Möbius transformation of the Riemann
sphere defined such that

σ = µ∗q1,q2,q3 ◦ µ̂ ◦ µ∗−1p1,p2,p3 .

Then σ(∞) =∞, σ(0) = 0 and σ(1) = 1. There then exist
complex coefficients a, b, c and d , where ad − bc 6= 0, such that

σ
(u
v

)
=

au + bv

cu + dv

for all complex numbers u and v that are not both zero.
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Evaluating the Möbius transformation σ at the points ∞, 0 and 1
of the Riemann sphere, we find that

a

c
=∞, b

d
= 0 and

a + b

c + d
= 1.

Consequently c = 0, a 6= 0, b = 0, d 6= 0 and a = d . It follows
that σ is the identity map of the Riemann sphere, and therefore

µ̂ = µ∗−1q1,q2,q3 ◦ µ∗p1,p2,p3 = µ.

We conclude therefore that µ is the unique Möbius transformation
of the Riemann sphere with the properties that µ(pj) = qj for
j = 1, 2, 3, as required.
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Proposition 1.9

Let p1, p2 and p3 be three distinct points of the Riemann sphere,
and let µ1 and µ2 be Möbius transformations of the Riemann
sphere. Suppose that µ1(pj) = µ2(pj) for j = 1, 2, 3. Then the
Möbius transformations µ1 and µ2 coincide.
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Proof
Let qj = µ1(pj) for j = 1, 2, 3. Then both µ1 and µ2 must be
identical to the unique Möbius transformation of the Riemann
sphere that maps p1, p2 and p3 to q1, q2 and q3 respectively, and
therefore µ1 and µ2 must be identical to one another, as
required.
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Proposition 1.10

Let a, b, c , d , f , g , h and k be complex numbers satisfying
ad 6= bc and fk 6= gh, and let µ1 and µ2 be the Möbius
transformations of the Riemann sphere defined so that

µ1(z) =
az + b

cz + d
, µ2(z) =

fz + g

hz + k

for all complex numbers with cz + d 6= 0 and hz2 + k 6= 0. Then
the Möbius transformations µ1 and µ2 coincide if and only if there
exists some non-zero complex number m such that f = ma,
g = mb, h = mc and k = md .
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Proof
Clearly if there exists a complex number m with the stated
properties then the Möbius transformations µ1 and µ2 coincide.

Conversely suppose that there is some Möbius transformation µ of
the Riemann sphere with the property that

µ(z) =
az + b

cz + d
=

fz + g

hz + k

whenever cz + d 6= 0 and hz + k 6= 0.
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First consider the case when c = 0. Then no real number is
mapped by µ to the point ∞ of the Riemann sphere “at infinity”
and therefore h = 0. But then d 6= 0, k 6= 0, b/d = g/k and
a/d = f /k . Therefore if we take m = k/d in this case we find that
m 6= 0, f = ma, g = mb, h = mc and k = md . The existence of
the required non-zero complex number m has therefore been
verified in the case when c = 0.
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Suppose then that c 6= 0. Then h 6= 0 and
µ(−k/h) =∞ = µ(−d/c), and therefore k/h = d/c . Let
m = h/c . Then k/d = m. It then follows that

fz + g = (hz + k)µ(z) = m(cz + d)µ(z) = m(az + b)

for all complex numbers z distinct from −d/c , and therefore
f = ma and g = mb. The result follows.
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Proposition 1.11

Any Möbius transformation of the Riemann sphere maps straight
lines and circles to straight lines and circles.

Proof
The equation of a line or circle in the complex plane can be
expressed in the form

g |z |2 + 2Re[bz ] + h = 0,

where g and h are real numbers, and b is a complex number.
Moreover a locus of points in the complex plane satisfying an
equation of this form is a circle if g 6= 0 and is a line if g = 0.
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Let g and h be real constants, let b be a complex constant, and let
z = 1/w , where w 6= 0 and w satisfies the equation

g |w |2 + 2Re[bw ] + h = 0,

Then
g |w |2 + bw + bw + h = 0,

Then

g + Re[bz ] + h|z |2 = g + bz + bz + h|z |2

=
1

|w |2
(
g |w |2 + bw + bw + h

)
= 0.

We deduce from this that the Möbius transformation that sends z
to 1/z for all non-zero complex numbers z maps lines and circles
to lines and circles.
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Let µ : P1 → P1 be a Möbius transformation of the Riemann
sphere. Then there exist complex numbers a, b, c and d satisfying
ad − bc 6= 0 such that

µ(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0. The result is
immediate when c = 0. We therefore suppose that c 6= 0. Then
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µ(z) =
az + b

cz + d
=

a

c
− ad − bc

c
× 1

cz + d

when cz + d 6= 0. The Möbius transformation µ is thus the
composition of three maps that each send circles and straight lines
to circles and straight lines and preserve angles between lines and
circles, namely the maps

z 7→ cz + d , z 7→ 1

z
and z 7→ a

c
− (ad − bc)z

c
.

