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4. Open and Closed Sets in Euclidean Spaces

4. Open and Closed Sets in Euclidean Spaces

4.1. Open Sets in Euclidean Spaces

Definition

Given a point p of Rn and a positive real number η, the open ball
B(p, η) in Rn of radius η centred on the point p consists of all
points of Rn whose Euclidean distance from the point p is less
than η.

We see therefore that

B(p, η) = {x ∈ Rn : |x− p| < η}

for all points p of Rn and positive real numbers η.



4. Open and Closed Sets in Euclidean Spaces (continued)

The open ball B(p, η) of radius η centred on a point p of Rn is
bounded by the sphere of radius η centred on p. This sphere is the
set

{x ∈ Rn : |x− p| = η}.



4. Open and Closed Sets in Euclidean Spaces (continued)

Definition

A subset V of Rn is said to be an open set (in Rn) if, given any
point of V , there exists an open ball of positive radius, centred on
that point, which is wholly contained within the set V .

By convention the empty set ∅ is also considered to be an open set
(on the grounds that there does not exist any point of the empty
set that is not the centre of some open ball contained in the empty
set).

Thus a subset V of Rn is an open set in Rn if and only if, given
any point p of V , there exists some strictly positive real number δ
such that B(p, δ) ⊂ V , where

B(p, δ) = {x ∈ Rn : |x− p| < δ}.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let H = {(x , y , z) ∈ R3 : z > c}, where c is some real number.
Then H is an open set in R3. Indeed let p be a point of H. Then
p = (u, v ,w), where w > c . Let δ = w − c . If the distance from a
point (x , y , z) to the point (u, v ,w) is less than δ then
|z − w | < δ, and hence z > c , so that (x , y , z) ∈ H. Thus
B(p, δ) ⊂ H, and therefore H is an open set.



4. Open and Closed Sets in Euclidean Spaces (continued)

The previous example can be generalized. Given any integer i
between 1 and n, and given any real number ci , the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}

and
{(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let

V = {(x , y , z) ∈ R3 : x2 + y2 + z2 < 9}.

Then the subset V of R3 is the open ball of radius 3 in R3 centred
on the origin. This open ball is an open set. Indeed let q be a
point of V . Then |q| < 3. Let δ = 3− |q|. Then δ > 0. Moreover
if x is a point of R3 that satisfies |x− q| < δ then

|x| = |q+ (x− q)| ≤ |q|+ |x− q| < |q|+ δ = 3,

and therefore x ∈ V . This proves that V is an open set.

More generally, an open ball of any positive radius centred on any
point of a Euclidean space Rn of any dimension n is an open set in
that Euclidean space. A more general result is proved below (see
Lemma 4.1).



4. Open and Closed Sets in Euclidean Spaces (continued)

4.2. Open Sets in Subsets of Euclidean Spaces

Definition

Let X be a subset of n-dimensional Euclidean space Rn. Given a
point p of X and a positive real number η, the open ball BX (p, η)
in X of radius η centred on the point p consists of all points of the
set X whose Euclidean distance from the point p is less than η.

We see therefore that

BX (p, η) = {x ∈ X : |x− p| < η}

for all points p of X and positive real numbers η.



4. Open and Closed Sets in Euclidean Spaces (continued)

Definition

Let X be a subset of n-dimensional Euclidean space Rn. A
subset V of X is said to be open in X if, given any point of V ,
there exists an open ball in X of positive radius, centred on that
point, which is wholly contained within the set V .

By convention the empty set ∅ is also considered to be open in the
given set X (on the grounds that there does not exist any point of
the empty set that is not the centre of some open ball contained in
the empty set).

Thus given any subset X of Rn, and given any subset V of X , the
set V is said to be open in X if and only if, given any point p of
V , there exists some strictly positive real number δ such that
BX (p, δ) ⊂ V , where

BX (p, δ) = {x ∈ X : |x− p| < δ}.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let V be an open set in Rn. Then for any subset X of Rn, the
intersection V ∩ X is open in X . (This follows directly from the
definitions.) Thus for example, let S2 be the unit sphere in R3,
given by

S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set
in R3 given by

H = {(x , y , z) ∈ R3 : z > 0}.



