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Metric Spaces

Metric spaces are sets provided with distance functions. There are crite-
ria, expressible through the utilization of distance functions, that determine
which infinite sequences in a metric space are convergent, and which func-
tions between metric spaces are continuous. However any metric space has
a collection of open sets, determined by the distance function, that gives the
metric space the structure of a topological space. The concepts of conver-
gence and continuity that arise within the theory of topological spaces are
consistent with the criteria that characterize convergence and continuity in
metric space contexts using distance functions.

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality. The elements of a metric space are usually re-
ferred to as points of that metric space.
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An n-dimensional Euclidean space Rn is a metric space with respect to
the Euclidean distance function d, defined so that

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may be regarded as a metric space
whose distance function is the restriction to X of the Euclidean distance
function on Rn.

Open Sets in Metric Spaces

Definition Let X be a metric space with distance function d. Given a
point p of X and a positive real number η, the open ball BX(p, η) in X of
radius η centred on the point p consists of all points of the set X whose
distance from the point p is less than η.

We see therefore that

BX(p, η) = {x ∈ X : d(x, p) < η}

for all points p of X and positive real numbers η.

Definition Let X be a metric space with distance function d. A subset V
of X is said to be open in X if, given any point of V , there exists an open
ball in X of positive radius, centred on that point, which is wholly contained
within the set V .

By convention the empty set ∅ is also considered to be open in the given
set X (on the grounds that there does not exist any point of the empty set
that is not the centre of some open ball contained in the empty set).

Thus given any metric space X with distance function d, and given any
subset V of X, the set V is said to be open in X if and only if, given any
point p of V , there exists some strictly positive real number δ such that
BX(p, δ) ⊂ V , where

BX(p, δ) = {x ∈ X : d(x, p) < δ}.

Lemma A Let X be a metric space, and let p be a point of X. Then, for
any positive real number η, the open ball BX(p, η) in X of radius η centred
on p is open in X.
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Proof Let d denote the distance function on the metric space X, and let q
be an element of BX(p, η). We must show that there exists some positive real
number δ such that BX(q, δ) ⊂ BX(p, η). Let δ = η − d(q, p). Then δ > 0,
since d(q, p) < η. Moreover if x ∈ BX(q, δ) then

d(x, p) ≤ d(x, q) + d(q, p) < δ + d(q, p) = η,

by the Triangle Inequality, and hence x ∈ BX(p, η). Thus BX(q, δ) ⊂
BX(p, η). This shows that BX(p, η) is an open set, as required.

Lemma B Let X be a metric space with distance function d, and let p be
a point of X. Then, for any non-negative real number η, the set {x ∈ X :
d(x, p) > η} is an open set in X.

Proof Let q be a point of X satisfying d(q, p) > η, and let x be any point
of X satisfying d(x, q) < δ, where δ = d(q, p)− η. Then

d(q, p) ≤ d(q, x) + d(x, p),

by the Triangle Inequality. It follows that

d(x, p) ≥ d(q, p)− d(x, q) > d(q, p)− δ = η.

Thus BX(q, δ) is contained in the given set. The result follows.

Convergence of Sequences and Open Sets

Definition Let X be a metric space with distance function d, let p be point
of X, and let x1, x2, x3, . . . be an infinite sequence of points of X. The infinite
sequence x1, x2, x3, . . . is said to converge to the point p if, given any strictly
positive real number ε, there exists some positive integer N with the property
that d(xj, p) < ε for all integers j satisfying j ≥ N .

Lemma C An infinite sequence x1, x2, x3, . . . of points in a metric space X
converges to a point p of X if and only if, given any open set V which
contains p, there exists some positive integer N such that xj ∈ V for all
positive integers j satisfying j ≥ N .

Proof Let d denote the distance function on the metric space X. Suppose
that the infinite sequence x1, x2, x3, . . . of points in the metric space X has
the property that, given any open set V which contains p, there exists some
positive integer N such that xj ∈ V whenever j ≥ N . Let some positive real
number ε be given. The open ball BX(p, ε) of radius ε centred on the point p
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is an open set by Lemma A. Therefore there exists some positive integer N
such that xj ∈ BX(p, ε) whenever j ≥ N . Thus d(xj, p) < ε whenever j ≥ N .
This shows that the infinite sequence converges to the point p.

