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A Dedekind Sections and the Real Number

System

Definition For the purposes of this discussion of the construction of the real
number system using Dedekind sections, we say that a subset α of the set Q
of rational numbers is a left segment of the rational numbers if and only if it
satisfies the following four conditions:

(i) α 6= ∅ (i.e., α is non-empty);

(ii) α 6= Q (i.e., α is not the entire set of rational numbers);

(iii) if p and q are rational numbers, if q ∈ α, and if p < q, then p ∈ α;

(iv) if q is a rational number, and if q ∈ α, then there exists a rational
number r such that r > q and r ∈ α.

Each rational number q determines a corresponding left segment λq of the
rational numbers, defined so that

λq = {p ∈ Q : p < q}.

We refer to the left segment λq as the left segment of the rational numbers
that represents the rational number q.

Example Let α be the subset of the rational numbers defined such that

α = {p ∈ Q : p ≤ 0 or p2 < 2}.

Now α is a left segment of the rational numbers. We prove that there is no
rational number q for which α = λq. (In other words, we prove that the left
segment α does not represent any rational number.) For this purpose we
make use of the fact that there is no rational number q satisfying q2 = 2.

Let q be a rational number that does not belong to the left segment α.
Then q > 0 and q2 > 2. Let p be a rational number. Then

p2 − q2 + 2q(q − p) = p2 + q2 − 2pq = (q − p)2 ≤ 0

and therefore
p2 ≥ q2 − 2q(q − p).

It follows that if p is a rational number satisfying the inequalities

q − q2 − 2

2q
< p < q
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then 2q(q−p) < q2−2 and therefore p2 > 2. But then p ∈ λq and p 6∈ α. We
conclude that the left segment α does not represent any rational number q
that does not belong to α. Moreover no left segment represents any of the
rational numbers that belong to it. We conclude therefore that the left
segment α of the rational numbers does not represent any rational number.

Lemma A.1 Let α be a left segment of the rational numbers and let q and
r be rational numbers. Suppose that q ∈ α and r 6∈ α. Then q < r.

Proof It cannot be the case that q = r. If it were the case that r < q then,
given that q ∈ α, it would follow from property (iii) in the definition of left
segments that r ∈ α, which is not the case. Therefore the rational number r
cannot be either equal to or less than the rational number q. Therefore q < r,
as required.

Lemma A.2 Let α be a left segment of the rational numbers. Then, given
any positive rational number e, there exist rational numbers v and w such
that v ∈ α, w 6∈ α and 0 < w − v < e.

Proof Let α be a left segment of the rational numbers, and let a positive
rational number e be given. It follows from properties (i) and (ii) in the
definition of left segments that there exist rational numbers s and t such that
s ∈ α and t 6∈ α. Moreover it follows from property (iii) in that definition that
t > s. Choose a positive integer M large enough to ensure that Me > t− s,
let k be the largest non-negative integer for which

s+
k(t− s)
M

∈ α

and let

v = s+
k(t− s)
M

and w = s+
(k + 1)(t− s)

M
.

Then s ∈ α, w 6∈ α and 0 < w − v < e, as required.

A.1 The Ordering of Left Segments

Lemma A.3 Let α and β be left segments of the rational numbers, and let
r be a rational number. Suppose that r ∈ β and r 6∈ α. Then α ⊂ β.

Proof Let q be a rational number belonging to α. If it were the case that
q > r then property (iii) in the definition of left segments would require the
rational number r to belong to the set α, which is not the case. Therefore
q is not greater than r. Also q is not equal to r, because q ∈ α and r 6∈ α.
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Therefore q < r. Now r ∈ β. It therefore follows from property (iii) in
the definition of left segments that q ∈ β. We conclude therefore that every
rational number belonging to the left segment α also belongs to the left
segment β. Thus α ⊂ β, as required.

Definition Let α and β be left segments of the rational numbers. We write
α < β if and only if both α ⊂ β and α 6= β, in which case we say that the
left segment α is less than the left segment β, and that β is greater than α,
and write β > α.

Let α and β be left segments. Then α ⊂ β if and only if either α = β or
α < β. It follows that α ⊂ β (i.e., α is a subset of β) if and only if α is less
than or equal to β, and therefore it is appropriate to indicate the inclusion
relationship α ⊂ β between left segments α and β by either by writing α ≤ β
or else by writing β ≥ α.

The following proposition establishes that the ordering of left segments
of the rational numbers defined as described above is transitive.

Proposition A.4 Let α, β and γ be left segments. Suppose that α < β and
β < γ. Then α < γ.

Proof The left segments α, β and γ satisfy α ⊂ β ⊂ γ, because α < β and
β < γ. If it were the case that α = γ then it would follow that both α = β
and β = γ. But α 6= β and β 6= γ. Therefore α 6= γ, and therefore α < γ, as
required.

The following proposition establishes that the ordering of left segments
of the rational numbers defined as described above satisfies the Trichotomy
Law.

Proposition A.5 Let α and β be left segments of the rational numbers.
Then one and only one of the three statements α < β, α = β and β < α is
true.

Proof Two sets are equal to one another if and only if they have the same
elements. It follows that α and β are unequal if and only if there exists some
rational number that belongs to one of the left segments α and β but not to
the other. But it then follows from Lemma A.3 that either α ⊂ β, in which
case α < β, or else β ⊂ α, in which case β < α. Now at most one of the
properties α = β, α < β and β < α can hold for the left segments α and β.
The result follows.
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A.2 Addition and Subtraction of Left Segments

We now discuss how an appropriate operation of addition is to be defined on
the set of left segments of the rational numbers. The definition of addition
for such left segments should be compatible with the definition of addition
for rational numbers. Therefore we investigate the relationship between the
left segments λq, λr and λq+r representing rational numbers q, r and q + r
respectively.

Lemma A.6 Let q and r be rational numbers, and let

λq = {s ∈ Q : s < q} λr = {t ∈ Q : t < r}

and
λq+r = {t ∈ Q : t < q + r}.

Let p be a rational number. Then p ∈ λq+r if and only if there exist rational
numbers s and t such that s ∈ λq, t ∈ λr and s+ t = p.

Proof Let p be a rational number. First suppose that there exist rational
numbers s and t for which s ∈ λq, t ∈ λr and s + t = p. Then s < q, t < r,
and therefore p = s+ t < q + r. It follows that p ∈ λq+r.

Now let p ∈ λq+r. Then p < q + r. A rational number v can be chosen
such that p < v < q + r. Let

s = p+ q − v and t = v − q.

Then s < q and t < r and therefore s ∈ λq and t ∈ λr. Moreover s + t = p.
The result follows.

Lemma A.7 Let α and β be left segments of the rational numbers, and let

γ = {p ∈ Q : there exist s ∈ α and t ∈ β for which p = s+ t}.

Then γ is a left segment of the rational numbers.

