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1. Stereographic Projection (continued)

1.1. The Basic Equations of Stereographic Projection

Let a sphere in three-dimensional spaces be given, let C be the
centre of that sphere, let AB be a diameter of that sphere with
endpoints A and B, and let P be the plane through the centre of
the sphere that is perpendicular to the diameter AB. Given a
point D of the sphere distinct from the point A, the image of D
under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D
intersects the plane P.
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1. Stereographic Projection (continued)

Proposition 1.1

Let S2 be the unit sphere in R3, consisting of those points
(u, v ,w) of R3 that satisfy the equation u2 + v2 + w2 = 1, and let
P be the plane consisting of those points (u, v ,w) of R3 for which
w = 0. Then, for each point (u, v ,w) of S2 distinct from the point
(0, 0,−1), the straight line passing through the points (u, v ,w)
and (0, 0,−1) intersects the plane P at the point (x , y , 0) at which

x =
u

w + 1
and y =

v

w + 1
.



1. Stereographic Projection (continued)

Proof
Let A = (0, 0,−1), D = (u, v ,w) and E = (x , y , 0). Then the
displacements of the points D and E from the point A are
represented by the vectors (u, v ,w + 1) and (x , y , 1) respectively.
These vectors are parallel because the points A, D and E are
collinear. Consequently

x

u
=

y

v
=

1

w + 1
.

The result follows.



1. Stereographic Projection (continued)
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1. Stereographic Projection (continued)

Corollary 1.2

Let S be a sphere with centre C, let A and B be the endpoints of
a diameter of that sphere, let P be the plane through the centre C
of the sphere that is the perpendicular bisector of the
diameter AB, let D be a point on the sphere distinct from the
point A, and let E be the point where the infinite straight line
passing through the points A and D intersects the plane P. Then

|AD| |AE | = 2|AC |2.



1. Stereographic Projection (continued)

Proof
We may assume, without loss of generality, that |AC | is the unit of
length and that the sphere S is the unit sphere centred on the
origin of Cartesian coordinates, so that C = (0, 0, 0) and |AC | = 1.
We may also assume that the Cartesian coordinates of the points
A and B are (0, 0,−1) and (0, 0, 1) respectively. Let the points D
and E have Cartesian coordinates (u, v ,w) and (x , y , 0). Then
w 6= −1 and u2 + v2 + w2 = 1. Also

x =
u

w + 1
and y =

v

w + 1

(see Proposition 1.1). It follows that |AD| = (w + 1)|AE |.
Moreover |AE | is the length of the line segment joining the points
(0, 0,−1) and (x , y , 0), and therefore

|AE |2 = x2 + y2 + 1.



1. Stereographic Projection (continued)

It follows that

|AD| |AE | = (w + 1)|AE |2 = (w + 1)(x2 + y2 + 1)

=
u2 + v2 + (w + 1)2

w + 1
=

u2 + v2 + w2 + 2w + 1

w + 1
.

But u2 + v2 + w2 = 1. It follows that

|AD| |AE | = 2 = 2 |AC |2,

as required.



1. Stereographic Projection (continued)

Alternative Proof
The angle ADB, being the angle in a semicircle, is a right angle
(Euclid, Elements, iii, 31). The angle ACE is also a right angle.
Thus the triangles ADB and ACE are similar (or equiangular), and
consequently corresponding sides of those triangles are proportional
(Euclid, Elements, vi, 4).
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1. Stereographic Projection (continued)

Accordingly AD is to AC as AB is to AE , and thus

|AD|
|AC | =

|AB|
|AE | .

Cross-multiplying, it follows that

|AD| |AE | = |AB| |AC | = 2 |AC |2,

as required.



1. Stereographic Projection (continued)

Definition

Let (u, v ,w) be a point on the unit sphere distinct from the point
(0, 0,−1), where u2 + v2 +w2 = 1, and let (x , y) be a point of the
plane R2. We say that the point (x , y) is the image of the point
(u, v ,w) under stereographic projection from the point (0, 0,−1) if

x =
u

w + 1
and y =

v

w + 1
.



