Study Note—Euclid's *Elements*, Book I, Proposition 45

David R. Wilkins

© Trinity College Dublin 2022

The nature and generality of this proposition can perhaps be made apparent through the use of modern subscript notation. We suppose that we are given a fixed line segment A together with a fixed angle θ . We are also given a rectilineal figure F. That figure may be divided as a finite union of triangles T_1, T_2, \ldots, T_k whose interiors are disjoint. The figure F is then equal in area to the sum of the triangles T_1, T_2, \ldots, T_k . The preceding proposition, Proposition 44, shows that line segments B_1, B_2, \ldots, B_k can be constructed so that, for each integer i between 1 and k, the parallelogram contained by sides equal to A and B_i meeting one another so as to contain an angle equal to θ is equal in area to the triangle T_i . We can then construct a straight line segment B that can be subdivided into k straight line segments which are equal in length to B_1, B_2, \ldots, B_k . The parallelogram with containing sides

equal to A and B meeting one another so as to contain an angle equal to θ is then equal in area to the sum of the parallelograms those containing sides are equal to A and B_i for i = 1, 2, ..., k, and is therefore equal in area to the sum of the triangles $T_1, T_2, ..., T_k$. Consequently the parallelogram with containing sides equal in length to A and B and meeting at angle θ is equal in area to the given rectilineal figure.