Thus the Möbius transformation µ must itself map circles and
straight lines to circles and straight lines, as required.
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1.6. Cross-Ratios of Points of the Riemann Sphere

Definition

The cross-ratio (z1, z2; z3, z4) of four distinct complex numbers z1,
z2, z3 and z4 is defined so that

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.
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We now extend the definition of cross-ratio so that, given any
quadruple p1, p2, p3, p4 of points of the Riemann sphere satisfying
the condition that no three of the points all coincide with one
another, a corresponding point (p1, p2; p3, p4) of the Riemann
sphere is determined to represent the cross-ratio of the points p1,
p2, p3 and p4.
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Proposition 1.12

There is a well-defined function, defined on quadruples
p1, p2, p3, p4 of points of the Riemann sphere that satisfy the
condition that no three of the members of the quadruple all
coincide with one another, and sending such a quadruple
p1, p2, p3, p4 to the point (p1, p2; p3, p4) of the Riemann sphere
characterized by the property that

(p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)
.

for all complex numbers u1, v1, u2, v2, u3, v3, u4, v4 that are such
as to ensure that uj and vj are not both zero and pj = uj/vj for
j = 1, 2, 3, 4. The function defined in this fashion generalizes the
definition of cross-ratio previously given for quadruples of distinct
complex numbers.
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Proof
Let p1, p2, p3, p4 be a quadruple of points of the Riemann sphere.
Then, for each integer j between 1 and 4, complex numbers uj and
vj can be chosen, not both zero, such that pj = uj/vj , where
uj/vj =∞ in cases where uj 6= 0 and vj = 0. Moreover, pj = pk ,
where j and k are integers between 1 and 4, if and only if
ujvk − ukvj = 0.

Now if the points p1, p2, p3, p4 and ∞ are all distinct (so that p1,
p2, p3 and p4 are distinct complex numbers), then v1, v2, v3, v4 are
all non-zero, and also

(u2v3 − u3v2)(u1v4 − u4v1) 6= 0,

and, in this case, the definition of cross-ratios of distinct complex
numbers requires that
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(p1, p2; p3, p4) =

(
u1
v1
− u3

v3

)(
u2
v2
− u4

v4

)
(
u2
v2
− u3

v3

)(
u1
v1
− u4

v4

)
=

(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)

=
u

v

where
u = (u1v3 − u3v1)(u2v4 − u4v2)

and
v = (u2v3 − u3v2)(u1v4 − u4v1),

and where u/v =∞ in cases where u 6= 0 and v = 0.
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Now suppose that p1, p2, p3, p4 are any points of the Riemann
sphere that satisfy the requirement that no three of the listed
points all coincide with one another. Suppose also that, for each
integer j between 1 and 4, uj , vj , u

′
j and v ′j are complex numbers,

uj and vj and not both zero, u′j and v ′j are not both zero, and

pj = uj/vj = u′j/v
′
j .

Then there exist non-zero complex numbers w1, w2, w3 and w4

such that u′j = wjuj and v ′j = wjvj for j = 1, 2, 3, 4. Let

u = (u1v3 − u3v1)(u2v4 − u4v2),

v = (u2v3 − u3v2)(u1v4 − u4v1),

u′ = (u′1v
′
3 − u′3v

′
1)(u′2v

′
4 − u′4v

′
2)

and
v ′ = (u′2v

′
3 − u′3v

′
2)(u′1v

′
4 − u′4v

′
1).
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Then u′ = w1w2w3w4u and v ′ = w1w2w3w4v , and therefore
u′/v ′ = u/v . Moreover the requirement that no three of the points
p1, p2, p3, p4 all coincide with one another ensures that the
complex numbers u and v are not both zero. Indeed if it were the
case that u = v = 0, then at least one of the following four
conditions would need to hold:

u1v3 − u3v1 = 0 and u2v3 − u3v2 = 0;

u1v3 − u3v1 = 0 and u1v4 − u4v1 = 0;

u2v4 − u4v2 = 0 and u2v3 − u3v2 = 0;

u2v4 − u4v2 = 0 and u1v4 − u4v1 = 0.

in the first case we would have p1 = p2 = p3; in the second
p1 = p3 = p4; in the third p2 = p3 = p4; and in the fourth
p1 = p2 = p4.
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Accordingly, given points p1, p2, p3 and p4 of the Riemann sphere
P1, where no three of these points all coincide with one another,
the quadruple of points p1, p2, p3, p4 determines a point
(p1, p2; p3, p4) of the Riemann sphere characterized by the property
that, given any complex numbers uj and vj with the properties that
uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4, the
point (p1, p2; p3, p4) of the Riemann sphere is determined so that

(p1, p2; p3, p4) = u/v ,

where
u = (u1v3 − u3v1)(u2v4 − u4v2)

and
v = (u2v3 − u3v2)(u1v4 − u4v1),

and where u/v =∞ in cases where u 6= 0 and v = 0. This
completes the proof.
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Accordingly we can define the cross-ratio of appropriate quadruples
of points of the Riemann sphere in the following manner.