4. Open and Closed Sets in Euclidean Spaces (continued)

Note that N is not itself an open set in R3. Indeed the point
(0, 0, 1) belongs to N, but, for any positive real number δ , the
open ball (in R3) of radius δ centred on (0, 0, 1) contains points
(x , y , z) for which x2 + y2 + z2 ̸= 1. Thus the open ball of
radius δ centred on the point (0, 0, 1) is not a subset of N.



4. Open and Closed Sets in Euclidean Spaces (continued)

Lemma 4.1

Let X be a subset of Rn, and let p be a point of X . Then, for any
positive real number η, the open ball BX (p, η) in X of radius η
centred on p is open in X .

Proof
Let q be an element of BX (p, η). We must show that there exists
some positive real number δ such that BX (q, δ) ⊂ BX (p, η). Let
δ = η − |q− p|. Then δ > 0, since |q− p| < η. Moreover if
x ∈ BX (q, δ) then

|x− p| ≤ |x− q|+ |q− p| < δ + |q− p| = η,

by the Triangle Inequality, and hence x ∈ BX (p, η). Thus
BX (q, δ) ⊂ BX (p, η). This shows that BX (p, η) is an open set, as
required.



4. Open and Closed Sets in Euclidean Spaces (continued)

Lemma 4.2

Let X be a subset of Rn, and let p be a point of X . Then, for any
non-negative real number η, the set {x ∈ X : |x− p| > η} is an
open set in X .

Proof
Let q be a point of X satisfying |q− p| > η, and let x be any point
of X satisfying |x− q| < δ, where δ = |q− p| − η. Then

|q− p| ≤ |q− x|+ |x− p|,

by the Triangle Inequality. It follows that

|x− p| ≥ |q− p| − |x− q| > |q− p| − δ = η.

Thus BX (q, δ) is contained in the given set. The result follows.



4. Open and Closed Sets in Euclidean Spaces (continued)

4.3. Convergence of Sequences and Open Sets

Lemma 4.3

An infinite sequence x1, x2, x3, . . . of points in Rn converges to a
point p if and only if, given any open set V which contains p,
there exists some positive integer N such that xj ∈ V for all
positive integers j satisfying j ≥ N.

Proof
Suppose that the infinite sequence x1, x2, x3, . . . of points in Rn has
the property that, given any open set V which contains p, there
exists some positive integer N such that xj ∈ V whenever j ≥ N.
Let some positive real number ε be given. The open ball B(p, ε) of
radius ε centred on the point p is an open set by Lemma 4.1.
Therefore there exists some positive integer N such that
xj ∈ B(p, ε) whenever j ≥ N. Thus |xj − p| < ε whenever j ≥ N.
This shows that the infinite sequence converges to the point p.



4. Open and Closed Sets in Euclidean Spaces (continued)

Conversely, suppose that the infinite sequence x1, x2, x3, . . . of
points of Rn converges to the point p. Let V be an open set to
which that point p belongs. Then there exists some positive real
number ε such that the open ball B(p, ε) of radius ε centred on p
is a subset of V . All points x of Rn that satisfy |x− p| < ε then
belong to the open set V . But there exists some positive integer N
with the property that |xj − p| < ε whenever j ≥ N, since the
sequence converges to p. Therefore xj ∈ V whenever j ≥ N, as
required.



4. Open and Closed Sets in Euclidean Spaces (continued)

4.4. The Topology of Euclidean Spaces

Proposition 4.4

Let X be a subset of Rn. The collection of open sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both open in X ;

(ii) the union of any collection of open sets in X is itself open in
X ;

(iii) the intersection of any finite collection of open sets in X is
itself open in X .



4. Open and Closed Sets in Euclidean Spaces (continued)

Proof
The empty set ∅ is an open set by convention. Moreover the
definition of an open set is satisfied trivially by the whole set X .
This proves (i).

