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We recall the basic definitions of the Darboux lower and upper sums and
the upper and lower Riemann integrals associated with bounded real-valued
functions that are defined over closed bounded intervals of the real line.

Definition A partition P of an interval [a, b] is a set {u0, u1, u2, . . . , uN} of
real numbers satisfying a = u0 < u1 < u2 < · · · < uN−1 < uN = b.

Given any bounded real-valued function f on [a, b], the upper sum (or
upper Darboux sum) U(P, f) of f for the partition P of [a, b] is defined so
that

U(P, f) =
N∑
i=1

Mi(ui − ui−1),

where Mi = sup{f(x) : ui−1 ≤ x ≤ ui}.
Similarly the lower sum (or lower Darboux sum) L(P, f) of f for the

partition P of [a, b] is defined so that

L(P, f) =
N∑
i=1

mi(ui − ui−1),

where mi = inf{f(x) : ui−1 ≤ x ≤ ui}.

Now L(P, f) ≤ U(P, f). Moreover
N∑
i=1

(ui − ui−1) = b− a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].
Accordingly, given any bounded real-valued function f defined over a

closed bounded interval [a, b] in the real line, the set consisting of all the
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values of all the upper sums determined by the partitions of that interval is a
non-empty set of real numbers that is bounded above and below, as is the set
consisting of the values of all the lower sums determined by the partitions of
the closed bounded interval over which the function is defined. Accordingly
there are well defined real numbers U

∫ b

a
f(x) dx and L

∫ b

a
f(x) dx, referred

to as the upper Riemann integral and lower Riemann integral respectively of
the function f on the interval [a, b], where

U
∫ b

a

f(x) dx = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) : P is a partition of [a, b]} .

A bounded function f : [a, b] → R on a closed bounded interval [a, b] is
said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b

a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b

a
f(x) dx and L

∫ b

a
f(x) dx.

Now if f and g are bounded Riemann-integrable functions on the interval
[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {u0, u1, . . . , uN}
and R = {v0, v1, . . . , vL}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each ui in P , there is some vj in R with ui = vj.

Lemma A. Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {u0, u1, . . . , uN} and R = {v0, v1, . . . , vL}, where a = u0 <
u1 < · · · < uN = b and a = v0 < v1 < · · · < vL = b. Now for each
integer i between 0 and N there exists some integer j(i) between 0 and L
such that ui = vj(i) for each i, since R is a refinement of P . Moreover
0 = j(0) < j(1) < · · · < j(N) = L. For each i, let Ri be the partition of
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[ui−1, ui] given byRi = {vj : j(i−1) ≤ j ≤ j(i)}. Then L(R, f) =
N∑
i=1

L(Ri, f)

and U(R, f) =
N∑
i=1

U(Ri, f). Moreover

mi(ui − ui−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(ui − ui−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [ui−1, ui]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma B. Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma A that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b

a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b

a
f(x) dx ≤ U

∫ b

a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer N , let PN denote the partition of [0, 1] into N
subintervals of equal length. Thus PN = {u0, u1, . . . , uN}, where ui = i/N .
Now the function f takes values between (i− 1)c/N + d and ic/N + d on the
interval [ui−1, ui], and therefore

mi =
(i− 1)c

N
+ d, Mi =

ic

N
+ d

where mi = inf{f(x) : ui−1 ≤ x ≤ ui} and Mi = sup{f(x) : ui−1 ≤ x ≤ ui}.
Thus
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L(PN , f) =
N∑
i=1

mi(ui − ui−1) =
1

N

N∑
i=1

(
ci

N
+ d− c

N

)
=

c(N + 1)

2N
+ d− c

N
=
c

2
+ d− c

2N
,

U(PN , f) =
N∑
i=1

Mi(ui − ui−1) =
1

N

N∑
i=1

(
ci

N
+ d

)
=

c(N + 1)

2N
+ d =

c

2
+ d+

c

2N
.

It follows that
lim

N→+∞
L(PN , f) =

c

2
+ d

and
lim

N→+∞
U(PN , f) =

c

2
+ d

Now L(PN , f) ≤ L
∫ b

a
f(x) dx ≤ U

∫ b

a
f(x) dx ≤ U(PN , f) for all positive

integers N . It follows that L
∫ b

a
f(x) dx = 1

2
c + d = U

∫ b

a
f(x) dx. Thus f is

Riemann-integrable on the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.

Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {u0, u1, u2, . . . , uN},
where 0 = u0 < u1 < u2 < · · · < uN = 1. Then

inf{f(x) : ui−1 ≤ x ≤ ui} = 0, sup{f(x) : ui−1 ≤ x ≤ ui} = 1,

for i = 1, 2, . . . , N , and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

0.1 Basic Properties of the Riemann Integral

Lemma C. Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
lower and upper Riemann integrals of f and −f are related by the identities

U
∫ b

a

(−f(x)) dx = −L
∫ b

a

f(x) dx,

L
∫ b

a

(−f(x)) dx = −U
∫ b

a

f(x) dx.
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Proof Let P be a partition of [a, b], and let P = {u0, u1, u2, . . . , uN}, where

a = u0 < u1 < u2 < · · · < uN = b.

Also let

mi[f ] = inf{f(x) : ui−1 ≤ x ≤ ui},
Mi[f ] = sup{f(x) : ui−1 ≤ x ≤ ui},

mi[−f ] = inf{−f(x) : ui−1 ≤ x ≤ ui},
Mi[−f ] = sup{−f(x) : ui−1 ≤ x ≤ ui}

for i = 1, 2, . . . , N . Then mi[−f ] = −Mi[f ] and Mi[−f ] = −mi[f ], and
therefore

L(P,−f) =
N∑
i=1

mi[−f ](ui − ui−1) = −
N∑
i=1

Mi[f ](ui − ui−1)

= −U(P, f).

Thus L(P,−f) = −U(P, f) for all partitions P of the interval [a, b]. Similarly
U(P,−f) = −L(P, f) for all partitions P of that interval. It follows from
the definition of the upper and lower integrals that

U
∫ b

a

(−f(x)) dx = inf {U(P,−f) : P is a partition of [a, b]}

= inf {−L(P, f) : P is a partition of [a, b]}
= − sup {L(P, f) : P is a partition of [a, b]}

= −L
∫ b

a

f(x) dx

Similarly

L
∫ b

a

(−f(x)) dx = sup {L(P,−f) : P is a partition of [a, b]}

= sup {−U(P, f) : P is a partition of [a, b]}
= − inf {U(P, f) : P is a partition of [a, b]}

= −U
∫ b

a

f(x) dx.

This completes the proof.
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Proposition D. Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are
real numbers satisfying a ≤ b. Then the functions f + g and f − g are
Riemann-integrable on [a, b], and moreover∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and ∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Proof Let some strictly positive real number ε be given. The definition
of Riemann-integrability and the Riemann integral ensures that there exist
partitions P1, P2, P3 and P4 of [a, b] for which

L(P1, f) >

∫ b

a

f(x) dx− 1
2
ε,

U(P2, f) <

∫ b

a

f(x) dx+ 1
2
ε,

L(P3, g) >

∫ b

a

g(x) dx− 1
2
ε

and

U(P4, g) <

∫ b

a

g(x) dx+ 1
2
ε.

Let P be a common refinement of P1, P2, P3 and P4. Applying Lemma A,
we see that

L(P, f) ≥ L(P1, f) >

∫ b

a

f(x) dx− 1
2
ε,

U(P, f) ≤ U(P2, f) <

∫ b

a

f(x) dx+ 1
2
ε,

L(P, g) ≥ L(P3, g) >

∫ b

a

g(x) dx− 1
2
ε

and

U(P, g) ≤ U(P4, g) <

∫ b

a

g(x) dx+ 1
2
ε.

Let P = {u0, u1, . . . , uN}, where

a = u0 < u1 < · · · < uN = b,
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and let

Mi[f ] = sup{f(x) : ui−1 ≤ x ≤ ui},
mi[f ] = inf{f(x) : ui−1 ≤ x ≤ ui},
Mi[g] = sup{g(x) : ui−1 ≤ x ≤ ui},
mi[g] = inf{g(x) : ui−1 ≤ x ≤ ui},

Mi[f + g] = sup{f(x) + g(x) : ui−1 ≤ x ≤ ui},
mi[f + g] = inf{f(x) + g(x) : ui−1 ≤ x ≤ ui}.

Now the inequalities

mi[f ] +mi[g] ≤ f(x) + g(x) ≤Mi[f ] +Mi[g]

are satisfied for i = 1, 2, . . . , N and for all x ∈ [ui−1, ui]. It follows from the
definitions of Mi[f + g] and mi[f + g] as the least upper bound and greatest
lower bound respectively of the values of f(x)+g(x) on the interval [ui−1, ui]
that

mi[f ] +mi[g] ≤ mi[f + g] ≤Mi[f + g] ≤Mi[f ] +Mi[g]

for i = 1, 2, . . . , N . Multiplying these inequalities by the lengths ui − ui−1
of the subintervals determined by the partition P , and then summing over
i = 1, 2, . . . , N , we deduce that

L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g).

