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Complete Metric Spaces

The following definitions and remarks define the concept of a complete metric
space, and set out the reasons why any closed subset of a Euclidean space is
a complete metric space.

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

Definition Let X be a metric space with distance function d, let p be point
of X, and let x1, x2, x3, . . . be an infinite sequence of points of X. The infinite
sequence x1, x2, x3, . . . is said to converge to the point p if, given any strictly
positive real number ε, there exists some positive integer N with the property
that d(xj, p) < ε for all integers j satisfying j ≥ N .

Definition Let X be a metric space with distance function d, let p be point
of X, and let x1, x2, x3, . . . be an infinite sequence of points of X. The infinite
sequence x1, x2, x3, . . . is said to be a Cauchy sequence of points of X if, given
any strictly positive real number ε, there exists some positive integer N with
the property that d(xj, xk) < ε for all integers j and k satisfying j ≥ N and
k ≥ N .
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Definition A metric space is said to be complete if every Cauchy sequence
of points belonging to that metric space is convergent.

Cauchy’s Criterion for Convergence (also known as the General Princi-
ple of Convergence) ensures that all finite-dimensional Euclidean spaces are
complete metric spaces. Moreover if an infinite sequence of points belonging
to some given closed set in a Eucldidean space converges to some point of the
Euclidean space, then the limit of the infinite sequence belongs to the given
closed set. Consequently any Cauchy sequence of points belonging to a given
closed set in a Euclidean space must converge to some point of that closed
set. We conclude from this that every closed subset of a finite-dimensional
Euclidean space is a complete metric space.

The Contraction Mapping Theorem

Definition Let X be a metric space. A function ϕ:X → X mapping that
set X into itself is said to be a contraction mapping on X if there exists some
non-negative real number λ satisfying λ < 1 that is such as to ensure that

d(ϕ(u), ϕ(v)) ≤ λd(u, v)

for all points u and v of X.

Theorem A Let X be a complete metric space, and let ϕ:X → X be a
contraction mapping on the set X. Then there exists a unique point p of X
for which ϕ(p) = p.

Proof The function ϕ:X → X is a contraction mapping. Therefore a non-
negative real number λ satisfying λ < 1 can be associated with the function ϕ
so as to ensure that

d(ϕ(u), ϕ(v)) ≤ λd(u, v)

for all points u and v of X.
Choose x0 ∈ X, and let x1, x2, x3, . . . be the infinite sequence of points of

X defined such that xj = ϕ(xj−1) for all positive integers j. Then

d(xj, xj+1) ≤ λd(xj, xj−1)

for all positive integers j. It follows that

d(xj, xj+1) ≤ λjd(x0, x1)
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for all positive integers j, and therefore

d(xj, xk) ≤

(
k−1∑
m=j

λm

)
d(x0, x1) ≤

λj − λk

1− λ
d(x0, x1)

≤ λj

1− λ
d(x0, x1)

for all positive integers j and k satisfying j < k.
Now the inequality λ < 1 ensures that, given any positive real number ε,

there exists a positive integer N large enough to ensure that λjd(x0, x1) <
(1−λ)ε for all integers j satisfying j ≥ N . Then d(xj, xk) < ε for all positive
integers j and k satisfying k > j ≥ N . The infinite sequence x1, x2, x3, . . .
is thus a Cauchy sequence of points of X. The completeness of the metric
space X then ensures that the infinite sequence x1, x2, x3, . . . converges to
some point p of X. Moreover the continuity of the contraction mapping ϕ
ensures that

p = lim
j→+∞

xj+1 = lim
j→+∞

ϕ(xj) = ϕ

(
lim

j→+∞
xj

)
= ϕ(p).

We have thus proved the existence of a point p of X for which ϕ(p) = p.
Now let q be any point of the complete metric space X with the property

that ϕ(q) = q. Then

d(p, q) = d(ϕ(q), ϕ(p)) ≤ λd(p, q).

But λ < 1. It follows that the Euclidean distance d(p, q) from p to q cannot
be strictly positive, and therefore p = q. We conclude therefore that p is the
unique point of X for which ϕ(p) = p, as required.
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