1. Stereographic Projection (continued)

Proposition 1.3

Each point (x , y) of R2 is the image, under stereographic
projection from the point (0, 0,−1), of the point (u, v ,w) of the
unit sphere for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

This point (u, v ,w) is distinct from the point (0, 0,−1).

Proof
Given a point (x , y) of R2, the straight line passing through the
points (0, 0,−1) and (x , y , 0) is not tangent to the unit sphere,
and therefore intersects the unit sphere at some point distinct from
(0, 0,−1). It follows that every point of R2 is the image, under
stereographic projection from (0, 0,−1), of some point of the unit
sphere distinct from the point (0, 0,−1).



1. Stereographic Projection (continued)

Let (x , y) be the image, under stereographical projection from the
point (0, 0,−1), of a point (u, v ,w), where u2 + v2 + w2 = 1 and
w 6= −1. Then

x =
u

w + 1
, y =

v

w + 1
.

It follows that

x2 + y2 =
u2 + v2

(w + 1)2
=

1− w2

(w + 1)2
=

1− w

w + 1
.

It follows that

w(x2 + y2) + x2 + y2 = 1− w ,

and therefore

w =
1− x2 − y2

1 + x2 + y2
.



1. Stereographic Projection (continued)

But then

1 + w = 1 +
1− x2 − y2

1 + x2 + y2
=

2

1 + x2 + y2
,

and therefore

u = (1 + w)x =
2x

1 + x2 + y2
,

v = (1 + w)y =
2y

1 + x2 + y2
.



1. Stereographic Projection (continued)

Conversely if

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

then

u2 + v2 + w2 =
4(x2 + y2) + (1− x2 − y2)2

(1 + x2 + y2)2
= 1,

because

4(x2 + y2) + (1− x2 − y2)2

= 4(x2 + y2) + 1− 2(x2 + y2) + (x2 + y2)2

= 1 + 2(x2 + y2) + (x2 + y2)2

= (1 + x2 + y2)2.

Also w > −1 and

x =
u

w + 1
and y =

v

w + 1
.

The result follows.



1. Stereographic Projection (continued)

Alternative Proof
Let A = (0, 0,−1), B = (0, 0, 1), C = (0, 0, 0) and E = (x , y , 0).
Then E is the image, under stereographic projection from A, of the
unique point D distinct from A at which the line passing through
A and E intersects the unit sphere. Let D = (u, v ,w).
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1. Stereographic Projection (continued)

Now the displacement vectors
−→
AD and

−→
AE representing the

displacements of the points D and E respectively from the point A
point in the same direction. Moreover |AD| |AE | = 2|AC |2
(Corollary 1.2). It follows that

−→
AD =

|AD|
|AE |

−→
AE =

|AD| |AE |
|AE |2

−→
AE =

2|AC |2
|AE |2

−→
AE .

Now
−→
AD = (u, v ,w + 1) and

−→
AE = (x , y , 1). Also |AC | = 1 and

|AE |2 = 1 + x2 + y2. It follows that

(u, v ,w + 1) =
2

1 + x2 + y2
(x , y , 1),

and thus



1. Stereographic Projection (continued)

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2

and

w =
2

1 + x2 + y2
− 1 =

1− x2 − y2

1 + x2 + y2
,

as required.



1. Stereographic Projection (continued)

Proposition 1.4

Let S be a sphere with centre C, let A and B be the endpoints of
a diameter of that sphere, let P be the plane through the centre C
of the sphere that is the perpendicular bisector of the
diameter AB, let D be a point on the sphere distinct from the
point A, and let E be the point where the infinite straight line
passing through the points A and D intersects the plane P (so that
E is the image of D under stereographic projection from the
point A). Then the points C , B, D and E lie on a circle.