Now inequalities satisfied by the Darboux upper and lower sums for the
partition P guaranteed by the choice of P (as described above) then ensure
that

L(P, f) + L(P, g) >

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

and

U(P, f) + U(P, g) <

∫ b

a

f(x) dx+

∫ b

a

g(x) dx+ ε.

It follows that∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε < L(P, f + g) ≤ U(P, f + g)

<

∫ b

a

f(x) dx+

∫ b

a

g(x) dx+ ε.
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But

L(P, f + g) ≤ L
∫ b

a

(f(x) + g(x)) dx

≤ U
∫ b

a

(f(x) + g(x)) dx ≤ U(P, f + g).

It follows therefore that∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε < L
∫ b

a

(f(x) + g(x)) dx

≤ U
∫ b

a

(f(x) + g(x)) dx

<

∫ b

a

f(x) dx+

∫ b

a

g(x) dx+ ε.

These latter inequalities must hold for all positive real numbers ε, no matter
how small. It follows that∫ b

a

f(x) dx+

∫ b

a

g(x) dx ≤ L
∫ b

a

(f(x) + g(x)) dx

≤ U
∫ b

a

(f(x) + g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

The extreme left hand and extreme right hand sides of the above chain of
inequalities are equal. Therefore

L
∫ b

a

(f(x) + g(x)) dx = U
∫ b

a

(f(x) + g(x)) dx

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

We conclude therefore that the function f+g is Riemann-integrable and that
the value of the Riemann integral of this function is the sum of the integrals
of the functions f and g on the interval [a, b].

On replacing g by −g, we may deduce the corresponding result for the
function f − g, thereby completing the proof.

Proposition E. Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
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function f is Riemann-integrable on [a, b] if and only if, given any positive
real number ε, there exists a partition P of [a, b] with the property that

U(P, f)− L(P, f) < ε.

Proof First suppose that f : [a, b] → R is Riemann-integrable on [a, b]. Let
some positive real number ε be given. Then∫ b

a

f(x) dx

is equal to the common value of the lower and upper integrals of the func-
tion f on [a, b], and therefore there exist partitions Q and R of [a, b] for
which

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε

and

U(R, f) <

∫ b

a

f(x) dx+ 1
2
ε.

Let P be a common refinement of the partitions Q and R. Now

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f).

(see Lemma A). It follows that

U(P, f)− L(P, f) ≤ U(R, f)− L(Q, f) < ε.

Now suppose that f : [a, b] → R is a bounded function on [a, b] with the
property that, given any positive real number ε, there exists a partition P of
[a, b] for which U(P, f)− L(P, f) < ε. Let ε > 0 be given. Then there exists
a partition P of [a, b] for which U(P, f) − L(P, f) < ε. Now it follows from
the definitions of the upper and lower integrals that

L(P, f) ≤ L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx ≤ U(P, f),

and therefore

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < U(P, f)− L(P, f) < ε.

Thus the difference between the values of the upper and lower integrals of f
on [a, b] must be less than every strictly positive real number ε, and therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx.

This completes the proof.
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Lemma F. Let f1, f2, . . . , fs and h be bounded real-valued functions on a
closed bounded interval [a, b], where a and b are real numbers satisfying a < b.
Suppose that there exists a positive constant K with the property that

|h(v)− h(w)| ≤ K
s∑

j=1

|fj(v)− fj(w)|

for all v, w ∈ [a, b]. Then the upper and lower Darboux sums of these real-
valued functions satisfy the inequality

U(P, h)− L(P, h) ≤ K

s∑
j=1

(U(P, fj)− L(P, fj))

for all partitions P of the interval [a, b].