Proof We must verify that the four properties listed in the definition of
left segments are satisfied. First we note that α and β are non-empty, be-
cause they are left segments, and therefore γ is non-empty. Thus γ satisfies
property (i) in the definition of left segments.

Property (ii) in the definition of left segments ensures that there exist
rational numbers u and v for which u 6∈ α and v 6∈ β. It then follows from
Lemma A.1 that s < u for all s ∈ α and t < v for all t ∈ β. But then
s + t < u + v for all s ∈ α and t ∈ β, and therefore q < u + v for all q ∈ γ.
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Therefore γ is not the entire set of rational numbers, and thus γ satisfies
property (ii) in the definition of left segments.

Next let u and p be rational numbers where p ∈ γ and u < p. Then there
exist rational numbers s and t such that s ∈ α, t ∈ β and s + t = p. Let
v = s + u − p. Then v < s. Property (iii) in the definition of left segments
therefore ensures that v ∈ α. Also v + t = s+ t+ u− p = u. It follows that
u ∈ γ. Thus γ satisfies property (iii) in the definition of left segments.

Finally let q be a rational number belonging to γ. Then there exist s ∈ α
and t ∈ β such that s+ t = q. Property (iv) in the definition of left segments
then ensures that there exists some rational number u such that u > s and
u ∈ α. Let r = u + t. Then r > q and r ∈ γ. Thus γ satisfies property (iv)
in the definition of left segments. This completes the proof.

Definition Let α and β be left segments of the rational numbers. The sum
α+β of the left segments α and β is the left segment of the rational numbers
defined so that

α + β = {p ∈ Q : there exist s ∈ α and t ∈ β for which p = s+ t}.

Lemma A.8 Let q and r be rational numbers, and let

λq = {s ∈ Q : s < q}, λr = {t ∈ Q : t < r}

and
λq+r = {p ∈ Q : p < q + r}.

Then λq + λr = λq+r.

Proof This identity follows immediately from Lemma A.6 and the definition
of the sum λq + λr of the left segments λq and λr.

The following proposition notes that the operation of addition defined
on the set of left segments of the rational numbers as described above is
commutative.

Proposition A.9 Let α and β be left segments of the rational numbers.
Then

α + β = β + α.

Proof This identity follows immediately from the definition of addition of
left segments and the commutativity of addition in the field of rational num-
bers.
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The following proposition shows that the operation of addition defined
on the set of left segments of the rational numbers as described above is
associative.

Proposition A.10 Let α, β and γ be left segments of the rational numbers.
Then

(α + β) + γ = α + (β + γ) = {p+ q + r : p ∈ α, q ∈ β and r ∈ γ}.

Proof Throughout this proof, let

θ = {p+ q + r : p ∈ α, q ∈ β and r ∈ γ}.

Let p ∈ α, q ∈ β and r ∈ γ. Then p+ q ∈ α + β, and therefore

p+ q + r ∈ (α + β) + γ.

Similarly
p+ q + r ∈ α + (β + γ).

It follows that

θ ⊂ (α + β) + γ and θ ⊂ α + (β + γ).

Now let s ∈ (α+ β) + γ. Then there exist t ∈ α+ β and r ∈ γ such that
s = t + r. But then there exist p ∈ α and q ∈ β such that t = p + q. Then
s = p+ q + r and thus s ∈ θ. We conclude that

(α + β) + γ ⊂ θ.

Similarly
α + (β + γ) ⊂ θ.

When we combine these set inclusions with the inclusions in the reverse
direction already established, we find that

(α + β) + γ = α + (β + γ) = θ,

as required.

Proposition A.11 Let q be a rational number, and let λq be the left segment
representing q, so that

λq = {s ∈ Q : s < q}.
Then

λq + α = α + λq = {p+ q : p ∈ α}
for all left segments α of the rational numbers.
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Proof Let α be a left segment of the rational numbers, and let

γ = {s+ q : s ∈ α}

Let s ∈ α and t ∈ λq. Then t < q, and s + t = u + q, where u = s + t − q.
Moreover u < s. It therefore follows from property (iii) in the definition of
left segments that u ∈ α and therefore u + q ∈ γ. But u + q = s + t. We
conclude that s+ t ∈ γ for all s ∈ α and t ∈ λq, and therefore α + λq ⊂ γ.

Now let s ∈ α. It follows from property (iv) in the definition of left
segments that there exists some rational number r such that r ∈ α and
r > s. Let t = s+ q− r. Then t < q and r+ t = s+ q. But r ∈ α and t ∈ λq,
and therefore r+ t ∈ α+ λq. It follows that s+ q ∈ α+ λq for all s ∈ α. We
conclude that

γ ⊂ α + λq ⊂ γ,

and therefore α + λq = γ.
The operation of addition of left segments is commutative. It follows that

λq + α = α + λq = γ, as required.

The following corollary establishes that the set λ0 of strictly negative
rational numbers is a zero element for the operation of addition defined on
the set of left segments of the rational numbers.

Corollary A.12 Let λ0 be the left segment representing zero, so that

λ0 = {n ∈ Q : n < λ0}.

Then
λ0 + α = α + λ0 = α

for all left segments α of the rational numbers.

Proof This result follows directly from Proposition A.11.

Lemma A.13 Let q and r be rational numbers, and let

λq = {s ∈ Q : s < q} λr = {t ∈ Q : t < r}

and
λq−r = {t ∈ Q : t < q − r}.

Let p be a rational number. Then p ∈ λq−r if and only if there exists some
rational number s such that s > p and s+ t ∈ λq for all t ∈ λr.
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Proof Let p be a rational number. Suppose that there exists some rational
number s such that s > p and s + t ∈ λq for all t ∈ λr. Then q − s cannot
be less than r, because s+ (q − s) = q and q 6∈ λq. It follows that r ≤ q − s,
and therefore s ≤ q − r. It follows that p < q − r, and therefore p ∈ λq−r.

Now suppose that p ∈ λq−r. Then p < q−r. A rational number s can then
be found so that p < s < q−r. (For example one may take s = 1

2
(p+ q−r).)

If t is any rational number satisfying t < r then s + t < q − r + t < q. It
follows that s+ t ∈ λq for all t ∈ λr. The result follows.

Lemma A.13 establishes a relationship between the left segments λq, λr
and λq−r representing q, r and q − r for all rational numbers q and r. This
relationship suggests the criterion that should be used in order to define
a subset α − β of the rational numbers that is intended to represent the
difference of two left segments α and β of the rational numbers. A rational
number p should belong to this subset α− β if and only if there exists some
rational number s with the properties that s > p and s+ t ∈ α for all t ∈ β.
We prove below that the set α − β defined in this fashion is indeed a left
segment of the rational numbers, and furthermore that it has the properties
that it ought to have if it is to represent the difference of two left segments
of the rational numbers.