1. Stereographic Projection (continued)

Proof
We show that the point D lies on the circle that passes through
the points C , B and E . Now we can assume, without loss of
generality, that the sphere is the unit sphere centred on the origin
of coordinates, that A = (0, 0,−1) and B = (0, 0, 1). Let
E = (x , y , 0), and let Z be the circle through the points C , B and
E .
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1. Stereographic Projection (continued)

The centre of the circle Z lies on the perpendicular bisector of the
line segment CE . This perpendicular bisector consists of those
points of three-dimensional space whose Cartesian coordinates are
of the form (12x ,

1
2y ,w) for some real number w . The centre of the

circle also lies on the perpendicular bisector of the line segment
CB, where C = (0, 0, 0) and B = (0, 0, 1). It follows that w = 1

2 ,
and thus the centre of the circle Z is located at the point
(12x ,

1
2y ,

1
2). The radius of the circle Z is the distance from the

origin (0, 0, 0) to the centre of the circle. The square of the radius
of the circle Z is therefore equal to 1

4(x2 + y2 + 1), and thus the
circle Z itself consists of those points in the plane of this circle
whose Cartesian coordinates (u, v ,w) satisfy the equation

(u − 1
2x)2 + (v − 1

2y)2 + (w − 1
2)2 = 1

4(x2 + y2 + 1).



1. Stereographic Projection (continued)

Expanding out and cancelling terms, this equation reduces to the
equation

u2 + v2 + w2 − xu − yv − w = 0.

Now let (u, v ,w) be the Cartesian coordinates of the point D.
Then

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2

(see Proposition 1.3). It follows that

xu + yv + w =
2x2 + 2y2 + 1− x2 − y2

1 + x2 + y2
= 1.



1. Stereographic Projection (continued)

Also u2 + v2 + w2 = 1, because the point D lies on the unit
sphere. It follows that the Cartesian coordnates (u, v ,w) of the
point D satisfy the equation

u2 + v2 + w2 − xu − yv − w = 0.

The point D also lies on the plane of the circle Z . It follows that
the point D lies on the circle Z . The result follows.



1. Stereographic Projection (continued)

Alternative Proof
The configuration is as depicted in the figure below. In particular
the angle BDE is a right angle, because it is the angle in a
semicircle (Euclid, Elements, iii, 31) and the angle BCD is also a
right angle.
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1. Stereographic Projection (continued)

It follows (as an immediate corollary of the results stated in Euclid,
Elements, iii, 31) that the region bounded by the straight line BE
and the circular arc BDE is a semicircle. Similarly the region
bounded by the straight line BE and the circular arc BCE is a
semicircle, and thus BCED is a circle. The result follows.
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1. Stereographic Projection (continued)

1.2. Small Circles on the Unit Sphere

If a plane in three-dimensional space contains points lying inside
some given sphere then the intersection of the plane and the given
sphere takes the form of a circle on that sphere. Every circle on a
sphere is the intersection of that sphere with some plane in
three-dimensional space. If the centre of the sphere lies on that
plane then the circle is said to be a great circle on the sphere. On
the other hand, if the centre of the sphere does not lie on the
plane then the circle is said to be a small circle on the sphere.



1. Stereographic Projection (continued)

Proposition 1.5

Let S be the unit sphere in three-dimensional Euclidean space,
consisting of those points whose Cartesian coordinates (u, v ,w)
satisfy the equation u2 + v2 + w2 = 1, and let Q be a plane in
that space consisting of those points of space whose Cartesian
coordinates (u, v ,w) satisfy an equation of the form

pu + qv + rw + s = 0,

where p, q, r and s are real constants and p, q and r are not all
equal to zero. Then the plane Q intersects the sphere S along a
circle if and only if

s2 < p2 + q2 + r2.



1. Stereographic Projection (continued)

Proof
The vector with components (p, q, r) is orthogonal to the plane Q,
and therefore the perpendicular dropped from the origin of
Cartesian coordinates to the given plane meets that plane at a
point whose Cartesian coordinates are of the form (kp, kq, kr) for
some real number k . That intersection point lies on the plane Q,
and therefore

k(p2 + q2 + r2) + s = 0.

It follows that the point with Cartesian coordinates( −sp
p2 + q2 + r2

,
−sq

p2 + q2 + r2
,

−sr
p2 + q2 + r2

)
is the point on the plane Q that lies closest to the origin.