Proof Let P be a partition of [a, b], and let P = {u0, u1, . . . , uN}, where

a = u0 < u1 < · · · < uN = b,

and let

Mi[fj] = sup{fj(x) : ui−1 ≤ x ≤ ui},
mi[fj] = inf{fj(x) : ui−1 ≤ x ≤ ui}

for j = 1, 2, . . . , s and i = 1, 2, . . . , N , and

Mi[h] = sup{h(x) : ui−1 ≤ x ≤ ui},
mi[h] = inf{h(x) : ui−1 ≤ x ≤ ui}

for i = 1, 2, . . . , N .
Let i be an integer between 1 and N . The definitions of Mi[h] and mi[h]

ensure that, given any positive real number δ, there exist vi, wi ∈ [ui−1, ui]
such that h(vi) > Mi[h]− δ and h(wi) < mi[h] + δ. But then

Mi[h]−mi[h]− 2δ < h(vi)− h(wi) ≤ K
s∑

j=1

|fj(vi)− fj(wi)|

≤ K

s∑
j=1

(Mi[fj]−mi[fj]).

The inequality

Mi[h]−mi[h]− 2δ < K
s∑

j=1

(Mi[fj]−mi[fj])
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therefore holds for all positive values of the real number δ, no matter how
small, and therefore

Mi[h]−mi[h] ≤ K

s∑
j=1

(Mi[fj]−mi[fj]).

Multiplying both sides of this inequality by the length ui − ui−1 of the ith
subinterval of [a, b] determined by the partition P , and summing for i =
1, 2, . . . , N , we find that

U(P, h)− L(P, h) =
N∑
i=1

(Mi[h]−mi[h])(ui − ui−1)

≤ K
s∑

j=1

N∑
i=1

(Mi[fj]−mi[fj])(ui − ui−1)

≤ K
s∑

j=1

(U(P, fj)− L(P, fj)) .

We conclude therefore that

U(P, h)− L(P, h) ≤ K
s∑

j=1

(U(P, fj)− L(P, fj))

for all partitions P of the interval [a, b], as required.

Proposition G. Let f1, f2, . . . , fs be bounded Riemann-integrable real-valued
functions on a closed bounded interval [a, b], where a and b are real numbers
satisfying a < b, and let h be a bounded real-valued function on [a, b]. Suppose
that there exists a positive constant K with the property that

|h(v)− h(w)| ≤ K
s∑

j=1

|fj(v)− fj(w)|

for all u, v ∈ [a, b]. Then the function h is Riemann-integrable on [a, b].

Proof Given any positive real number ε, there exist partitions P1, P2, . . . , Ps

of [a, b] with the property that

U(Pj, fj)− L(Pj, fj) <
ε

sK
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for j = 1, 2, . . . , s (see Proposition E). Let P be a common refinement of the
partitions P1, P2, . . . , Ps. Then

U(P, fj)− L(P, fj) ≤ U(Pj, fj)− L(Pj, fj) <
ε

sK

for j = 1, 2, . . . , s (see Lemma A). It then follows from Lemma F that

U(P, h)− L(P, h) ≤ K
s∑

j=1

(U(P, fj)− L(P, fj)) < ε.

On applying Proposition E, we therefore conclude that the function h is
Riemann-integrable on [a, b], as required.

Proposition H. Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are real
numbers satisfying a ≤ b. Then the function f · g is Riemann-integrable on
[a, b], where (f · g)(x) = f(x)g(x) for all x ∈ [a, b].

Proof The functions f and g are bounded on [a, b], and therefore there
exists some positive real number K with the property that |f(x)| ≤ K and
|g(x)| ≤ K for all x ∈ [a, b]. But then

|f(v)g(v)− f(w)g(w)| = |f(v)(g(v)− g(w)) + (f(v)− f(w))g(w)|
≤ |f(v)(g(v)− g(w))|+ |(f(v)− f(w))g(w)|
≤ K (|g(v)− g(w)|+ |f(v)− f(w)|)

for all v, w ∈ [a, b]. The result therefore follows directly on applying Propo-
sition G.

Proposition I. Let f : [a, b]→ R be a bounded Riemann-integrable function
on a closed interval [a, b], where a and b are real numbers satisfying a ≤ b,
and let |f |: [a, b]→ R be the function defined such that |f |(x) = |f(x)| for all
x ∈ [a, b]. Then the function |f | is Riemann-integrable on [a, b], and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Proof Let some positive real number ε be given. It follows from Proposi-
tion E that there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.
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∣∣∣|f(v)| − |f(w)|
∣∣∣ ≤ |f(v)− f(w)|

for all v, w ∈ [a, b]. Applying Lemma F, we conclude that

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f) < ε.

Proposition E then ensures that the function |f | is Riemann-integrable on
[a, b],

Now −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b]. It follows that

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx.

It follows that ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx,

as required.