Lemma A.14 Let α and β be left segments and let α − β be the subset of
the set of rational numbers defined so that a rational number p belongs to
α − β if and only if there exists some rational number s with the properties
that s > p and s + t ∈ α for all t ∈ β. Then α − β is a left segment of the
rational numbers.

Proof Properties (i) and (ii) in the definition of left segments ensure that
there exist rational numbers q, r, u and v such that q ∈ α, r 6∈ α, u ∈ β and
v 6∈ β. If t ∈ β then t < v (Lemma A.1) and therefore q−v+ t < q. Property
(iii) in the definition of left segments then ensures that q − v + t ∈ α. Thus
q− v is a rational number with the property that q− v + t ∈ α for all t ∈ β.
It therefore follows from the definition of α−β that all rational numbers less
than q−v belong to α−β, and thus α−β 6= ∅. Thus α−β satisfies property
(i) in the definition of left segments.

Also u ∈ β and (r−u)+u 6∈ α, and therefore r−u 6∈ α−β. We conclude
that α− β is not the entire set of rational numbers, and thus α− β satisfies
property (ii) in the definition of left segments.

The definition of α−β ensures that this subset of the set of rational num-
bers satisfies properties (iii) and (iv) in the definition of left segments. We
conclude that α−β is a left segment of the rational numbers, as required.
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Definition Let α and β be left segments. The difference α−β of β is defined
to be the left segment of the rational numbers characterized by the following
property:

A rational number p belongs to α − β if and only if there exists
some rational number s with the properties that s > p and s+t ∈
α for all t ∈ β.

Lemma A.15 Let q and r be rational numbers, and let

λq = {s ∈ Q : s < q}, λr = {t ∈ Q : t < r}

and
λq−r = {p ∈ Q : p < q − r}.

Then λq − λr = λq−r.

Proof This identity follows immediately from Lemma A.13 and the defini-
tion of the difference λq − λr of the left segments λq and λr.

Remark Let q and r be rational numbers, and let

λq = {s ∈ Q : s < q} and λr = {t ∈ Q : t < r}.

Then

{p ∈ Q : p+ t ∈ λq for all t ∈ λr} = {p ∈ Q : p ≤ q − r}.

Now the set {p ∈ Q : p ≤ q − r} does not satisfy property (iv) in the
definition of left segments of the rational numbers. It follows that care needs
to be exercised in formulating an appropriate definition for the operation of
subtraction of left segments of the rational numbers. We could not simply
define the difference of left segments α and β to be the set of rational numbers
p with the property that p + t ∈ α for all t ∈ β, because the resulting set
would not a left segment. It is for this reason that we define α − β to be
the set of all rational numbers p for which there exists some other rational
number s with the properties that s > p and s+ t ∈ α for all t ∈ β.

Proposition A.16 Let α and β be a left segment of the rational numbers.
Then (α− β) + β = α.

Proof It follows from the definition of α−β that u+ v ∈ α for all u ∈ α−β
and v ∈ β. Thus (α− β) + β ⊂ α.
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Let p be a rational number belonging to the left segment α. Two suc-
cessive applications of property (iv) in the definition of left segments of the
natural numbers ensure the existence of rational numbers p1 and p2 such that
p < p1 < p2 and p2 ∈ α. It then follows from Lemma A.2 that there exist
rational numbers v and w such that v ∈ β, w 6∈ β and w − v < p2 − p1. Let
u = p − v and s = p1 − v. Then u < s. Moreover if t is a rational number
belonging to β then t < w, because w 6∈ β (Lemma A.1), and therefore

s+ t = p1 − v + t < p1 − v + w < p2,

and therefore s+ t ∈ α. Thus u < s, where s+ t ∈ α for all t ∈ β. It follows
from the definition of α−β that u ∈ α−β. Thus p = u+v, where u ∈ α−β
and v ∈ β, and therefore p ∈ (α− β) + β. We conclude therefore that

α ⊂ (α− β) + β ⊂ α,

and therefore
α = (α− β) + β,

as required.

Definition Let α be left segments. The negative −α of α is the left segment
of the rational numbers defined so that α = λ0−α, where λ0, denotes the zero
left segment consisting of all strictly negative rational numbers. Accordingly
a rational number p belongs to −α if and only if there exists some rational
number s with the properties that s > p and s+ t < 0 for all t ∈ α.

Corollary A.17 Let α be a left segment of the rational numbers, and let −α
denote the negative of α. Then

α + (−α) = (−α) + α = λ0

where λ0 = {q ∈ Q : q < 0}.

Proof Applying Proposition A.16, and making use of the commutativity of
the operation of addition defined on the set of left segments of the rational
numbers, we see that

α + (−α) = (−α) + α = (λ0 − α) + α = λ0,

as required.

Corollary A.18 Let α and β be left segments of the rational numbers. Then
α = −β if and only if α + β = 0. Also β = −α if and only if α + β = 0.
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Proof It follows from Corollary A.17 that if α = −β then α+β = (−β)+β =
λ0. Similarly if β = −α then α+β = α+ (−α) = λ0. On the other hand, by
making use of the associativity of the operation of addition defined on the
set of left segments of the rational numbers together with Corollaries A.12
and A.17, we see that if α + β = λ0 then

α = α + λ0 = α + (β + (−β)) = (α + β) + (−β) = λ0 + (−β) = −β

and

β = λ0 + β = ((−α) + α) + β = (−α) + (α + β) = (−α) + λ0 = −α,

as required.

Corollary A.19 Let α be a left segment of the rational numbers. Then

−(−α) = α.

Proof It follows from Corollary A.18 that if β = −α then α = −β = −(−α),
as required.

Many of the results already obtained that concern the operation of addi-
tion defined on the set of left segments of the rational numbers are collected
and summarized in the following proposition.

Proposition A.20 An operation of addition may be defined on the set of all
left segments of the rational numbers characterized by the following condition:

• a rational number p belongs to the sum α + β of left segments α and
β if and only if there exist rational numbers s and t such that s ∈ α,
t ∈ β and p = s+ t.

This operation of addition defined on the set of left segments of the rational
numbers satisfies the following properties:—

• (commutativity of addition) α+ β = β + α for all left segments α and
β;

• (associativity of addition) (α+β)+γ = α+(β+γ) for all left segments
α, β and γ;

• (zero element) α + λ0 = λ0 + α for all left segments α, where

λ0 = {q ∈ Q : q < 0}.

11



• (existence of negatives) given any left segment α of the rational num-
bers, there exists a left segment −α, the negative of α, characterized by
the property that α + (−α) = (−α) + α = λ0.

The set consisting of all left segments of the rational numbers is then a com-
mutative group with respect to the operation of addition defined on left seg-
ments.

Proof This result is established by combining the results of Proposition A.9,
Proposition A.10, Corollary A.12, and Corollary A.17.

The following proposition shows that the operation of addition defined on
the set of left segments of the rational numbers as described above satisfies
an appropriate cancellation law.