Definition

The cross-ratio of points of the Riemann sphere assigns points
(p1, p2; p3, p4) of the Riemann sphere to those those quadruples
p1, p2, p3, p4 of points of the Riemann sphere for which no three
points all coincide with one another, so as to ensure that, given
complex numbers u1, v1, u2, v2, u3, v3, u4 and v4, where uj and vj
are not both zero and pj = uj/vj for j = 1, 2, 3, 4, and where no
three of the points p1, p2, p3, p4 all coincide with one another, the
cross-ratio of those points is determined so that

(p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)
.



1. Möbius Transformations and Cross-Ratios (continued)

We now show that, given four elements p1, p2, p3, p4 of the
Riemann sphere satisfying the condition that no three of the points
all coincide with one another, the value of the cross-ratio
(p1, p2; p3, p4) taken with respect to any one particular ordering of
those four elements determines the value of the cross-ratio taken
with respect to any other ordering of those elements.
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Proposition 1.13

Let p1, p2, p3 and p4 be distinct elements of the Riemann sphere
P1, and let q = (p1, p2; p3, p4). Then

(p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2), (p4, p3; p2, p1)
are all equal to q;

(p1, p2; p4, p3), (p2, p1; p3, p4), (p4, p3; p1, p2), (p3, p4; p2, p1)

are all equal to
1

q
.

(p1, p3; p2, p4), (p3, p1; p4, p2), (p2, p4; p1, p3), (p4, p2; p3, p1)
are all equal to 1− q;

(p1, p4; p2, p3), (p4, p1; p3, p2), (p2, p3; p1, p4), (p3, p2; p4, p1)

are all equal to
q − 1

q
;
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(p1, p3; p4, p2), (p3, p1; p2, p4), (p4, p2; p1, p3), (p2, p4; p3, p1)

are all equal to
1

1− q
;

(p1, p4; p3, p2), (p4, p1; p2, p3), (p3, p2; p1, p4), (p2, p3; p4, p1)

are all equal to
q

q − 1
;



1. Möbius Transformations and Cross-Ratios (continued)

Proof
Let u1, v1, u2, v2, u3, v3, u4 and v4 be complex numbers with the
properties that uj and vj are not both zero and pj = uj/vj for
j = 1, 2, 3, 4 (where uj/vj =∞ in cases where uj 6= 0 and vj = 0).
Then

q = (p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)
.

It follows directly that

(p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2) and (p4, p3; p2, p1)

are all equal to q. Also

(p1, p2; p4, p3) =
(u2v3 − u3v2)(u1v4 − u4v1)

(u1v3 − u3v1)(u2v4 − u4v2)
=

1

q
.
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Next we note that

(p4, p2; p3, p1) =
(u4v3 − u3v4)(u2v1 − u1v2)

(u2v3 − u3v2)(u4v1 − u1v4)
.

It follows that

1− (p4, p2; p3, p1)

=
(u2v3 − u3v2)(u1v4 − u4v1) + (u4v3 − u3v4)(u2v1 − u1v2)

(u2v3 − u3v2)(u1v4 − u4v1)

=
u1u2v3v4 − v1u2v3u4 − u1v2u3v4 + v1v2u3u4

(u2v3 − u3v2)(u1v4 − u4v1)

+
v1u2v3u4 − v1u2u3v4 − u1v2v3u4 + u1v2u3v4

(u2v3 − u3v2)(u1v4 − u4v1)

=
u1u2v3v4 + v1v2u3u4 − v1u2u3v4 − u1v2v3u4

(u2v3 − u3v2)(u1v4 − u4v1)

=
(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)
= q.
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Consequently
(p4, p2; p3, p1) = 1− q.

It then follows that

(p4, p2; p1, p3) =
1

1− q
.

Furthermore

(p3, p2; p1, p4) = 1− (p4, p2; p1, p3) = 1− 1

1− q
=

q

q − 1
,

and therefore

(p3, p2; p4, p1) =
q − 1

q
.

The remaining identities follow directly.
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Lemma 1.14

Let z1, z2 and, z3 be distinct complex numbers. Then

(z1, z2; z3,∞) =
z1 − z3
z2 − z3

Proof
Let u1 = z1, u2 = z2, u3 = z3, u4 = 1, v1 = v2 = v3 = 1 and
v4 = 0. Then zj = uj/vj for j = 1, 2, 3 and ∞ = u4/v4. It follows
from the definition of cross-ratios that

(z1, z2; z3,∞) =
(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)
=

z1 − z3
z2 − z3

,

as required.
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Lemma 1.15

Let p1, p2, p3, p4 be a quadruple of points of the Riemann sphere
satisfying the condition that no three of the points all coincide
with one another. Then the following identities hold when two of
the points coincide with one another:

(p1, p2; p3, p4) =∞ whenever p2 = p3 or p1 = p4;

(p1, p2; p3, p4) = 0 whenever p1 = p3 or p2 = p4;

(p1, p2; p3, p4) = 1 whenever p1 = p2 or p3 = p4.
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Proof
Let complex numbers uj and vj be chosen for j = 1, 2, 3, 4 such
that uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4.
The definition of cross-ratios ensures that

(p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)

(u2v3 − u3v2)(u1v4 − u4v1)
.