Conversely, suppose that the infinite sequence x1, x2, x3, . . . of points of
the metric space X converges to the point p. Let V be an open set to which
that point p belongs. Then there exists some positive real number ε such
that the open ball BX(p, ε) of radius ε centred on p is a subset of V . All
points x of the metric space X that satisfy d(x, p) < ε then belong to the
open set V . But there exists some positive integer N with the property that
d(xj, p) < ε whenever j ≥ N , since the sequence converges to p. Therefore
xj ∈ V whenever j ≥ N , as required.

*

The Topology of Metric Spaces

Proposition D Let X be a metric space with distance function d. The
collection of open sets in X has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let C be any collection of open sets in X, and let W denote the union
of all the open sets belonging to C. We must show that W is itself open in
X. Let p ∈ W . Then p ∈ V for some set V belonging to the collection C. It
follows that there exists some positive real number δ such that BX(p, δ) ⊂ V .
But V ⊂ W , and thus BX(p, δ) ⊂ W . This shows that W is open in X. This
proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let p ∈ V . Now p ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(p, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(p, δ) ⊂ BX(p, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(p, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).
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Closed Sets in Metric Spaces

Definition Let X be a metric space with distance function d. A subset F
of X is said to be closed in X if and only if its complement X \ F in X is
open in X.

(Recall that X \ F = {x ∈ X : x 6∈ F}.)
Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the complements
of those sets).

Indeed let A be some collection of subsets of a set X, and let x be a point
of X. Then

x ∈ X \
⋃
S∈A

S ⇐⇒ x 6∈
⋃
S∈A

S

⇐⇒ for all S ∈ A, x 6∈ S
⇐⇒ for all S ∈ A, x ∈ X \ S
⇐⇒ x ∈

⋂
S∈A

(X \ S),

and therefore
X \

⋃
S∈A

S =
⋂
S∈A

(X \ S).

Again let x be a point of X. Then

x ∈ X \
⋂
S∈A

S ⇐⇒ x 6∈
⋂
S∈A

S

⇐⇒ there exists S ∈ A for which x 6∈ S
⇐⇒ there exists S ∈ A for which x ∈ X \ S
⇐⇒ x ∈

⋃
S∈A

(X \ S),

and therefore
X \

⋂
S∈A

S =
⋃
S∈A

(X \ S).

The following result therefore follows directly from Proposition D.
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Proposition E Let X be a metric space with distance function d. The col-
lection of closed sets in X has the following properties:—

(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Proof The empty set ∅ is the complement in X of the whole set X. The
set X is open in itself. It follows that the empty set ∅ is closed in X.

The whole set X is the complement in X of the empty set. The empty
set is open in X. It follows that the whole set X is closed in itself.

Next let C be a collection of subsets of X that are closed in X, and let G
be the intersection of all the sets that are members of the collection C. Now
the complement in X of the set G, being the complement of the intersection
of all the members of the collection C is the union of the complements of the
members of this collection C. Now the complement of each member of the
collection C is open in X. Consequently the union of the complements of the
members of the collection must also be open in X. Thus the complement of
the set G is open in X, and therefore the set G itself is closed in X.

Now suppose that the collection C is a finite collection of subsets of X
that are closed in X, and let H be the union of all the sets that are members
of the finite collection C. Now the complement in X of the set H, being the
complement of the union of all the members of the finite collection C is the
intersection of the complements of the members of this finite collection C.
Now the complement of each member of the finite collection C is open in
X. Consequently the intersection of the complements of the members of the
finite collection must also be open in X. Thus the complement of the set H
is open in X, and therefore the set H itself is closed in X. This completes
the proof.

Lemma F Let X be a metric space with distance function d, and let F be
a subset of X which is closed in X. Let x1, x2, x3, . . . be an infinite sequence
of points of F which converges to some point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X \F . It would then follow from Lemma C
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.
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The Concept and Basic Properties of Continuity

Definition Let X and Y be metric spaces with distance functions dX and
dY respectively. A function ϕ:X → Y from X to Y is said to be continuous
at a point p of X if and only if, given any strictly positive real number ε,
there exists some strictly positive real number δ such that dY (ϕ(x), ϕ(p)) < ε
whenever x ∈ X satisfies dX(x, p) < δ.