Proposition A.21 Let α, β and γ be left segments. Suppose that α + γ =
β + γ. Then α = β.

Proof The equality α + γ = β + γ is satisfied, and therefore

α = α + λ0 = α + (γ + (−γ))

= (α + γ) + (−γ) = (β + γ) + (−γ)

= β + (γ + (−γ)) = β + λ0

= β,

as required.

Lemma A.22 Let α and β be left segments of the rational numbers. Then

α− β = α + (−β).

Proof Applying the properties of addition of left segments summarized in
Proposition A.20, together with the identity −β = λ0 − β that characterizes
−β and the result of Proposition A.16, we find that

(α− β) + β = α = α + λ0 = α + ((λ0 − β) + β)

= α + ((−β) + β) = (α + (−β)) + β.

It then follows from the cancellation property of addition Proposition A.21
that α− β = α + (−β), as required.

Lemma A.23 Let α and β be left segments of the rational numbers. Then
β − α = −(α− β).

12



Proof Applying Lemma A.22, and the properties of addition of left segments
summarized in Proposition A.20, we find that

(α− β) + (β − α) = (α + (−β)) + (β + (−α))

= ((α + (−β)) + β) + (−α)

= (α + ((−β) + β)) + (−α)

= (α + λ0) + (−α)

= α + (−α) = λ0.

It then follows from Corollary A.18 that β −α = −(α− β), as required.

Alternative Proof Applying Proposition A.16 and the associativity of the
operation of addition on left segments, we find that

((α− β) + (β − α)) + α = (α− β) + ((β − α) + α)

= (α− β) + β = α

= λ0 + α.

Applying the cancellation law expressed in Proposition A.21, it follows that

(α− β) + (β − α)) = λ0.

It then follows from Corollary A.18 that β −α = −(α− β), as required.

Lemma A.24 Let α and β be left segments of the rational numbers. Then

(−α) + (−β) = −(α + β).

Proof Applying the properties of addition of left segments summarized in
Proposition A.20, we find that

((−α) + (−β)) + (β + α) = (−α) + ((−β) + (β + α))

= (−α) + (((−β) + β) + α)

= (−α) + (λ0 + α) = (−α) + α

= λ0.

It follows from Corollary A.18 that

(−α) + (−β) = −(β + α).

But the operation of addition defined on left segments of the rational numbers
is commutative (Proposition A.9). Therefore α + β = β + α, and thus

(−α) + (−β) = −(α + β),

as required.
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Proposition A.25 Let α, β and γ be left segments of the natural numbers.
Suppose that α < β. Then α + γ < β + γ.

Proof It follows from the inequality α < β that α ⊂ β. It then follows from
the definition of addition of left segments that α + γ ⊂ β + γ. Therefore
either α + γ = β + γ or α + γ < β + γ.

Now if it were the case that α + γ = β + γ it would follow from Propo-
sition A.21 that α = β. But α 6= β. Therefore α + γ 6= β + γ, and hence
α + γ < β + γ, as required.

We now discuss the definition and basic properties of the operation of
multiplication defined on left segments of the rational numbers. Given any
left segment α of the rational numbers, we define

α+ = {q ∈ α : q > 0}.

We refer to α+ as the positive part of the left segment α.

Definition A left segment α of the rational numbers is said to be positive
if α > λ0, where λ0 = {q ∈ Q : q < 0}.

Lemma A.26 Let α be a left segment of the rational numbers, and let λ0 =
{q ∈ Q : q < 0}. Then α is positive if and only if α+ 6= ∅.

Proof Suppose that α is positive. Then α > λ0, and therefore λ0 ⊂ α. But
λ0 6= α. It follows that there exists a rational number q such that q ∈ α
but q 6∈ λ0. The definition of λ0 then ensures that q ≥ 0. Property (iv) in
the definition of left segments then ensures that there exists r ∈ α satisfying
r > q. Then r > 0, and therefore r ∈ α+. Thus α+ 6= ∅.

Conversely suppose that α+ 6= ∅. Let r ∈ α+. Then r > 0, and therefore
r 6∈ λ0. Moreover q < r for all q ∈ λ0. It follows from property (iii) in the
definition of left segments that q ∈ α for all q ∈ λ0, and thus λ0 ⊂ α. But
λ0 6= α, because r ∈ α and r 6∈ λ0. Therefore α > λ0. This completes the
proof.

Lemma A.27 The sum of two positive left segments of the rational numbers
is itself positive.

Proof Let α and β be positive left segments of the rational numbers. Then
α+ 6= ∅ and β+ 6= ∅. Let s ∈ α+ and t ∈ β+. Then s + t ∈ α + β and
s + t > 0, and therefore the left segment α + β is also positive. The result
follows.
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Definition A left segment α of the rational numbers is said to be zero if
α = λ0, where λ0 = {q ∈ Q : q < 0}.

Definition A left segment α of the rational numbers is said to be negative
if −α is positive.

Lemma A.28 Every left segment of the rational numbers is positive, nega-
tive or zero. A left segment cannot be both zero and positive, both zero and
negative, or both positive and negative.

Proof Let α be a left segment of the rational numbers. It follows from
Proposition A.25 that if α < λ0 then

λ0 = α + (−α) < λ0 + (−α) < −α,

and thus −α is positive. Conversely if −α is positive than λ0 < −α and
therefore

α = λ0 + α < (−α) + α = λ0.

Thus the left segment α is negative if and only if α < λ0. The required result
therefore follows from Proposition A.5.

A.3 Multiplication and Division of Positive Left Seg-
ments

Lemma A.29 Let q and r be positive rational numbers, and let

λq = {s ∈ Q : s < q} λr = {t ∈ Q : t < r}

and
λqr = {t ∈ Q : t < qr}.

Let p be a rational number. Then p ∈ λqr if and only if there exist rational
numbers s and t such that s ∈ λq, t ∈ λr, s > 0, t > 0 and p ≤ st.

Proof Let p be a rational number. Suppose that there exist rational numbers
s and t such that s ∈ λq, t ∈ λr, s > 0, t > 0 and p ≤ st. Then p < qr,
because s < q and t < r, and therefore p ∈ λqr.

Now let p ∈ λqr. Then p < qr. Rational numbers u and v can be chosen
such that u > 0, v > 0 and p < u < v < qr. Let

s =
uq

v
and t =

v

q
.

Then 0 < s < q, 0 < t < r and therefore s ∈ λq and t ∈ λr. Moreover st = u,
and therefore p < st. The result follows.
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Lemma A.29 establishes a relationship between the left segments λq, λr
and λqr representing q, r and qr for all positive rational numbers q and r.
This relationship suggests the criterion that should be used in order to define
a subset α·β of the rational numbers that is intended to represent the product
of two positive left segments α and β of the rational numbers. A rational
number p should belong to this subset α · β if and only if there exist rational
numbers s and t such that s ∈ α, t ∈ β, s > 0, t > 0 and p ≤ st. We prove
below that the set α ·β defined in this fashion is indeed a left segment of the
rational numbers, and furthermore that it has the properties that it ought
to have if it is to represent the product of two positive left segments of the
rational numbers.