Now, for distinct integers j and k between 1 and 4, pj = pk if and
only if ujvk = ukvj . Also there exists a non-zero complex
number w for which u2 = wu1 and v2 = wv1 if and only if p1 = p2,
and there exists a non-zero complex number w for which u4 = wu3
and v4 = wv3 if and only if p3 = p4. The required identities
therefore follow directly.
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Lemma 1.16

Let p1, p2 and p3 be distinct elements of the Riemann sphere, and
let µ∗p1,p2,p3 : P1 → P1 be the unique Möbius transformation of the
Riemann sphere for which µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0 and
µ∗p1,p2,p3(p3) = 1. Then

µ∗p1,p2,p3(p) = (p1, p2; p3, p)

for all points p of the Riemann sphere.
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Proof
The Möbius transformation µ∗p1,p2,p3 is characterized by the
property that

µ∗p1,p2,p3

(u
v

)
=

(u1v3 − u3v1)(u2v − uv2)

(u2v3 − u3v2)(u1v − uv1)

for all complex numbers u and v that are not both zero (as noted
in the proof of Proposition 1.8). The result therefore follows on
comparing this expression characterizing the Möbius
transformation µ∗p1,p2,p3 with the definition of cross-ratios of
quadruples of points on the Riemann sphere.
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Proposition 1.17

Let p1, p2 and p3 be distinct elements of the Riemann sphere, and
let q be a point of the Riemann sphere. Then there exists a unique
element p4 of the Riemann sphere for which (p1, p2; p3, p4) = q.

Proof
Möbius transformations of the Riemann sphere are invertible
functions from the Riemann sphere to itself (see Corollary 1.6).
Let p4 = µ∗−1p1,p2,p3(q), where µ∗p1,p2,p3 denotes the unique Möbius
transformation of the Riemann sphere for which

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1.

It then follows (applying the identity established in Lemma 1.16)
that

q = µ∗p1,p2,p3(p4) = (p1, p2; p3, p4),

as required.
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Proposition 1.18

Let p1, p2, p3, p4 be distinct elements of the Riemann sphere P1,
and let q1, q2, q3, q4 also be distinct elements of P1. Then a
necessary and sufficient condition for the existence of a Möbius
transformation µ : P1 → P1 of the Riemann sphere with the
property that µ(pj) = qj for j = 1, 2, 3, 4 is that

(p1, p2; p3, p4) = (q1, q2; q3, q4).



1. Möbius Transformations and Cross-Ratios (continued)

Proof
Let µ∗p1,p2,p3 : P1 → P1 and µ∗q1,q2,q3 : P1 → P1 be the unique
Möbius transformations of the Riemann sphere for which

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0, µ∗p1,p2,p3(p3) = 1,

µ∗q1,q2,q3(q1) =∞, µ∗q1,q2,q3(q2) = 0 and µ∗q1,q2,q3(q3) = 1.

Then
µ∗p1,p2,p3(p) = (p1, p2; p3, p)

and
µ∗q1,q2,q3(p) = (q1, q2; q3, p)

for all points p of the Riemann sphere. Let µ : P1 → P1 be the
Möbius transformation of the Riemann sphere defined that is the
composition function µ∗−1q1,q2,q3 ◦ µp1,p2,p3 obtained on following the
Möbius transformation µ∗p1,p2,p3 with the inverse of the Möbius
transformation µ∗q1,q2,q3 .
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Then the Möbius transformation µ is the unique Möbius
transformation that satisfies µ(pj) = qj for j = 1, 2, 3 (see
Proposition 1.8). Now µ(p4) = µ(q4) if and only if
µ∗p1,p2,p3(p4) = µ∗q1,q2,q3(q4), and this is the case if and only if

(p1, p2; p3, p4) = (q1, q2; q3, q4).

The result follows.
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Proposition 1.19

Four distinct complex numbers z1, z2, z3 and z4 lie on a single line
or circle in the complex plane if and only if their cross-ratio
(z1, z2; z3, z4) is a real number.