1. Stereographic Projection (continued)

Now the plane Q intersects the unit sphere S in a circle if and only
if the point on the plane Q closest to the origin lies inside the unit
sphere. This is the case if and only if( −sp

p2 + q2 + r2

)2

+

( −sq
p2 + q2 + r2

)2

+

( −sr
p2 + q2 + r2

)2

< 1,

and the latter inequality holds if and only if

s2 < p2 + q2 + r2.

The result follows.



1. Stereographic Projection (continued)

Corollary 1.6

Let S be the unit sphere consisting of those points of
three-dimensional Euclidean space whose Cartesian coordinates
(u, v ,w) with respect to a chosen Cartesian coordinate system
satisfy the equation u2 + v2 + w2 = 1, and let Z be a small circle
on the unit sphere S. Then there exist real constants p, q and r ,
where p2 + q2 + r2 > 1, such that the circle Z consists of those
points of the unit sphere S whose Cartesian coordinates (u, v ,w)
satisfy the equations

u2 + v2 + w2 = 1 and pu + qv + rw = 1.



1. Stereographic Projection (continued)

Proof
Let Q be the plane that contains the circle Z . Then the plane Q
does not contain the centre of the sphere, because the circle Z is a
small circle. But the centre of the unit sphere is the origin (0, 0, 0)
of the chosen Cartesian coordinate system. Now the points of the
plane Q are those points of space whose Cartesian coordinates
(u, v ,w) satisfy an equation of the form

p′u + q′v + r ′w + s ′ = 0,

where p′, q′, r ′ and s ′ are real constants and p′, q′ and r ′ are not
all zero. Moreover s ′ 6= 0, because the origin (0, 0, 0) does not lie
in the plane Q. Let

p = −p′

s ′
, q = −q′

s ′
, r = − r ′

s ′
.



1. Stereographic Projection (continued)

Then the points of the plane Q are those points whose Cartesian
coordinates satisfy the equation

pu + qv + rw = 1.

Moreover it follows from Proposition 1.5 that p2 + q2 + r2 > 1.
The result follows.



1. Stereographic Projection (continued)

1.3. Images of Circles under Stereographic Projection

We consider the images of circles on the unit sphere under
stereographic projection. This sphere is the sphere of unit radius
centred on the origin of Cartesian coordinates, and consists of
those points of three-dimensional space whose Cartesian
coordinates (u, v ,w) satisfy the equation

u2 + v2 + w2 = 1.



1. Stereographic Projection (continued)

Let some plane in three-dimensional space be given. Then the
given plane consists of those points of three-dimensional Euclidean
space whose Cartesian coordinates (u, v ,w) satisfy an equation of
the form

pu + qv + rw + s = 0,

where p, q, r and s are real constants and p, q and r are not all
equal to zero. Given real constants p′, q′, r ′ and s ′, where p′, q′

and r ′ are not all zero, the plane consisting of those points that
satisfy the equation

p′u + q′v + r ′w + s ′ = 0

coincides with the given plane if and only if p′, q′, r ′ and s ′ are
respectively proportional to p, q, r and s, in which case there
exists some non-zero real number k such that p′ = kp, q′ = kq,
r ′ = kr and s ′ = ks.



1. Stereographic Projection (continued)

Proposition 1.7

Let p, q, r and s be real constants, where p, q and r are not all
equal to zero and s2 < p2 + q2 + r2, and let Pp,q,r ,s be the plane
in three-dimensional space consisting of those points whose
Cartesian coordinates (u, v ,w) satisfy the equation

pu + qv + rw + s = 0.

A point (x , y) of R2 belongs to the image, under stereographic
projection from the point (0, 0,−1), of the circle on the unit sphere
along which that sphere interects the plane Pp,q,r ,s if and only if

(r − s)(x2 + y2) = 2px + 2qy + r + s.



1. Stereographic Projection (continued)

Proof
Given a point (x , y) of R2 there is a unique point (u, v ,w) of the
unit sphere in R3 distinct from (0, 0,−1) that maps to the point
(x , y) under stereographic projection from the point (0, 0,−1).
Moreover

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

It follows that (x , y) is the image, under stereographic projection
from the point (0, 0,−1) of a point on the circle along which the
plane Pp,q,r ,s intersects the unit sphere if and only if

2px + 2qy + r − r(x2 + y2)

1 + x2 + y2
+ s = 0.