Proposition A.30 Let α and β be positive left segments of the rational num-
bers, and let α · β be the subset of the rational numbers consisting of those
rational numbers p that satisfy p ≤ st for some s ∈ α+ and t ∈ β+ Then α ·β
is itself a positive left segment.

Proof The positive parts α+ and β+ of the left segments α and β respectively
are non-empty, because α and β are positive left segments, and therefore α ·β
is non-empty, and thus satisfies property (i) in the definition of left segments.

Also there exist positive rational numbers u and v such that u 6∈ α and
v 6∈ β. Then s < u for all s ∈ α+ and t < v for all t ∈ β+. Then st < uv for
all s ∈ α+ and t ∈ β+, and therefore q < uv for all q ∈ α · β. Therefore α · β
is not the entire set of rational numbers, and thus α · β satisfies property (ii)
in the definition of left segments.

It follows from the definition of α · β that if q ∈ α · β then p ∈ α · β for
all rational numbers p satisfying p < q. Thus α · β satisfies property (iii) in
the definition of left segments.

Let q ∈ α ·β. Then there exist s ∈ α+ and t ∈ β+ such that q ≤ st. There
then exist u ∈ α+ and v ∈ β+ such that s < u and t < v. Then uv ∈ α ·β and
q < uv. Thus α · β satisfies property (iv) in the definition of left segments.
We now conclude that α · β is a left segment. Moreover st ∈ α · β and st > 0
for all s ∈ α+ and t ∈ β+. It follows that α · β is a positive left segment, as
required.

Definition Let α and β be positive left segments of the rational numbers
satisfying α > λ0 and β > λ0. The product α·β of the left segments α and β is
defined to be the positive left segment of the rational numbers characterized
by the following property:

A rational number p belongs to α · β if and only if there exist
positive rational numbers s and t such that s ∈ α, t ∈ β and
p ≤ st.
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Lemma A.31 Let q and r be positive rational numbers, and let

λq = {s ∈ Q : s < q}, λr = {t ∈ Q : t < r}

and
λqr = {p ∈ Q : p < qr}.

Then λq · λr = λqr.

Proof This identity follows immediately from Lemma A.29 and the defini-
tion of the product λq · λr of the left segments λq and λr.

The following proposition notes that the operation of multiplication de-
fined on the set of positive left segments of the rational numbers as described
above is commutative.

Proposition A.32 Let α, β be positive left segments of the rational num-
bers. Then

α · β = β · α.

Proof This identity follows immediately from the definition of multiplication
of positive left segments and the commutativity of multiplication in the field
of rational numbers.

The following proposition shows that the operation of multiplication de-
fined on the set of positive left segments of the rational numbers as described
above is associative.

Proposition A.33 Let α, β and γ be positive left segments of the rational
numbers. Then

(α · β) · γ = α · (β · γ) = θ,

where θ denotes the set consisting of those rational numbers s for which there
exist p ∈ α+, q ∈ β+ and r ∈ γ+ satisfying s ≤ pqr.

Proof Let s ∈ θ. Then there exist p ∈ α+, q ∈ β+ and r ∈ γ+ for which
s ≤ pqr. Then pq ∈ α · β, and therefore

pqr ∈ (α · β) · γ.

Similarly
pqr ∈ α · (β · γ).

But s ≤ pqr, and (α · β) · γ and α · (β · γ) are left segments of the rational
numbers. It follows that the rational number s belongs to both (α · β) · γ
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and α · (β · γ). Thus every rational number belonging to θ belongs to both
(α · β) · γ and α · (β · γ), and therefore

θ ⊂ (α · β) · γ and θ ⊂ α · (β · γ).

Now let s ∈ (α · β) · γ. Then there exist t ∈ α · β and r ∈ γ such that
t > 0, r > 0 and s ≤ tr. But then there exist p ∈ α and q ∈ β such that
p > 0, q > 0 and t ≤ pq. Then s ≤ pqr and thus s ∈ θ. We conclude that

(α · β) · γ ⊂ θ.

Similarly
α · (β · γ) ⊂ θ.

When we combine these set inclusions with the inclusions in the reverse
direction already established, we find that

(α · β) · γ = α · (β · γ) = θ,

as required.

Proposition A.34 Let q be a positive rational number, and let λq be the left
segment representing q, so that

λq = {s ∈ Q : s < q}.

Then α · λq = {pq : p ∈ α} for all positive left segments α.

Proof Let α be a positive left segment, and let

β = {pq : p ∈ α}.

Then α+ 6= ∅ (Lemma A.26). Let p ∈ α+ and s ∈ λ+q . Then p > 0 and
0 < s < q, and therefore ps = tq, where t = pqs−1. Moreover t < p, and
therefore t ∈ α, because α satisfies property (iii) in the definition of left
segments. It follows that ps ∈ β. We conclude therefore that α · λq ⊂ β.

Now let p ∈ α+. It follows from property (iv) in the definition of left
segments that there exists some rational number r such that r ∈ α and
0 < p < r. Let s = pqr−1. Then 0 < s < q and rs = pq. But rs ∈ α · λq.
Thus pq ∈ α · λq for all p ∈ α satisfying p > 0. Also pq ∈ α · λq for all
non-positive rational numbers p. It follows that pq ∈ α ·λq for all p ∈ α, and
therefore β ⊂ α · λq. We have already proved that α · λq ⊂ β. We conclude
therefore that α · λq = β, as required.
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Corollary A.35 Let λ1 be the left segment representing the number 1, so
that

λ1 = {n ∈ Q : n < 1}.
Then

λ1 · α = α · λ1 = α

for all positive left segments α of the rational numbers.

Lemma A.36 Let q and r be positive rational numbers, and let

λq = {s ∈ Q : s < q} λr = {t ∈ Q : t < r}

and
λqr−1 = {t ∈ Q : t < qr−1}.

Let p be a rational number. Then p ∈ λqr−1 if and only if there exists some
positive rational number s such that s > p and st ∈ λq for all t ∈ λr.

Proof Let p be a rational number. Suppose that there exists some positive
rational number s such that s > p and st ∈ λq for all t ∈ λr. Then qs−1

cannot be less than r, because s(qs−1) = q and q 6∈ λq. It follows that
r ≤ qs−1, and therefore s ≤ qr−1. It follows that p < qr−1, and therefore
p ∈ λqr−1 .

Now suppose that p ∈ λqr−1 . Then p < qr−1. A positive rational number s
can then be found so that p < s < qr−1. If t is any rational number satisfying
t < r then st < qr−1t < q. It follows that st ∈ λq for all t ∈ λr. The result
follows.