Let C be any collection of open sets in X , and let W denote the
union of all the open sets belonging to C. We must show that W
is itself open in X . Let p ∈ W . Then p ∈ V for some set V
belonging to the collection C. It follows that there exists some
positive real number δ such that BX (p, δ) ⊂ V . But V ⊂ W , and
thus BX (p, δ) ⊂ W . This shows that W is open in X . This proves
(ii).



4. Open and Closed Sets in Euclidean Spaces (continued)

Finally let V1,V2,V3, . . . ,Vk be a finite collection of subsets of X
that are open in X , and let V denote the intersection
V1 ∩ V2 ∩ · · · ∩ Vk of these sets. Let p ∈ V . Now p ∈ Vj for
j = 1, 2, . . . , k , and therefore there exist strictly positive real
numbers δ1, δ2, . . . , δk such that BX (p, δj) ⊂ Vj for j = 1, 2, . . . , k .
Let δ be the minimum of δ1, δ2, . . . , δk . Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection
of sets.) Now BX (p, δ) ⊂ BX (p, δj) ⊂ Vj for j = 1, 2, . . . , k , and
thus BX (p, δ) ⊂ V . Thus the intersection V of the sets
V1,V2, . . . ,Vk is itself open in X . This proves (iii).



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
The set {(x , y , z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2
centred on the origin with the open set {(x , y , z) ∈ R3 : z > 1}.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
The set {(x , y , z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 centred on
the origin with the open set {(x , y , z) ∈ R3 : z > 1}.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
The set

{(x , y , z) ∈ R3 : (x − n)2 + y2 + z2 < 1
4 for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of
radius 1

2 centred on the points (n, 0, 0) for all integers n.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
For each positive integer k , let

Vk = {(x , y , z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k centred on the
origin, and is therefore an open set in R3. However the intersection
of the sets Vk for all positive integers k is the set {(0, 0, 0)}, and
thus the intersection of the sets Vk for all positive integers k is not
itself an open set in R3. This example demonstrates that infinite
intersections of open sets need not be open.



4. Open and Closed Sets in Euclidean Spaces (continued)

Proposition 4.5

Let X be a subset of Rn, and let W be a subset of X . Then W is
open in X if and only if there exists some open set V in Rn for
which W = V ∩ X .

Proof
First suppose that W = V ∩ X for some open set V in Rn. Let
p ∈ W . Then the definition of open sets in Rn ensures that there
exists some positive real number δ such that

{x ∈ Rn : |x− p| < δ} ⊂ V .

Then
{x ∈ X : |x− p| < δ} ⊂ W .

This shows that W is open in X .



4. Open and Closed Sets in Euclidean Spaces (continued)

Conversely suppose that the subset W of X is open in X . For each
point p of W there exists some positive real number δp such that

{x ∈ X : |x− p| < δp} ⊂ W .

For each p ∈ W , let B(p, δp) denote the open ball in Rn of radius
δp centred on the point p, so that

B(p, δp) = {x ∈ Rn : |x− p| < δp}

for all p ∈ W , and let V be the union of all the open balls B(p, δp)
as p ranges over all the points of W . Then V is an open set in Rn.



4. Open and Closed Sets in Euclidean Spaces (continued)

Indeed every open ball in Rn is an open set (Lemma 4.1), and any
union of open sets in Rn is itself an open set (Proposition 4.4).
The set V is a union of open balls. It is therefore a union of open
sets, and so must itself be an open set.

Now B(p, δp) ∩ X ⊂ W . for all p ∈ W . Also every point of V
belongs to B(p, δp) for at least one point p of W . It follows that
V ∩ X ⊂ W . But p ∈ B(p, δp) and B(p, δp) ⊂ V for all p ∈ W ,
and therefore W ⊂ V , and thus W ⊂ V ∩ X . It follows that
W = V ∩ X , as required.



4. Open and Closed Sets in Euclidean Spaces (continued)

4.5. Closed Sets in Euclidean Spaces

Definition

Let X be a subset of Rn. A subset F of X is said to be closed in X
if and only if its complement X \ F in X is open in X .

(Recall that X \ F = {x ∈ X : x ̸∈ F}.)