Proposition J. Let f be a bounded real-valued function on the interval [a, c].
Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c], where
a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof Let some positive real number ε be given. The function f is Riemann-
integrable on the interval [a, b] and therefore there exists a partition Q of [a, b]
such that the lower Darboux sum L(Q, f) of f on [a, b] with respect to the
partition Q of [a, b] satisfies

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε.

Similarly there exists a partition R of [b, c] of [a, b] such that the lower Dar-
boux sum L(Q, f) of f on [b, c] with respect to the partition R of [b, c] satisfies

L(R, f) >

∫ c

b

f(x) dx− 1
2
ε.

Now the partitions Q and R combine to give a partition P of the interval
[a, c], where P = Q∪R. Indeed Q = {v0, v1, . . . , vL}, where v0, v1, . . . , vL are
real numbers satisfying

a = v0 < v1 < v2 < · · · vL−1 < vL = b,
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and R = {w0, w1, . . . , wN}, where w0, w1, . . . , wN are real numbers satisfying

b = w0 < w1 < w2 < · · ·wN−1 < wN = c.

Then
P = {a, v1, v2, . . . , vL−1, b, w1, w2, . . . , wN−1, c}.

It follows directly from the definition of Darboux lower sums that

L(P, f) = L(Q, f) + L(R, f).

The choice of the partitions Q and R then ensures that

L(P, f) >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

The lower Riemann integral L
∫ c

a

f(x) dx is by definition the least upper

bound of the lower Darboux sums of f on the interval [a, c]. It follows that

L
∫ c

a

f(x) dx >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

Moreover this inequality holds for all values of the positive real number ε. It
follows that

L
∫ c

a

f(x) dx ≥
∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Applying this result with the function f replaced by −f yields the in-
equality

L
∫ c

a

(−f(x)) dx ≥ −
∫ b

a

f(x) dx−
∫ c

b

f(x) dx.

But

L
∫ c

a

(−f(x)) dx = −U
∫ c

a

f(x) dx

(see Lemma C). It follows that

U
∫ c

a

f(x) dx ≤
∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.

But

L
∫ c

a

f(x) dx ≤ U
∫ c

a

f(x) dx.

It follows that

L
∫ c

a

f(x) dx = U
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

The result follows.
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0.2 Integrability of Monotonic Functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(v) ≤ f(w) for all real numbers v and w satisfying a ≤ v ≤
w ≤ b. Similarly f : [a, b]→ R is said to be non-increasing if f(v) ≥ f(w) for
all real numbers v and w satisfying a ≤ v ≤ w ≤ b. The function f : [a, b]→ R
is said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else
it is non-increasing on [a, b].

Proposition K. Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {u0, u1, u2, . . . , uN}, where

a = u0 < u1 < u2 < · · · < uN−1 < uN = b

and ui − ui−1 < δ for i = 1, 2, . . . , N . The maximum and minimum values
of f(x) on the interval [ui−1, ui] are attained at ui and ui−1 respectively, and
therefore the upper sum U(P, f) and L(P, f) of f for the partition P satisfy

U(P, f) =
N∑
i=1

f(ui)(ui − ui−1)
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and

L(P, f) =
N∑
i=1

f(ui−1)(ui − ui−1).

Now f(ui)− f(ui−1) ≥ 0 for i = 1, 2, . . . , N . It follows that

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

U(P, f)− L(P, f)

=
N∑
i=1

(f(ui)− f(ui−1))(ui − ui−1)

< δ
N∑
i=1

(f(ui)− f(ui−1)) = δ(f(b)− f(a)) < ε.

We have thus shown that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all strictly positive numbers ε. But

U
∫ b

a

f(x) dx ≥ L
∫ b

a

f(x) dx.

It follows that

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].
Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then −f is a

non-decreasing function on [a, b] and it follows from what we have just shown
that −f is Riemann-integrable on [a, b]. It follows that the function f itself
must be Riemann-integrable on [a, b], as required.
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Corollary L. Let f : [a, b]→ R be a real-valued function on the interval [a, b],
where a and b are real numbers satisfying a < b. Suppose that there exist real
numbers u0, u1, . . . , uN , where

a = u0 < u1 < u2 < · · · < uN−1 < uN = b,

such that the function f restricted to the interval [ui−1, ui] is monotonic on
[ui−1, ui] for i = 1, 2, . . . , N . Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion J and Proposition K.

Remark The result and proof-strategy of Proposition K are to be found in
their essentials in Isaac Newton, Philosophiae naturalis principia mathemat-
ica (1686), Book 1, Section 1, Lemmas 2 and 3.
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