Lemma A.36 establishes a relationship between the left segments λq, λr
and λqr−1 representing q, r and q − r for all rational numbers q and r. This
relationship suggests the criterion that should be used in order to define a
subset α/β of the rational numbers that is intended to represent the difference
of two positive left segments α and β of the rational numbers. A rational
number p should belong to this subset α/β if and only if there exists some
positive rational number s with the properties that s > p and st ∈ α for all
t ∈ β. We prove below that the set α/β defined in this fashion is indeed a left
segment of the rational numbers, and furthermore that it has the properties
that it ought to have if it is to represent the difference of two left segments
of the rational numbers.

Lemma A.37 Let α and β be positive left segments and let α/β be the subset
of the set of rational numbers defined so that a rational number p belongs
to α/β if and only if there exists some positive rational number s with the
properties that s > p and st ∈ α for all t ∈ β. Then α/β is a positive left
segment of the rational numbers.
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Proof Properties (i) and (ii) in the definition of left segments ensure that
there exist positive rational numbers q, r, u and v such that q ∈ α, r 6∈ α,
u ∈ β and v 6∈ β. If t ∈ β then t < v (Lemma A.1) and therefore qv−1t < q.
Property (iii) in the definition of left segments then ensures that qv−1t ∈ α.
Thus qv−1 is a rational number with the property that qv−1t ∈ α for all t ∈ β.
It therefore follows from the definition of α/β that all rational numbers less
than qv−1 belong to α/β, and thus α/β 6= ∅. Thus α/β satisfies property (i)
in the definition of left segments. Moreover this set α/β contains the positive
rational number qv−1.

Also u ∈ β and (ru−1)u 6∈ α, and therefore ru−1 6∈ α/β. We conclude
that α/β is not the entire set of rational numbers, and thus α/β satisfies
property (ii) in the definition of left segments.

The definition of α/β ensures that this subset of the set of rational num-
bers satisfies properties (iii) and (iv) in the definition of left segments. We
conclude that α/β is a left segment of the rational numbers. Moreover this
left segment includes a positive rational number and is therefore positive, as
required.

Definition Let α and β be positive left segments. The quotient α−1 of α is
defined to be the positive left segment of the rational numbers characterized
by the following property:

A rational number p belongs to α/β if and only if there exists
some positive rational number s with the properties that s > q
and st ∈ α for all t ∈ β.

Lemma A.38 Let α be a positive left segment of the rational numbers.
Then, given any rational number g satisfying g > 1, there exist rational
numbers v and w such that v ∈ α, w 6∈ α and 1 < wv−1 < g.

Proof There exists some rational number p for which p > 0 and p ∈ α. It
then follows from Lemma A.2 that there exist rational numbers v and w such
that v ∈ α, w 6∈ α, v < w and w − v < p(g − 1). Moreover we may choose v
so that v > p. Then

0 <
w

v
− 1 =

w − v
v

<
w − v
p

< g − 1,

and therefore 1 < wv−1 < g, as required.

Proposition A.39 Let α and β be positive left segments of the rational num-
bers. Then (α/β) · β = α.
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Proof Let p ∈ α/β, where p > 0. Then pt ∈ α for all t ∈ β. It follows from
the definition of multiplication of positive left segments that (α/β) · β ⊂ α.

Let p be a positive rational number belonging to the left segment α. Two
successive applications of property (iv) in the definition of left segments of the
natural numbers ensure the existence of rational numbers p1 and p2 such that
p < p1 < p2 and p2 ∈ α. It then follows from Lemma A.38 that there exist
positive rational numbers v and w such that v ∈ β, w 6∈ β and wv−1 < p2p

−1
1 .

Let u = pv−1 and s = p1v
−1. Then u < s. Moreover if t is a rational number

belonging to β then t < w, because w 6∈ β (Lemma A.1), and therefore

st = p1v
−1t < p1v

−1w < p2,

and therefore st ∈ α. Thus u < s, where s > 0 and st ∈ α for all t ∈ β.
It follows from the definition of α/β that u ∈ α/β. Thus p = uv, where
u and v are positive rational numbers, u ∈ α/β and v ∈ β, and therefore
p ∈ (α/β) · β. We conclude therefore that

α ⊂ (α/β) · β ⊂ α,

and therefore
α = (α/β) · β,

as required.

Definition Let α be a positive left segment. The reciprocal α−1 of α is
defined by the identity α−1 = λ1/α, where λ1 = {q ∈ Q : q < 1}.

Corollary A.40 Let α be a positive left segment of the rational numbers,
and let alpha−1 denote the reciprocal of α. Then

α · α−1 = α−1 · α = λ1

where λ1 = {q ∈ Q : q < 1}.

Proof Applying Proposition A.39, and making use of the commutativity of
the operation of multiplication defined on the set of positive left segments of
the rational numbers, we see that

α · α−1 = α−1 · α = (λ1/α) · α = λ1,

as required.

The following proposition shows that the operation of multiplication de-
fined on the set of positive left segments of the rational numbers as described
above is distributive over the operation of addition.
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Proposition A.41 Let α, β and γ be positive left segments of the rational
numbers. Then (α + β) · γ = α · γ + β · γ.

Proof Let q ∈ (α+ β) · γ. Then there exist p ∈ α+ β and q3 ∈ γ such that
p > 0, q3 > 0 and q ≤ pq3. It then follows from the definition of addition of
left segments that there exist p1 ∈ α and p2 ∈ β such that p = p1 +p2. There
then exist q1 ∈ α and q2 ∈ β such that q1 > 0, q2 > 0, q1 ≥ p1 and q2 ≥ p2,
because α and β are positive left segments. Then 0 < p = p1 + p2 ≤ q1 + q2.
It follows that q ≤ q1q3 + q2q3. But q1q3 ∈ α · γ, q2q3 ∈ β · γ, and therefore
q1q3 + q2q3 ∈ α · γ + β · γ. Also α · γ + β · γ is a left segment of the rational
numbers. It follows that q ∈ α · γ + β · γ. We conclude therefore that

(α + β) · γ ⊂ α · γ + β · γ.

Now let q ∈ α · γ + β · γ. Then there exist p1 ∈ α · γ and p2 ∈ β · γ such
that q = p1 + p2 There then exist q1 ∈ α, q2 ∈ β and q3 ∈ γ and q4 ∈ γ
such that q1 > 0, q2 > 0, q3 > 0 and q4 > 0 p1 ≤ q1q3 and p2 ≤ q2q4. Let q5
be the maximum of q3 and q4. Then p1 ≤ q1q5 and p2 ≤ q2p5, and therefore
q ≤ (q1 + q2)p5. Moreover (q1 + q2)q5 ∈ (α + β) · γ. We conclude therefore
that

α · γ + β · γ ⊂ (α + β) · γ.