Proof
Let µ : P1 → P1 be the Möbius transformation of the Riemann
sphere defined such that µ(p) = (z1, z2; z3, p) for all p ∈ P1. Then
µ(z1) =∞, µ(z2) = 0 and µ(z3) = 1. Möbius transformations
map lines and circles to lines and circles (Propostion 1.11). It
follows that a complex number z distinct from z1, z2 and z3 lies on
the circle in the complex plane passing through the points z1, z2
and z3 if and only if µ(z) lies on the unique line in the complex
plane that passes through 0 and 1, in which case µ(z) is a real
number. The result follows.
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1.7. Cross-Ratios and Angles

We recall some basic properties of the algebra of complex
numbers. Any complex number z can be written in the form

z = |z | (cos θ +
√
−1 sin θ)

where |z | is the modulus of z and θ is the angle in radians,
measured anticlockwise, between the positive real axis and the line
segment whose endpoints are represented by the complex numbers
0 and z . Moreover

1

cosα +
√
−1 sinα

= cosα−
√
−1 sinα

and

(cosα +
√
−1 sinα)(cosβ +

√
−1 sinβ)

= cos(α + β) +
√
−1 sin(α + β)

for all real numbers α and β.
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Proposition 1.20

Let z1, z2, z3 and z4 be distinct complex numbers lying on a circle
in the complex plane, listed in anticlockwise around the circle.
Then the angle between the lines joining z2 to z4 and z1 is equal to
the angle between the lines joining z3 to z4 and z1.

αα′

z1

z2
z3

z4



1. Möbius Transformations and Cross-Ratios (continued)

Proof
Let α denote the angle between the lines joining z2 to z4 and z1,
and let α′ be the angle between the lines joining z3 to z4 and z1.
We must show that α = α′. Now it follows from the standard
properties of complex numbers that

z1 − z2
z4 − z2

=
|z1 − z2|
|z4 − z2|

(cosα +
√
−1 sinα),

z1 − z3
z4 − z3

=
|z1 − z3|
|z4 − z3|

(cosα′ +
√
−1 sinα′).

It now follows from the definition of cross-ratio that

(z2, z3; z1, z4) =
(z1 − z2)(z4 − z3)

(z1 − z3)(z4 − z2)
=

z1 − z2
z4 − z2

÷ z1 − z3
z4 − z3

=
|z1 − z2| |z4 − z3|
|z1 − z3| |z4 − z2|

× cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′

.
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Now
1

cosα′ +
√
−1 sinα′

= cosα′ −
√
−1 sinα′,

and therefore

cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′

= (cosα +
√
−1 sinα)(cosα′ −

√
−1 sinα′)

= cos(α− α′) +
√
−1 sin(α− α′).

Consequently

(z2, z3; z1, z4)

= |(z2, z3; z1, z4)|(cos(α− α′) +
√
−1 sin(α− α′)).
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But the cross ratio (z2, z3; z1, z4) is a real number, because the
complex numbers z1, z2, z3 and z4 lie on a circle (see
Proposition 1.19), and consequently α− α′ must be an integer
multiple of π. Also 0 < α < π and 0 < α′ < π, and therefore
−π < α− α′ < π. It follows that α− α′ = 0, and thus α = α′, as
required.
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Proposition 1.21

Let z1, z2, z3 and z4 be distinct complex numbers lying on a circle
in the complex plane, listed in anticlockwise around the circle, let
β be the angle between the lines joining z2 to z3 and z1, and let γ
be the angle between the lines joining z4 to z1 and z3. Then
β + γ = π.

β

γ

z1

z2z3

z4
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Proof
It follows from the standard properties of complex numbers that

z1 − z2
z3 − z2

=
|z1 − z2|
|z3 − z2|

(cosβ +
√
−1 sinβ),

z3 − z4
z1 − z4

=
|z3 − z4|
|z1 − z4|

(cos γ +
√
−1 sin γ).

It now follows from the definition of cross-ratio that

(z2, z4; z1, z3)

=
(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
=

z1 − z2
z3 − z2

× z3 − z4
z1 − z4

=
|z1 − z2| |z3 − z4|
|z1 − z4| |z3 − z2|

(cosβ +
√
−1 sinβ)(cos γ +

√
−1 sin γ)

= |(z2, z4; z1, z3)| (cos(β + γ) +
√
−1 sin(β + γ)).
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But the cross ratio (z2, z4; z1, z3) is a real number, because the
complex numbers z1, z2, z4 and z3 lie on a circle (see
Proposition 1.19), and consequently β + γ must be an integer
multiple of π. Also 0 < β < π and 0 < γ < π, and therefore
0 < β + γ < 2π. It follows that β + γ = π, as required.
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Proposition 1.22

Let z1, z2 and z3 distinct complex numbers lying on a circle in the
complex plane, listed in anticlockwise around the circle. Then the
angle between the lines joining z2 to z3 and z1 is equal to the angle
between the line joining z3 to z1 and the ray tangent to the circle
at z1 that is directed so that the point z2 and the tangent ray lie on
opposite sides of the line that passes through the points z1 and z3.

β

β ′ z1

z2
z3
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Proof
Let β denote the angle between the lines joining z2 to z3 and z1.
Also let a point z4 be taken on the circle so that z1, z2, z3 and z4
are distinct and moreover the points z1 and z4 lie on opposite sides
of the line that passes through z1 and z3, and let γ denote the
angle between the lines joining z4 to z1 and z3. It follows from
Proposition 1.21 that β + γ = π.