Example
The sets {(x , y , z) ∈ R3 : z ≥ c}, {(x , y , z) ∈ R3 : z ≤ c}, and
{(x , y , z) ∈ R3 : z = c} are closed sets in R3 for each real
number c , since the complements of these sets are open in R3.



4. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let X be a subset of Rn, let p be a point of X , and let η be a
non-negative real number. Then the sets {x ∈ X : |x− p| ≤ η}
and {x ∈ X : |x− p| ≥ η} are closed in X . In particular, the set
{p} consisting of the single point p is a closed set in X . (These
results follow immediately using Lemma 4.1 and Lemma 4.2 and
the definition of closed sets.)



4. Open and Closed Sets in Euclidean Spaces (continued)

Let A be some collection of subsets of a set X . Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of
X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X
is the union of the complements of those sets).



4. Open and Closed Sets in Euclidean Spaces (continued)

Indeed let A be some collection of subsets of a set X , and let x be
a point of X . Then

x ∈ X \
⋃
S∈A

S ⇐⇒ x ̸∈
⋃
S∈A

S

⇐⇒ for all S ∈ A, x ̸∈ S

⇐⇒ for all S ∈ A, x ∈ X \ S
⇐⇒ x ∈

⋂
S∈A

(X \ S),

and therefore
X \

⋃
S∈A

S =
⋂
S∈A

(X \ S).



4. Open and Closed Sets in Euclidean Spaces (continued)

Again let x be a point of X . Then

x ∈ X \
⋂
S∈A

S ⇐⇒ x ̸∈
⋂
S∈A

S

⇐⇒ there exists S ∈ A for which x ̸∈ S

⇐⇒ there exists S ∈ A for which x ∈ X \ S
⇐⇒ x ∈

⋃
S∈A

(X \ S),

and therefore
X \

⋂
S∈A

S =
⋃
S∈A

(X \ S).

The following result therefore follows directly from Proposition 4.4.



4. Open and Closed Sets in Euclidean Spaces (continued)

Proposition 4.6

Let X be a subset of Rn. The collection of closed sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both closed in X ;

(ii) the intersection of any collection of closed sets in X is itself
closed in X ;

(iii) the union of any finite collection of closed sets in X is itself
closed in X .



4. Open and Closed Sets in Euclidean Spaces (continued)

Proof
The empty set ∅ is the complement in X of the whole set X . The
set X is open in itself. It follows that the empty set ∅ is closed in
X .

The whole set X is the complement in X of the empty set. The
empty set is open in X . It follows that the whole set X is closed in
itself.



4. Open and Closed Sets in Euclidean Spaces (continued)

Next let C be a collection of subsets of X that are closed in X , and
let G be the intersection of all the sets that are members of the
collection C. Now the complement in X of the set G , being the
complement of the intersection of all the members of the
collection C is the union of the complements of the members of
this collection C. Now the complement of each member of the
collection C is open in X . Consequently the union of the
complements of the members of the collection must also be open
in X . Thus the complement of the set G is open in X , and
therefore the set G itself is closed in X .



4. Open and Closed Sets in Euclidean Spaces (continued)

Now suppose that the collection C is a finite collection of subsets
of X that are closed in X , and let H be the union of all the sets
that are members of the finite collection C. Now the complement
in X of the set H, being the complement of the union of all the
members of the finite collection C is the intersection of the
complements of the members of this finite collection C. Now the
complement of each member of the finite collection C is open in
X . Consequently the intersection of the complements of the
members of the finite collection must also be open in X . Thus the
complement of the set H is open in X , and therefore the set H
itself is closed in X . This completes the proof.



4. Open and Closed Sets in Euclidean Spaces (continued)

Lemma 4.7

Let X be a subset of Rn, and let F be a subset of X which is
closed in X . Let x1, x2, x3, . . . be an infinite sequence of points
of F which converges to some point p of X . Then p ∈ F .

Proof
The complement X \ F of F in X is open, since F is closed.
Suppose that p were a point belonging to X \ F . It would then
follow from Lemma 4.3 that xj ∈ X \ F for all values of j greater
than some positive integer N, contradicting the fact that xj ∈ F
for all j . This contradiction shows that p must belong to F , as
required.
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