1. Stereographic Projection (continued)

This equation is satisfied if and only if

2px + 2qy + r − r(x2 + y2) + s + s(x2 + y2) = 0.

Thus (x , y) is on the image, under stereographic projection, of the
specified circle if and only if

(r − s)(x2 + y2) = 2px + 2qy + r + s.

The result follows.



1. Stereographic Projection (continued)

Corollary 1.8

Circles on the unit sphere in three-dimensional Euclidean space
correspond, under stereographic projection, to lines and circles in
the Euclidean plane. A circle on the unit sphere is projected to a
line in the Euclidean plane, under stereographic projection from the
point (0, 0,−1), if and only if that circle on the unit sphere passes
through the point (0, 0,−1).



1. Stereographic Projection (continued)

Proof
If r 6= s then the equation

(r − s)(x2 + y2) = 2px + 2qy + r + s

is the equation of a circle in the Euclidean plane. If r = s then the
above equation reduces to

2px + 2qy + r + s = 0,

and the latter equation is the equation of a line in the Euclidean
plane. The circle along which the plane pu + qv + rw + s = 0
intersects the unit sphere passes through the point (0, 0,−1) if and
only if r = s. The result follows.



1. Stereographic Projection (continued)

Corollary 1.9

Let (p, q) be a point of the Euclidean plane R2, and let R be a
positive real number. Then the circle of radius R centred on the
point (p, q) is the image, under stereographic projection from the
point (0, 0,−1), of the circle on the unit sphere in which that
sphere intersects the plane consisting of those points (u, v ,w) of
R3 that satisfy the equation

pu + qv + 1
2(R2 − p2 − q2 + 1)(w + 1) = 1.



1. Stereographic Projection (continued)

Proof
The points (x , y) lying on the circle of radius R about the point
(p, q) in R2 are those points of R2 that satisfy the equation

(x − p)2 + (y − q)2 = R2.

This equation is satisfied by (x , y) if and only if

x2 + y2 = 2px + 2qy + R2 − p2 − q2.

This equation is of the form (r − s)(x2 + y2) = 2px + 2qy + r + s
provided that r = s + 1 and R2 − p2 − q2 = 2s + 1, in which case

R2 = p2 + q2 + r2 − s2,

and therefore s2 < p2 + q2 + r2.



1. Stereographic Projection (continued)

Applying the result of Proposition 1.7, we conclude that the circle
of radius R about the point (p, q) is the image, under
stereographic projection from (0, 0,−1), of the circle on the unit
sphere along which that unit sphere intersects the plane consisting
of those points (u, v ,w) that satisfy the equation

pu + qv + 1
2(R2 − p2 − q2 + 1)(w + 1) = 1.

The result follows.



1. Stereographic Projection (continued)

1.4. Pole and Polar

Let S be the unit sphere in three-dimensional space centred on the
origin of a Cartesian coordinate system (u, v ,w), so that the
sphere S consists of those points of space whose Cartesian
coordinates (u, v ,w) satisfy the equation u2 + v2 + w2 = 1, and
let Q be a plane in three-dimensional space that does not contain
the origin of a Cartesian coordinate system (u, v ,w). Then there
exist real constants p, q and r such that the points of space that
lie on the plane Q are those whose Cartesian coordinates satisfy
the equation pu + qv + rw = 1. Let F be the point of
three-dimensional Euclidean space whose Cartesian coordinates are
(p, q, r). The point F is then said to be the pole of the plane Q,
and the plane Q is said to be the polar plane (or polar) of the
point F with respect to the unit sphere S . The terminology of pole
and polar can be extended to define poles of planes and polar
planes of points with respect to spheres of arbitrary radius and
centre, as in the definitions that follow.



1. Stereographic Projection (continued)

Definition

Let S be a sphere in three-dimensional Euclidean space, and let Q
be a plane in that space that does not contain the centre of the
sphere S . The sphere S consists of those points (x , y , z) of space
for which

(x − a)2 + (y − b)2 + (z − c)2 = R2
0 ,

where R0 is the radius of the sphere and (a, b, c) is the centre of
the sphere. Real numbers p, q and r may then be determined so
that the plane Q consists of those points (x , y , z) of space that
satisfy the equation

(p − a)(x − a) + (q − b)(y − b) + (r − c)(z − c) = R2
0 .