β

γ

β ′
γ′

z1

z2
z3

z4
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Now suppose that the point z4 moves along the circle towards the
point z1. As the point z4 approaches z1 the direction of the chord
of the circle from z4 to z1 approaches the direction of the ray
tangent to the circle at z1 that points into the side of the line
through z1 and z3 in which z2 lies. But the angle between the rays
joining z4 to z1 and z3 remains constant as z4 approaches z1.
Consequently the angle γ′ between the tangent ray at z1 pointing
into the side of the chord joining z1 to z3 and that chord itself is
equal to the angle γ. The angle β′ between the chord joining z1
and z3 and the tangent ray pointing into the side of that chord
opposite to z2 is then the supplement of the angle γ′, where
γ′ = γ, and therefore β′ + γ = π = β + γ. Consequently β′ = β.
The result follows.
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Proposition 1.23

Let a geometrical configuration be as depicted in the accompanying
figure. Thus let ACB and ADB be circular arcs that cut at the
points A and B. Let the line joining points A and B be produced
beyond A and B to E and F respectively. Let AG and AH be
tangent to the circular arcs BCA and BDA respectively at A, where
C and H lie on one side of AB and D and G lie on the other. Also
let the lines AC and AD be produced to K and L respectively.
Then the angle GAH is the sum of the angles KCB and LDB.

A

B
C

D
E

F

G

H

K

L
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Proof
Applying results of previous propositions, together with standard
geometrical results, we find that

∠GAB = ∠ACB (Proposition 1.22)
⇒ ∠EAG = ∠KCB (supplementary angles)

∠HAB = ∠ADB (Proposition 1.22)
⇒ ∠EAH = ∠LDB (supplementary angles)
⇒ ∠GAH = ∠EAG + ∠EAH

= ∠KCB + ∠LDB,

as required.

A

B
C

D
E

F

G

H

K

L
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Proposition 1.24

Let two circles in the complex plane intersect at points represented
by complex numbers z1 and z2, and let points represented by
complex numbers z3 and z4 be taken on arcs of the respective
circles joining z1 and z2 so that the point representing z3 lies on
the left hand side of the directed line from z1 and z2 and the point
represented by the point z4 lies on the right hand side of that line
(as depicted in the accompanying figure).

z1

z2
z3

z4

α

βγ
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Then

(z1, z2; z3, z4) =
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent lines to the two circles at
the intersection point represented by the complex number z1.

z1

z2
z3

z4

α

βγ
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Proof
The configuration of the points z1, z2, z3 and z4 ensures that
direction of the line from z1 to z3 is transformed into the direction
of the line from z3 to z2 by rotation clockwise through an angle α
less than two right angles. Similarly the direction of the line from
z1 to z4 is transformed into the direction of the line from z4 to z2
by rotation anticlockwise through an angle β less than two right
angles. Basic properties of complex numbers therefore ensure that

z2 − z3
z3 − z1

=
|z2 − z3|
|z3 − z1|

(cosα−
√
−1 sinα).

z2 − z4
z4 − z1

=
|z2 − z4|
|z4 − z1|

(cosβ +
√
−1 sinβ).
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Now

cosβ +
√
−1 sinβ

cosα−
√
−1 sinα

= (cosα +
√
−1 sinα)(cosβ +

√
−1 sinβ)

= cos(α + β) +
√
−1 sin(α + β).

Moreover the geometry of the configuration ensures that
α + β = γ (Proposition 1.23). Thus

z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
|z2 − z4| |z3 − z1|
|z4 − z1||z2 − z3|

(cos γ +
√
−1 sin γ).
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But

z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
= (z1, z2; z3, z4).

The result follows.
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Example
The circles in the complex plane of radius 2 centred on −1 and 1
intersect at the points ±

√
3 i , where i =

√
−1. In this situation,

take z1 = −
√

3 i , z2 =
√

3 i , z3 = −1 and z4 = 1.

z3 z4

z2

z1
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Then

(z1, z2; z3, z4) =
(−1 +

√
3 i)(1−

√
3 i)

(−1−
√

3 i)(1 +
√

3 i)
=

2 + 2
√

3 i

2− 2
√

3i

=
(2 + 2

√
3 i)2

(2− 2
√

3i)(2 + 2
√

3i)

=
1

2
(−1 +

√
3 i)

It follows that (z1, z2; z3, z4) = cos γ +
√
−1 sin γ, where γ = 2

3π.
Thus the angle between the tangent lines to the circles at the
intersection point z1 is thus 4

3 of a right angle. This is what one
would expect from the basic geometry of the configuration, given
that the triangle with vertices z1, z3 and z4 is equilateral and the
tangent lines to the circles are perpendicular to the lines joining
the point of intersection to the centres of those circles.
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Proposition 1.25

