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A Free Presentation of the Proof of Proposition 47 in
Book I of Euclid’s Elements of Geometry

Let ABC be a right-angled triangle, with the right angle located at the
vertex A, and let squares BDEC, HKCA and GFBA be constructed on the
sides BC, CA and AB respectively.
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(The squares GFBA and HKCA are identified in Euclid’s Elements of
Geometry with the designations GB and HC respectively: in order to iden-
tify a square or rectangle on a geometric diagram, it suffices to list two
diagonally opposite vertices of the square or rectangle.)
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Let a straight line AL be drawn from the point A to the line DE, so as to
ensure that AL is parallel to the sides BD and CE of the square on BC, and
meets that side DE of that square at the point L. Also let CF and AD be
joined. Let M denote the point at which the straight line segments BC and
AL intersect. (The point M is not labelled or referred to in Euclid’s proof,
but has been labelled here of the purposes of the following discussion.)
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Now the angles FBA, CAB and BAG are right angles. Consequently it
follows (on applying Propositions I.14 of Euclid’s Elements) that the straight
line segments CA and AG together constitute a straight line CG with end-
points C and G. Similarly the line segments BA and AH together constitute
a straight line BH. As Euclid says: “CA is in a straight line with AG. For
the same reason BA is also in a straight line with AH.” Moreover CG is
parallel to BF (by Proposition I.27 of Euclid’s Elements), and similarly BH
is parallel to CK.
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Next we note (departing from the strict ordering of the statements in
Euclid’s proof) that triangles FBA and FBC are on the same base BF , and
between the same parallels FB and GC. Moreover the square GFBA (or
GB) is double the triangle FBA in area. Consequently the square GFBA is
double the triangle FBC in area.
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Similarly the triangles MBD and ABD are on the same base BD, and
between the same parallels BD and AL. Moreover the rectangle MBDL
(or BL) is double the triangle MBD in area. Consequently the rectangle
MBDL is double the triangle ABD in area.
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We now compare the triangles FBC and ABD. The angles FBC and
ABD are each formed by adding a right angle to to the angle ABC. It follows
that the angles FBC and ABD are equal to one another. Also the sides FB
and BC are respectively equal to the sides AB and BD. Applying the SAS
Congruence Rule (Euclid’s Elements, Proposition I.4), we conclude that the
triangles FBC and ABD are congruent to one another, and are therefore
equal to one another in area.
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(Note that a clockwise rotation through a right angle about the point B
would bring the triangle FBC onto the triangle ABD. Consequently those
two triangles should be equal in area, and equality of area, in the theory
developed in Book I of Euclid’s Elements of Geometry, is formally justified,
in this situation, and in analogous situations, as a consequence of the SAS
Congruence Rule established in Proposition 4 of that book.)

But the square GFBA has been shown to be double the triangle FBC in
area, and also the rectangleMBDL has been shown to be double the triangle
ABD in area. We have just noted that the triangles FBC and ABD are
equal to one another in area. It follows that the rectangle MBDL (or BL)
is equal in area to the square GFBA (or GB).

A similar argument shows that the rectangle MCEL (or CL) is equal in
area to the square HKCA (or HC). Now the square BDEC is equal in area
to the sum of the rectangles MBDL and MCEL. The square BDEC on
the side BC of the right-angled triangle ABC opposite the right angle at the
vertex A is consequently equal in area to the sum of the squares GFBA and
HKCA on the other two sides of that right-angled triangle, as required.
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