The pole of the plane Q with respect to the sphere S is then the
point of space whose Cartesian coordinates are (p, q, r).



1. Stereographic Projection (continued)

Definition

Let S be a sphere in three-dimensional Euclidean space, and let F
be a point in that space that is distinct from centre of the
sphere S . The sphere S consists of those points (x , y , z) of space
for which

(x − a)2 + (y − b)2 + (z − c)2 = R2
0 ,

where R0 is the radius of the sphere and (a, b, c) is the centre of
the sphere. Let the point F have Cartesian coordinates (p, q, r).
The polar plane (or polar) of the point F with respect to the
sphere S consists of those points (x , y , z) of space for which

(p − a)(x − a) + (q − b)(y − b) + (r − c)(z − c) = R2
0 .



1. Stereographic Projection (continued)

Lemma 1.10

Let S be a sphere in three-dimensional Euclidean space, let Q be a
plane that does not contain the centre of the sphere S, and let F
be a point of space that is distinct from the centre of the sphere S.
Then the point F is the pole of plane Q with respect to the
sphere S if and only if the plane Q is the polar plane of the
point F with respect to the sphere S.

Proof
This result follows directly from the relevant definitions.



1. Stereographic Projection (continued)

Proposition 1.11

Let S be a sphere in three-dimensional Euclidean space, and let Q
be a plane that intersects the sphere S along a circle Z but does
not pass through the centre of the sphere. Let F be the pole of the
plane Q with respect to the sphere S. Then the line DF joining
any point D of the circle Z to the point F is contained in the
tangent plane to the sphere S at the point D.



1. Stereographic Projection (continued)

Proof
We may choose the unit of length and the origin of the Cartesian
coordinate system (u, v ,w) so that the sphere S has unit radius
and is centred on the origin of the Cartesian coordinate system.
The centre C of the sphere S then has Cartesian coordinates
(0, 0, 0). Let F be the pole of the plane Q. Then F = (p, q, r),
where p2 + q2 + r2 > 1, and the plane Q consists of those points
of space whose Cartesian coordinates (u, v ,w) satisfy the equation
pu + qv + rw = 1.



1. Stereographic Projection (continued)

Let D be a point that lies on the circle Z along which the plane Q
intersects the sphere S , and let D = (u, v ,w), where
u2 + v2 + w2 = 1 and pu + qv + rw = 1. Then

|DF |2 = (u − p)2 + (v − q)2 + (w − r)2

= u2 + v2 + w2 − 2(pu + qv + rw) + p2 + q2 + r2

= p2 + q2 + r2 − 1.

Also |CD| = 1 and |CF |2 = p2 + q2 + r2. It follows that
|CF |2 = |CD|2 + |DF |2, and thus the angle of the triangle CDF at
the vertex D is a right angle (see for example Euclid, Elements, i,
48). Now a line passing through the point D is tangent to the unit
sphere S at D if and only if it is makes a right angle with the line
DC joining D to the centre C of the unit sphere. We conclude
therefore that the line DF is indeed tangent to the sphere S at
D.



1. Stereographic Projection (continued)

Corollary 1.12

Let S be a sphere in three-dimensional Euclidean space, and let Q
be a plane that intersects the sphere S in a circle Z but does not
contain the centre C of the sphere, and let F be the pole of the
plane Q with respect to the sphere S. Let D be a point lying on
the circle Z . Then |DF |2 = |CF |2 − R2

0 , where R0 is the radius of
the sphere S.

Proof
Let D be a point lying on the circle Z . Then the angle CDF is a
right angle, because the line DF lies in the tangent plane to the
sphere S at the point D and is therefore perpendicular to the line
CD joining the centre C of the sphere to the point D. It follows
from Pythagoras’s Theorem (Euclid, Elements, i, 47) that
|CF |2 = |CD|2 + |DF |2 = R2

0 + |DF |2. The result follows.