Let z1 and z2 be complex numbers representing the endpoints of a
circular arc in the complex plane. Also, in the case where the
circular arc lies on the left hand side of the directed line from z1 to
z2, let points z3 and z4 be taken between z1 and z2 on the circular
arc and the straight line segment respectively, and, in the case
where the circular arc lies on the right hand side of the directed
line from z1 to z2, let points z3 and z4 be taken between z1 and z2
on the straight line segment and the the circular arc respectively.
Then

(z1, z2; z3, z4) =
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent line to the circle at the
intersection point represented by the complex number z1 and the
line obtained by producing the chord joining z2 and z1 beyond z1.
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Proof
We consider the configuration in which the circular arc lies on the
left hand side of the directed line from z1 to z2. In that case the
configuration is as depicted in the accompanying figure.

z1

z2
z3

z4

γ

γ

In this configuration the angle made at z3 by the lines from z1 and
z2 is equal to the angle between the chord from z1 to z2 and the
depicted tangent line. The complements of those angles are then
also equal to one another; these equal complements have been
labelled γ in the figure.
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Also the direction of the line from z3 to z2 is obtained from the
direction of the line from z1 to z3 by rotation clockwise through an
angle γ less than two right angles. It follows that

z2 − z3
z3 − z1

=
|z2 − z3|
|z3 − z1|

(cos γ −
√
−1 sin γ).

Also the direction of z2 − z4 is the same as that of z4 − z1, and
therefore

z2 − z4
z4 − z1

=
|z2 − z4|
|z4 − z1|

.

It follows that

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

=
z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).
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We consider now the case in which the circular arc from z1 to z2
lies on the right hand side of the directed line from z1 to z2. In this
case the complex numbers z3 and z4 represent points between z1
and z2 on the line and the circular arc respectively, as depicted in
the following figure.

z1

z2z3

z4
γ

γ

In this configuration, the angle sought is the angle γ, which in this
case is equal both to the angle between the depicted tangent line
to the circle at z1 and the line that produces the chord joining z2
to z1 beyond z1.
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Moreover, in this case

z2 − z4
z4 − z1

=
|z2 − z4|
|z4 − z1|

(cos γ +
√
−1 sin γ)

and
z2 − z3
z3 − z1

=
|z2 − z3|
|z3 − z1|

.

It follows in this case also that

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

=
z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).

This completes the proof.
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Proposition 1.26

Let two lines in the complex plane intersect at at point represented
by the complex number z1, and let points represented by z3 and z4
be taken distinct from z1, one on each of the two lines, where
these points are labelled so that the direction of z3 − z1 is obtained
from the direction of z4 − z1 by rotation anticlockwise through an
angle γ less than two right angles. Then

(z1,∞; z3, z4) =
|z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).
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Proof
The cross-ratio in this situation is defined so that

(z1,∞; z3, z4) =
z3 − z1
z4 − z1

.

Furthermore

z3 − z1
z4 − z1

=
|z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).

The result follows directly.
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Lines in the complex plane correspond to circles on the Riemann
sphere that pass through the point at infinity. With that in mind,
it can seen that Propositions 1.24, 1.25 and 1.26 conform to a
common pattern, and show that, where two curves intersect at a
point, each of those curves being either a circle or a straight line,
the angle between the tangent lines to those curves at the point of
intersection may be expressed in terms of the argument of an
appropriate cross-ratio.
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Indeed, to determine the angle the tangent lines to two circles on
the Riemann sphere at a point p1 where they intersect, one can
determine the other point of intersection p2, a point p3 on one
circular arc between p1 to p2, and a point p4 on the other circular
arc between p1 and p2. A positive real number R and a real
number γ satisfying −π < γ < π can then be determined so that

(p1, p2; p3, p4) = R(cos γ +
√
−1 sin γ).

Then the angle between the tangent lines to those circles at the
point p1 of intersection, measured in radians, is then the absolute
value |γ| of γ.
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Proposition 1.27

Möbius transformations of the Riemann sphere P1 are
angle-preserving. Thus if two circles on the Riemann sphere
intersect at a point p of the Riemann sphere, and if a Möbius
transformation µ maps p to a point q of the Riemann sphere, then
the angle between the tangent lines to the original circles at the
point p is equal to the angle between the tangent lines to the
corresponding circles at the point q, the corresponding circles being
the images of the original circles under the Möbius transformation.
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Proof
The angle between the tangent lines to the original circles at p is
determined by the value of a cross ratio of the form (p1, p2; p3, p4),
where p1 and p2 are the points of intersection of the original
circles, and p3 and p4 lie on the circular arcs joining p1 to p2, with
p4 on the right hand side as the circle through p3 is traversed in
the direction from p1 through p3 to p2. The angle between the
tangent lines to the corresponding circles at q is determined in the
analogous fashion by the value of the cross ratio (q1, q2; q3, q4),
where qj is the image of pj under the Möbius transformation
sending the original circles to the corresponding circles.
Proposition 1.18 ensures that (p1, p2; p3, p4) = (q1, q2; q3, q4).
The result follows.
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1.8. The Orientation-Preserving Property of Möbius Transformations