The set inclusion in the other direction has already been verified. Therefore

(α + β) · γ = α · γ + β · γ,

as required.

Proposition A.42 Let α, β and γ be positive left segments of the rational
numbers. Suppose that α− β is positive. Then (α− β) · γ = α · γ − β · γ.

Proof It follows from Proposition A.16 that (α − β) + β = α. Moreover
α − β and β are both positive. It therefore follows from Proposition A.41
that

(α− β) · γ + β · γ = α · γ.

Adding −(β · γ) to both sides, we find that

(α− β) · γ = α · γ − β · γ,

as required.
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A.4 Multiplication and Division of Left Segments of
Arbitrary Sign

Definition The operation of multiplication is extended from the set of posi-
tive left segments of the rational numbers to the set of all left segments of the
rational numbers (positive, negative or zero), so as to satisfy the following
rules:

• α · β = λ0 if either α = λ0 or β = λ0.

• (−ρ) · σ = ρ · (−σ) = −(ρ · σ) and (−ρ) · (−σ) = ρ · σ for all positive
left segments ρ and σ of the rational numbers.

Proposition A.43 Let α and β be left segments of the rational numbers.
Then

α · β = β · α.

Proof Let ρ and σ be positive left segments of the rational numbers. Propo-
sition A.32 ensures that ρ · σ = σ · ρ. Then

(−ρ) · σ = −(ρ · σ) = −(σ · ρ) = σ · (−ρ),

ρ · (−σ) = −(ρ · σ) = −(σ · ρ) = (−σ) · ρ,
(−ρ) · (−σ) = ρ · σ = σ · ρ = (−σ) · (−ρ).

Now let α and β be arbitrary left segments of the natural numbers. If either
α or β is zero then the products α · β and β · α both evaluate to the zero
segment and are therefore equal to one another. If α and β are both non-zero
then there are positive left segments ρ and σ of the rational numbers such
that α = ±ρ and β = ±σ, and the identity α · β = β · α reduces to one of
the cases checked out above. The result follows.

Proposition A.44 Let α, β and γ be left segments of the rational numbers.
Then

(α · β) · γ = α · (β · γ).

Proof Let ρ, σ and τ be positive left segments of the rational numbers.
Proposition A.33 ensures that (ρ · σ) · τ = ρ · (σ · τ). Then

((−ρ) · σ) · τ = (−(ρ · σ)) · τ = −((ρ · σ)) · τ)

= −(ρ · (σ · τ)) = (−ρ) · (σ · τ),

(ρ · (−σ)) · τ = (−(ρ · σ)) · τ = −((ρ · σ) · τ)

= −(ρ · (σ · τ)) = ρ · (−(σ · τ))
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= ρ · ((−σ) · τ),

(ρ · σ) · (−τ) = −((ρ · σ)) · τ) = −(ρ · (σ · τ))

= ρ · (−(σ · τ)) = ρ · (σ · (−τ)),

(ρ · (−σ)) · (−τ) = (−(ρ · σ)) · (−τ) = (ρ · σ) · τ
= ρ · (σ · τ) = ρ · ((−σ) · (−τ)),

((−ρ) · σ) · (−τ) = (−(ρ · σ)) · (−τ) = (ρ · σ) · τ
= ρ · (σ · τ) = (−ρ) · (−(σ · τ))

= (−ρ) · (σ · (−τ)),

((−ρ) · (−σ)) · τ = (ρ · σ) · τ = ρ · (σ · τ)

= (−ρ) · (−(σ · τ)) = (−ρ) · ((−σ) · τ),

((−ρ) · (−σ)) · (−τ) = (ρ · σ) · (−τ) = −((ρ · σ) · τ)

= −(ρ · (σ · τ)) = (−ρ) · (σ · τ)

= (−ρ) · ((−σ) · (−τ)).

Now let α, β and γ be arbitrary left segments of the natural numbers. If
any of α, β or γ is zero then the products (α · β) · γ and α · (β · γ) both
evaluate to the zero segment and are therefore equal to one another. If α, β
and γ are all non-zero then there are positive left segments ρ, σ and τ of the
rational numbers such that α = ±ρ, β = ±σ and γ = ±τ , and the identity
(α · β) · γ = α · (β · γ) reduces to one of the cases checked out above. The
result follows.

Proposition A.45 An operation of multiplication may be defined on the set
of all left segments of the rational numbers characterized by the following
three conditions:—

• α · β = λ0 if α = λ0 or β = λ0, where λ0 = {p ∈ Q : p < 0};

• (−α) · β = α · (−β) = −(α · β) for all left segments α and β of the
rational numbers;

• a rational number p belongs to a product α · β of positive left segments
α and β if and only if there exist positive rational numbers s and t such
that s ∈ α, t ∈ β and p ≤ st.

This operation of multiplication defined on the set of non-zero left segments
of the rational numbers satisfies the following properties:—

• (commutativity of multiplication) α · β = β · α for all left segments α
and β;
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• (associativity of multiplication) (α·β)·γ = α·(β ·γ) for all left segments
α, β and γ;

• (multiplicative identity element) α · λ1 = λ1 · α for all left segments α,
where

λ1 = {p ∈ Q : p < 1}.

• (existence of reciprocals) given any non-zero left segment α of the ra-
tional numbers, there exists a non-zero left segment α−1, the reciprocal
of α, characterized by the property that α · α−1 = α−1 · α = λ1.

The set consisting of all non-zero left segments of the rational numbers is then
a commutative group with respect to the operation of multiplication defined
on left segments.

Proof The operation of multiplication defined on left segments is commu-
tative (Proposition A.43) and associative (Proposition A.44). It follows
from (Corollary A.35) and (Corollary A.40) that λ1 · α = α · λ1 = α and
α−1 ·α = α ·α−1 = λ1 for all positive left segments α of the rational numbers.
The identity λ1 · α = α · λ1 = α also holds when α is equal to the zero
segment {q ∈ Q : q ≤ 0}, because the product of any left segment with the
zero segment is by definition equal to the zero segment. Suppose that α is
a negative left segment of the rational numbers. Let ρ = −α. Then ρ is a
positive segment of the rational numbers, and therefore that λ1 ·ρ = ρ·λ1 = ρ
and ρ−1 · ρ = ρ · ρ−1 = λ1. It follows that

λ1 · α = λ1 · (−ρ) = −(λ1 · ρ) = −ρ = α.

Similarly α · λ1α. Also

(−ρ−1) · α = (−ρ−1) · (−ρ) = ρ−1 · ρ = λ1,

and similarly α · (−ρ−1) = λ1. Thus the identity α−1 ·α = α ·α−1 = λ1 holds
with α−1 = −ρ−1. This completes the proof.

Proposition A.46 Let α, β and γ be left segments of the rational numbers.
Then (α + β) · γ = α · γ + β · γ.