1. Stereographic Projection (continued)

Definition

Given a circle in three-dimensional Euclidean space, the axis of the
circle is the line, perpendicular to the plane containing the given
circle, that passes through the centre of that circle.

The axis of a circle in three-dimensional Euclidean space consists
of those points of Euclidean space that are equidistant from all
points of the circle. (This result follows easily using the definition
of the centre of a circle together with Pythagoras’s Theorem.)



1. Stereographic Projection (continued)

Lemma 1.13

Let S be a sphere in three-dimensional Euclidean space, and let Q
be a plane that intersects the sphere S in a circle Z but does not
contain the centre C of the sphere, and let F be the pole of the
plane Q with respect to the sphere S. Then the axis of the
circle Z is the line that passes through the points C and F .

Proof
All points of the circle Z are equidistant from the centre C of the
sphere S . There are also equidistant from the pole F of the
plane Q, because |DF |2 = |CF |2 − R2

0 for all points D of the
circle Z , where R0 is the radius of the sphere S (see
Corollary 1.12). Therefore the points C and F must lie on the axis
of the circle Z , and therefore determine the axis of this circle. The
result follows.



1. Stereographic Projection (continued)

1.5. Stereographic Projection of Vertical Circles

Let S be a sphere in three-dimensional space, let A and B be the
endpoints of a diameter AB of that sphere, let C be the centre of
the sphere S , and let P be the plane containing C that is
perpendicular to the diameter AB. In studying stereographic
projection of the sphere S from the point A onto the plane P it is
convenient to think of the point A as being located at the bottom
of the sphere S . The point B will then be located at the top of the
sphere. We may regard any line or plane parallel to the plane P as
being horizontal and any line parallel to the diameter AB as being
vertical. We may regard a plane Q as being vertical if the diameter
AB joining the bottom to the top of the sphere is parallel to the
plane Q. We regard a circle as being horizontal if it is contained in
a horizontal plane, and as being vertical if it is contained in a
vertical plane.



1. Stereographic Projection (continued)

If we introduce a Cartesian coordinate system (u, v ,w) so as to
ensure that the sphere S has unit radius and is centred on the
origin of those Cartesian coordinate system, and if we take the
point A to be that point whose Cartesian coordinates are
(0, 0,−1), then the u-axis and the v -axis are horizontal and the
w -axis is vertical. One can regard the plane P through the centre
of the sphere that is perpendicular to the diameter AB as being
the equatorial plane. This plane P is the unique horizontal plane
passing through the centre C of the sphere.



1. Stereographic Projection (continued)

If a point F with Cartesian coordinates (p, q, 0) lies on the plane P
and is distinct from the centre of the sphere S then its polar
plane Q with respect to the sphere S consists of those points of
space whose Cartesian coordinates (u, v ,w) satisfy the equation
pu + qv = 1. The polar plane Q is then a vertical plane, and the
small circle Z along which the polar plane cuts the sphere S is a
vertical circle.



1. Stereographic Projection (continued)

Proposition 1.14

Let S be the unit sphere in three-dimensional Euclidean space, let
A and B be endpoints of a diameter of that sphere, and let P be
the plane passing through the centre C of the sphere S that is
perpendicular to the diameter AB. Let F be a point on the
plane P located outside the sphere S, let Q be the polar plane of
F with respect to the sphere S, and let Z be the vertical circle
along which the plane Q intersects the sphere S. Also let W be
the circle, contained in the plane P and centred on the point F ,
that passes through those points where the circle Z intersects the
plane P. Then stereographic projection from the point A maps the
circle Z onto the circle W .



1. Stereographic Projection (continued)

Proof
Without loss of generality, we can take S to be the unit sphere
centred on the origin of the Cartesian coordinate system (u, v ,w),
and also assign coordinates so that A = (0, 0,−1), B = (0, 0, 1),
C = (0, 0, 0). The plane P then consists of those points of space
whose Cartesian coordinates (u, v ,w) satisfy the equation w = 0.
It follows that F = (p, q, 0), where p and q are real numbers
satisfying p2 + q2 > 1. The plane Q then consists of those points
(u, v ,w) of space for which pu + qv = 1, and the circle Z , being
the intersection of the sphere S and the plane Q consists of those
points (u, v ,w) of space for which u2 + v2 + w2 = 1 and
pu + qv = 1.