Proposition 1.28

Let µ be a Möbius transformation of the Riemann sphere, let w be
a complex number for which µ(w) is also a complex number, let s
be a positive real number, and let α : [0, 1]→ R be the path in the
complex plane defined such that

α(t) = w + s(cos 2πt +
√
−1 sin 2πt)

for all real numbers t satisfying 0 ≤ t ≤ 1, so that the point α(t)
moves round a circle of radius s about w in the anticlockwise
direction as t increases from 0 to 1. Then, provided that s is
sufficiently close to zero, the point µ(α(t)) will move in an
anticlockwise direction around µ(w) as t increases from 0 to 1.
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Proof
There exist complex coefficients a, b, c and d satisfying
ad − bc 6= 0 that are such as to ensure that

µ(z) =
az + b

cz + d

for all complex numbers z that are distinct from −d/c . Then

µ(z)− µ(w) =
az + b

cz + d
− aw + b

cw + d

=
(az + b)(cw + d)− (aw + b)(cz + d)

(cz + d)(cw + d)

=
(ad − bc)(z − w)

(cz + d)(cw + d)

=
ad − bc

(cw + d)2
× (z − w)× cw + d

cz + d
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Now the quotient (cz + d)/(cw + d) approaches the value 1 as the
complex number z approaches w . Consequently a positive real
number s0 can be found such that µ(z) ∈ C and

Re

[
cz + d

cw + d

]
> 0

whenever |z − w | ≤ s0. Let the real number s be chosen such that
0 < s ≤ s0, and let

α(t) = w + s(cos 2πt +
√
−1 sin 2πt)

for all real numbers t satisfying 0 ≤ t ≤ 1. Then, for each real
number t between 0 and 1 there exists a unique real number η(t)
satisfying −1

4 < η(t) < 1
4 such that



1. Möbius Transformations and Cross-Ratios (continued)

cα(t) + d

cw + d
=

∣∣∣∣cα(t) + d

cw + d

∣∣∣∣ (cos(2πη(t)) +
√
−1 sin(2πη(t)))

We obtain in this fashion a continuous real-valued function
η : [0, 1]→ R that sends each real number t satisfying 0 ≤ t ≤ 1
between zero and one to the unique real number η(t) in the range
−1

4 < η(t) < 1
4 for which the above equation is satisfied. Moreover

α(0) = α(1), and therefore η(0) = η(1). A real number m can also
be found such that

ad − bc

(cw + d)2
=

∣∣∣∣ ad − bc

(cw + d)2

∣∣∣∣ (cos(2πm) +
√
−1 sin(2πm)).

Well-known trigonometrical identies involving sine and cosine
functions then ensure that
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µ(α(t))− µ(w)

|µ(α(t))− µ(w)| = cos(2πψ(t)) +
√
−1 sin(2πψ(t))

for all real numbers t lying between 0 and 1, where

ψ(t) = m + t − η(t)

for all real numbers t between 0 and 1. (We are here using the fact
that the argument of a product of complex numbers is the sum of
the arguments of those complex numbers.) Now ψ(1)− ψ(0) = 1,
because η(0) = η(1). Consequently the point µ(α(t)) moves once
round the point µ(w) in the complex plane in an anticlockwise
direction as t increases from 0 to 1, as required.
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Proposition 1.28 ensures that Möbius transformations of the
Riemann sphere are orientation-preserving.

A subset X of the complex plane C is said to be open if, given any
any complex number w belonging to X , some open disk in the
complex plane of sufficiently small radius centred on w is wholly
contained within the set X .

Definition

An invertible function ϕ : X → Y between open subsets X and Y
of the complex plane is said to be orientation-preserving if, given
any point w of X , paths that traverse circles of sufficiently small
radius centred on w once in the anticlockwise direction are
mapped by ϕ to paths that wind around ϕ(w) once in the
anticlockwise direction.



1. Möbius Transformations and Cross-Ratios (continued)

Definition

An invertible function ϕ : X → Y between open subsets X and Y
of the complex plane is said to be orientation-reversing if, given any
point w of X , paths that traverse circles of sufficiently small radius
centred on w once in the anticlockwise direction are mapped by ϕ
to paths that wind around ϕ(w) once in the clockwise direction.

The transformation of the complex plane that maps each complex
number to its complex conjugate is an example of an
orientation-reversing transformation of the complex plane.
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The composition of two orientation-preserving transformations
between open subsets of the complex plane is
orientation-preserving, as is the composition of two
orientation-reversing transformations between such subsets. A
transformation obtained on composing an orientation-preserving
transformation with an orientation-reversing transformation is
orientation-reversing, as is a transformation obtained on composing
an orientation-reversing transformation with an
orientation-preserving transformation.
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