Proof This result has already been established in the case where α, β and γ
are all positive left segments of the rational numbers (see Proposition A.46).
The result in other cases will be established below by considering separately
the various cases that arise.
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Let α, β and γ be left segments for which α and γ are positive, β is
negative and α+β is zero. Then β = −α, and the definitions of multiplication
of left segments in which some factors are zero or negative ensures that

(α + β) · γ = λ0 · γ = λ0

= (α · γ) + (−(α · γ)) = (α · γ) + (−α) · γ
= α · γ + β · γ

in this case.
Next let α, β and γ be left segments for which α and γ are positive, β

is negative and α + β is positive. Let σ = −β. Then α, σ, γ and α − σ
are all positive left segments. It then follows from Proposition A.42 that
(α− σ) · γ = α · γ − σ · γ. But α− σ = α+ β and σ · γ = −β · γ. Therefore
(α + β) · γ = α · γ + β · γ in this case.

Next let α, β and γ be left segments for which α and γ are positive, β
is negative and α + β is negative. Let σ = −β. Then α, σ, γ and σ − α
are all positive left segments. It then follows from Proposition A.42 that
(σ−α) ·γ = σ ·γ−α ·γ. But σ−α = −(α+β) and σ ·γ = −β ·γ. Therefore
(α + β) · γ = α · γ + β · γ in this case.

From the results now verified we see that (α+ β) · γ = α · γ + β · γ in all
cases (determined by the sign of α+β) where α and γ are both positive and
β is negative. Similarly this identity holds in all cases where where β and γ
are both positive and α is negative.

Next let α, β and γ be left segments for which α and β are both negative
and γ is positive. Let ρ = −α and σ = −β. Then ρ, σ and γ are all positive
left segments. It then follows from Proposition A.42 that

(ρ+ σ) · γ = ρ · γ + σ · γ.

But ρ+ σ = −(α + β), and therefore

(ρ+ σ) · γ = −(α + β) · γ.

It follows that

(α + β) · γ = −((ρ+ σ) · γ) = (−(ρ · γ)) + (−(σ · γ)) = α · γ + β · γ

in this case.
Next let α, β and γ be left segments for which α is the zero segment.

Then
(α + β) · γ = β · γ = α · γ + β · γ.
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Next let α, β and γ be left segments for which β is the zero segment.
Then

(α + β) · γ = α · γ = α · γ + β · γ.

The cases so far considered establish that (α + β) · γ = α · γ + β · γ in
all cases where α and β are left segments (positive, negative or zero) of the
rational numbers and γ is a positive left segment of the rational numbers.

Next let α, β and γ be left segments for which the left segment γ is
negative. Let τ = −γ. Then τ is a positive left segment, and therefore

(α + β) · γ = −((α + β) · τ) = (−α · τ) + (β · τ)

= α · γ + β · γ

in this case.
Finally let α, β and γ be left segments for which γ is the zero segment.

Then
(α + β) · γ = λ0 = α · γ + β · γ.

We are finally in a position to conclude that (α+ β) · γ = α · γ + β · γ for
all left segments α, β and γ of the rational numbers, as required.

Theorem A.47 The set of all left segments of the rational numbers, with the
operations of addition and multiplication of left segments defined as described
above, is an ordered field.

Proof It follows from Proposition A.20, Proposition A.45, Proposition A.46,
Proposition A.4, Proposition A.5, Proposition A.25 and the definition of
multiplication of positive left segments that all axioms required for an ordered
field are satisfied by the set of all left segments of rational numbers, with
the operations of addition and multiplication (and associated operations of
subtraction and division) defined in the manner described above.

A.5 Upper Bounds on Sets of Left Segments

Let S be a set whose elements are left segments of the rational numbers. The
set S is said to be bounded above if there exists a left segment θ of the rational
numbers with the property that α ≤ θ for all α ∈ S. A left segment θ with
this property is said to be an upper bound for the set S.

Lemma A.48 Let S be a set whose elements are left segments of the rational
numbers. Then S is bounded above if and only if there exists some rational
number r with the property that r ≤ q for all rational numbers q that belong
to left segments in the set S.
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Proof Suppose that the set S is bounded above. Then there exists a left
segment θ of the rational numbers with the property that α ≤ θ for all α ∈ S.
The definition of the ordering of left segments then ensures that α ⊂ θ for
all α ∈ S. Property (ii) in the definition of left segments then ensures the
existence of a rational number r which does not belong to θ. It then follows
from Lemma A.1 that q ≤ r for all q ∈ θ. Then r ≥ q for all rational
numbers q that belong to left segments in the set S.

Conversely if S is a set of left segments, and if r is a rational number with
the property that r ≤ q for all rational numbers q that belong to left segments
in the set S. Then α ≤ λr for all α ∈ S, where λr = {q ∈ Q : q < r}, and
therefore the set S is bounded above by λr. The result follows.

Let S be a subset of the set of left segments of the rational numbers.
Suppose that S is non-empty and bounded above. An upper bound for S is
said to be the least upper bound for S if it is less than or equal to every other
upper bound for the set S.

Proposition A.49 Let S be a subset of the set of left segments of the ratio-
nal numbers which is non-empty and bounded above. Then the union of the
left segments belonging to the set S is a left segment of the rational numbers
that is the least upper bound for the set S.

Proof Let σ be the union of the left segments belonging to the set S. Then
σ is non-empty, because S is non-empty and the left segments that belong
to S are also non-empty. Thus σ satisfies property (i) in the definition of left
segments. Also there exists some rational number r that satisfies r ≥ q for
all rational numbers q that belong to left segments in the set S. Then r ≥ q
for all q ∈ σ. It follows that σ is not the entire set of rational numbers, and
thus σ satisfies property (ii) in the definition of left segments.

Let p and q be rational numbers with p < q and q ∈ σ. Then q ∈ α for
some α ∈ S. But then p ∈ α, and therefore p ∈ σ. Thus σ satisfies property
(ii) in the definition of left segments.

If q is a rational number, and if q ∈ σ, then q ∈ α for some α ∈ S. Then
there exists a rational number r such that r > q and r ∈ α. But then r ∈ σ.
Thus σ satisfies property (iv) in the definition of left segments. We have now
shown that σ is a left segment of the rational numbers.

The left segment σ is an upper bound for the set S, because α ⊂ σ for
all α ∈ S. Let θ be a left segment of the rational numbers that is an upper
bound for the set S. Then α ⊂ θ for all α ∈ S, and therefore σ ⊂ θ, because
σ is the union of all the left segments belonging to S. It follows that the left
segment σ is the least upper bound of the set S, as required.
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Corollary A.50 The set of all left segments of the rational numbers, with
the operations of addition and multiplication of left segments defined as de-
scribed above, is a Dedekind-complete ordered field.

Proof This result follows immediately on combining the results established
in Theorem A.47 and Proposition A.49.

29