The function ϕ:X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

X

Yp

ϕ(p)

BX(p, δ)

BY (ϕ(p), ε)

ϕ(BX(p, δ))

ϕ

δ

ε

Proposition G Let X, Y and Z be metric spaces, let ϕ:X → Y be a func-
tion from X to Y and let ψ:Y → Z be a function from Y to Z. Suppose
that ϕ is continuous at some point p of X and that ψ is continuous at ϕ(p).
Then the composition function ψ ◦ ϕ:X → Z is continuous at p.

Proof Let dX , dY and dX denote the distance functions on the metric spaces
X, Y and Z respectively, let q = ϕ(p), and let some positive real num-
ber ε be given. Then there exists some positive real number η such that
dZ(ψ(y), ψ(q)) < ε for all y ∈ Y satisfying dY (y, q) < η. But then there
exists some positive real number δ such that dY (ϕ(x), q) < η for all x ∈ X
satisfying dX(x, p) < δ. It follows that dZ(ψ(ϕ(x)), ψ(ϕ(p))) < ε for all
x ∈ X satisfying dX(x, p) < δ, and thus ψ ◦ ϕ is continuous at p, as re-
quired.
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Proposition H Let X and Y be metric spaces, and let ϕ:X → Y be a
continuous function from X to Y . Let x1, x2, x3, . . . be an infinite sequence
of points of X which converges to some point p of X. Then the sequence
ϕ(x1), ϕ(x2), ϕ(x3), . . . converges to ϕ(p).

Proof Let dX and dY denote the distance functions on the metric spaces
X and Y respectively, and let some positive real number ε be given. The
function ϕ is continuous at p, and therefore there exists some positive real
number δ such that dY (ϕ(x), ϕ(p)) < ε for all x ∈ X satisfying dX(x, p) < δ.
Also the infinite sequence x1, x2, x3, . . . converges to the point p, and therefore

X

Y

p

ϕ(p)

BX(p, δ)

BY (ϕ(p), ε)

ϕ(BX(p, δ))

ϕ

xN

ϕ(xN)

there exists some positive integer N such that dX(xj, p) < δ whenever j ≥
N . It follows that if j ≥ N then dY (ϕ(xj), ϕ(p)) < ε. Thus the sequence
ϕ(x1), ϕ(x2), ϕ(x3), . . . converges to ϕ(p), as required.

Let X be a metric space with distance function d, and let ϕ:X → Rn be
a function mapping the metric space X into Rn for some positive integer n.
Then

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function ϕ.

Proposition I Let X be a metric space, let ϕ:X → Rn be a function
mapping the metric space X into Rn, and let p ∈ X. Then the function
ϕ:X → Rn is continuous at the point p if and only if its components are all
continuous at p.
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Proof Note that the ith component fi of ϕ is given by fi = πi ◦ f , where
πi:Rn → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn

onto its ith component yi. Now any composition of continuous functions is
continuous, by Proposition G. Thus if ϕ is continuous at p, then so are the
components of ϕ.

Conversely suppose that the components of ϕ are continuous at p ∈ X.
Let d denote the distance function on the metric space X, and let some
positive real number ε be given. Then there exist positive real numbers
δ1, δ2, . . . , δn such that |fi(x)−fi(p)| < ε/

√
n for x ∈ X satisfying d(x, p) < δi.

Let δ be the minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies d(x, p) < δ then

|ϕ(x)− ϕ(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |ϕ(x) − ϕ(p)| < ε. Thus the function ϕ is continuous at p, as
required.

Proposition J Let X be a metric space with distance function d, and let
f :X → R and g:X → R be continuous functions from X to R. Then the
functions f + g, f − g and f · g are continuous. If in addition g(x) 6= 0 for
all x ∈ X then the quotient function f/g is continuous.