1. Stereographic Projection (continued)

Now the distance of all points of the circle Z from the point F is
equal to

√
p2 + q2 − 1 (see Corollary 1.12). Accordingly the

radius R of the circle W is determined by the equation
R2 = p2 + q2 − 1. It follows from Corollary 1.9 that the circle W
is the image, under stereographic projection from the point A, of
the circle Z at which the polar plane Q of the point F intersects
the sphere S , as required.



1. Stereographic Projection (continued)

Proposition 1.15

Let S be a sphere, let A and B be endpoints of a diameter of that
sphere, and let P be the plane perpendicular to the diameter AB
that passes through the centre C of the sphere S. Let F1 and F2
be points of the plane P that lie outside the sphere S, let Q1 and
Q2 be the polar planes of F1 and F2 respectively with respect to
the sphere S, and let Z1 and Z2 be the vertical circles along which
the polar planes Q1 and Q2 intersect the sphere S. Let W1 and
W2 be the circles in the plane P that are the images of the circles
Z1 and Z2 under stereographic projection from the point A.
Suppose that the circles Z1 and Z2 intersect at a point D of the
sphere, and let E be the image of the point D under stereographic
projection from the point A. Then the angle between the tangent
lines to the circles Z1 and Z2 at the point D is equal to the
corresponding angle between the tangent lines to the circles W1

and W2 at the point E .



1. Stereographic Projection (continued)

Proof
It follows from Proposition 1.14 that stereographic projection from
the point A maps the circles Z1 and Z2 onto circles W1 and W2

with centres F1 and F2 respectively.

Now the angle between the tangent lines to the circles W1 and W2

at the point E is equal to the angle F1EF2 between the lines
joining the point E to the centres F1 and F2 of those circles,
because the tangent lines are perpendicular to the lines joining E
to the centres of the circles W1 and W2.



1. Stereographic Projection (continued)

We next show that the lines DF1 and DF2 are perpendicular to the
tangent lines of the circles Z1 and Z2 at the point D. Let G1 be
the centre of the circle Z1. Then DG1 is perpendicular to the
tangent line to the circle Z1 at D. Also the point G1 lies on the
axis of the circle, and that axis also passes through the point F1. It
follows that the line G1F1 is perpendicular to the plane Q1 and is
therefore perpendicular to the direction of the tangent line to the
circle Z1 at D. Two sides DG1 and G1F1 of the triangle DG1F1 are
therefore perpendicular to the direction of the tangent line to the
circle Z1 at the point D. The same is therefore true of the third
side DF1. Similarly the line DF2 is perpendicular to the tangent
line to the circle Z2 at the point D.



1. Stereographic Projection (continued)

Next we note that the tangent lines to the circles Z1 and Z2 at the
point D and the lines DF1 and DF2 are all contained in the
tangent plane to the sphere S at the point D. Moreover the line
DF1 is perpendicular to the tangent line to the circle Z1 at D and
the line DF2 is perpendicular to the tangent line to the circle Z2 at
D. It follows that the angle between the tangent lines to the
circles Z1 and Z2 at the point D is equal to the angle F1DF2.



1. Stereographic Projection (continued)

Now the points of the circle Z1 are equidistant from the point F1,
and so are the points of the circle W1. Moreover the circles Z1 and
W1 intersect at the points at which the circle Z1 intersects the
plane P. It follows that |DF1| = |EF1| and |DF2| = |EF2|. The
three sides of the triangle F1DF2 are thus equal to the
corresponding three sides of the triangle F1EF2. It then follows
from the SSS Congruence Rule (Euclid, Elements, i, 8) that the
angles F1DF2 and F2EF2 are equal. But we have shown that the
first of these two angles is the angle between the tangent lines to
the circles Z1 and Z2 at the point D and the second is the angle
between the tangent lines to the circles W1 and W2 at the
point E . The result follows.
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