Proof Note that f+g = s◦ψ and f ·g = m◦ψ, where the functions ψ:X →
R2, s:R2 → R and m:R2 → R are defined so that ψ(x) = (f(x), g(x)),
s(u, v) = u+v and m(u, v) = uv for all x ∈ X and u, v ∈ R. One can readily
show that the sum function s and the product function m are continuous
functions from R2 to R. It follows from Proposition I and Proposition G that
f + g and f · g are continuous, being compositions of continuous functions.
Now f − g = f + (−g), and both f and −g are continuous. Therefore f − g
is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined so that r(t) = 1/t for
all non-zero real numbers t. Now the reciprocal function r is continuous.
Thus the function 1/g is a composition of continuous functions and is thus
continuous. But then, using the fact that a product of continuous real-valued
functions is continuous, we deduce that f/g is continuous.

Continuous Functions and Open Sets

Let X and Y be metric spaces with distance functions dX and dY respectively,
and let ϕ:X → Y be a function from X to Y . We recall that the function ϕ is
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continuous at a point p of X if and only if, given any positive real number ε,
there exists some positive real number δ such that dY (ϕ(x), ϕ(p)) < ε for
all points x of X satisfying dX(x, p) < δ. Thus the function ϕ:X → Y is
continuous at p if and only if, given any positive real number ε, there exists
some positive real number δ such that the function ϕ maps the open ball
BX(p, δ) in X of radius δ centred on the point p into the open ball BY (q, ε)
in Y of radius ε centered on the point q, where q = ϕ(p).

Given any function ϕ:X → Y , we denote by ϕ−1(V ) the preimage of a
subset V of Y under the map ϕ, defined so that ϕ−1(V ) = {x ∈ X : ϕ(x) ∈
V }.

Proposition K Let X and Y be metric spaces, and let ϕ:X → Y be a
function from X to Y . The function ϕ is continuous if and only if ϕ−1(V )
is open in X for every open subset V of Y .

Proof Suppose that ϕ:X → Y is continuous. Let V be an open set in Y .
We must show that ϕ−1(V ) is open in X. Let p be a point of ϕ−1(V ), and
let q = ϕ(p). Then q ∈ V . But V is open, hence there exists some positive
real number ε with the property that BY (q, ε) ⊂ V . But ϕ is continuous
at p. Therefore there exists some positive real number δ such that ϕ maps
BX(p, δ) into BY (q, ε). Thus ϕ(x) ∈ V for all x ∈ BX(p, δ), showing that
BX(p, δ) ⊂ ϕ−1(V ). This shows that ϕ−1(V ) is open in X for every open
set V in Y .

X

Yp

q

BX(p, δ)

BY (q, ε)

ϕ(BX(p, δ))
V

ϕ−1(V )

ϕ

Conversely suppose that ϕ:X → Y is a function with the property that
ϕ−1(V ) is open in X for every open set V in Y . Let p ∈ X, and let q = ϕ(p).
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We must show that ϕ is continuous at p. Let some positive real number ε be

X

Yp

q

ϕ−1(BY (q, ε))

BX(p, δ)

BY (q, ε)

ϕ(BX(p, δ))

ϕ

given. Then BY (q, ε) is an open set in Y , by Lemma A, hence ϕ−1 (BY (q, ε))
is an open set in X which contains p. It follows that there exists some positive
real number δ such that BX(p, δ) ⊂ ϕ−1 (BY (q, ε)). Thus, given any positive
real number ε, there exists some positive real number δ such that ϕ maps
BX(p, δ) into BY (q, ε). We conclude that ϕ is continuous at the point p, as
required.

Let X be a metric space, let f :X → R be continuous, and let c be some
real number. Then the sets

{x ∈ X : f(x) > c}

and
{x ∈ X : f(x) < c}

are open in X, and, given real numbers a and b satisfying a < b, the set

{x ∈ X : a < f(x) < b}

is open in X.
Again let X be a metric space, let f :X → R be continuous, and let c

be some real number. Now a subset of X is closed in X if and only if its
complement is open in X. Consequently the sets

{x ∈ X : f(x) ≤ c}
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and
{x ∈ X : f(x) ≥ c},

being the complements in X of sets that are open in X, must themselves be
closed in X. It follows that that set

{x ∈ X : f(x) = c},

being the intersection of two subsets X that are closed in X, must itself be
closed in X.
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