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11. Multiple Integrals

11. Multiple Integrals

11.1. Darboux Sums and the Riemann Integral

We now set out the basic definitions and state some basic results
concerning the theory of integration of functions of a real variable
that was developed by Jean-Gaston Darboux (1842–1917). The
integral defined using lower and upper sums in the manner
described below is sometimes referred to as the Darboux integral of
a function on a given interval. However the class of functions that
are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach
using Darboux sums provides a convenient approach to define and
establish the basic properties of the Riemann integral.
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Definition

A partition P of an interval [a, b] is a set {u0, u1, u2, . . . , uN} of
real numbers satisfying a = u0 < u1 < u2 < · · · < uN−1 < uN = b.
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Given any bounded real-valued function f on [a, b], the upper sum
(or upper Darboux sum) U(P, f ) of f for the partition P of [a, b] is
defined so that

U(P, f ) =
N∑
i=1

Mi (ui − ui−1),

where Mi = sup{f (x) : ui−1 ≤ x ≤ ui}.
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11. Multiple Integrals (continued)

Similarly the lower sum (or lower Darboux sum) L(P, f ) of f for
the partition P of [a, b] is defined so that

L(P, f ) =
N∑
i=1

mi (ui − ui−1),

where mi = inf{f (x) : ui−1 ≤ x ≤ ui}.
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Clearly L(P, f ) ≤ U(P, f ). Moreover
N∑
i=1

(ui − ui−1) = b − a, and

therefore

m(b − a) ≤ L(P, f ) ≤ U(P, f ) ≤ M(b − a),

for any real numbers m and M satisfying m ≤ f (x) ≤ M for all
x ∈ [a, b].
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Definition

Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a f (x) dx (or upper

Darboux integral) and the lower Riemann integral L
∫ b
a f (x) dx (or

lower Darboux integral) of the function f on [a, b] are defined by

U
∫ b

a
f (x) dx = inf {U(P, f ) : P is a partition of [a, b]} ,

L
∫ b

a
f (x) dx = sup {L(P, f ) : P is a partition of [a, b]} .
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The definition of upper and lower integrals thus requires that
U
∫ b
a f (x) dx be the infimum of the values of U(P, f ) and that

L
∫ b
a f (x) dx be the supremum of the values of L(P, f ) as P ranges

over all possible partitions of the interval [a, b].
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Definition

A bounded function f : [a, b]→ R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on
[a, b] if

U
∫ b

a
f (x) dx = L

∫ b

a
f (x) dx ,

in which case the Riemann integral
∫ b
a f (x) dx (or Darboux

integral) of f on [a, b] is defined to be the common value of

U
∫ b
a f (x) dx and L

∫ b
a f (x) dx .
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When a > b we define∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

for all Riemann-integrable functions f on [b, a]. We set∫ b
a f (x) dx = 0 when b = a.

Any continuous real-valued function defined over a closed bounded
interval is Riemann-integrable on that interval. This result can be
proved without difficulty on applying the result that any continuous
real-valued function defined over a closed bounded interval is
uniformly continuous on that interval (see Theorem 5.11).



11. Multiple Integrals (continued)

We now state without proof several results that follow as
consequences of the definition of the Riemann integral. The proofs
of these results are straightforward applications of the basic
principles and standard proof techniques of real analysis.
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Let f : [a, b]→ R and g : [a, b]→ R be bounded
Riemann-integrable functions on a closed bounded interval [a, b],
where a and b are real numbers satisfying a ≤ b. Then the
functions f + g and f − g are Riemann-integrable on [a, b], and
moreover∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx ,

and ∫ b

a
(f (x)− g(x)) dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx .
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Also ∫ b

a
c f (x) dx = c

∫ b

a
f (x) dx ,

for all real numbers c , and∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
|f (x)| dx ,

where |f | : [a, b]→ R is the function on [a, b] defined such that
|f |(x) = |f (x)| for all x ∈ [a, b]. Moreover∫ b

a
f (x) dx =

∫ s

a
f (x) dx +

∫ b

s
f (x) dx .

for all real numbers s satisfying a ≤ s ≤ b. And if
Riemann-integrable functions f : [a, b]→ R and g : [a, b]→ R
satisfy f (x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .
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11.2. Multiple Integrals of Bounded Continuous Functions

We consider multiple integrals involving continuous real-valued
functions of several real variables over regions that are products of
closed bounded intervals. Any subset of n-dimensional Euclidean
space Rn that is a product of closed bounded intervals is a closed
bounded set in Rn. It follows from the Extreme Value Theorem
(Theorem 5.10) that any continuous real-valued function on a
product of closed bounded intervals is necessarily bounded on that
product of intervals. It is also uniformly continuous on that
product of intervals (see Theorem 5.11)
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Proposition 11.1

Let n be an integer greater than 1, let a1, a2, . . . , an and
b1, b2, . . . , bn be real numbers, where ai < bi for i = 1, 2, . . . , n, let
f : [a1, b1]× · · · × [an, bn]→ R be a continuous real-valued
function, and let

g(x1, x2, . . . , xn−1) =

∫ bn

an

f (x1, x2, . . . , xn−1, t) dt.

for all (n − 1)-tuples (x1, x2, . . . , xn−1) of real numbers satisfying
ai ≤ xi ≤ bi for i = 1, 2, . . . , n − 1. Then the function

g : [a1, b1]× [a2, b2] · · · × [an−1, bn−1]→ R

is continuous.
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Proof
Let some positive real number ε be given, and let ε0 be chosen so
that 0 < (bn − an)ε0 < ε. The function f is uniformly continuous
on [a1, b1]× [a2, b2] · · · × [an, bn] (see Theorem 5.11). Therefore
there exists some positive real number δ such that

|f (x1, x2, . . . , xn−1, t)− f (u1, u2, . . . , un−1, t)| < ε0

for all real numbers x1, x2, . . . , xn−1, u1, u2, . . . , un−1 and t
satisfying ai ≤ xi ≤ bi , ai ≤ ui < bi and |xi − ui | < δ for
i = 1, 2, . . . , n − 1 and an ≤ t ≤ bn. Consequently
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|g(x1, x2, . . . , xn−1)− g(u1, u2, . . . , un−1)|

=

∣∣∣∣∫ bn

an

(f (x1, x2, . . . , xn−1, t)− f (u1, u2, . . . , un−1, t)) dt

∣∣∣∣
≤

∫ bn

an

|f (x1, x2, . . . , xn−1, t)− f (u1, u2, . . . , un−1, t)| dt

≤ ε0(bn − an) < ε

whenever ai ≤ xi ≤ bi , ai ≤ ui < bi and |xi − ui | < δ for
i = 1, 2, . . . , n − 1. The result follows.
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Proposition 11.1 ensures that, given a continuous real-valued
function f : [a1, b1]× · · · × [an, bn]→ R, where a1, a2, . . . , an and
b1, b2, . . . , bn are real numbers and ai < bi for i = 1, 2, . . . , n,
there is a well-defined multiple integral∫ bn

xn=an

· · ·
∫ b2

x2=a2

∫ b1

x1=a1

f (x1, x2, . . . , xn) dx1 dx2 · · · dxn,

in which, at each stage of evaluation, the integrand is a continuous
function of its arguments. To evaluate this integral, one integrates
first with respect to x1, then with respect to x2, and so on, finally
integrating with respect to xn.

In fact, if the function f is continuous, the order of evaluation of
the integrals with respect to the individual variables does not affect
the value of the multiple integral. We prove this first for
continuous functions of two variables.
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Theorem 11.2

Let f : [a1, b1]× [a2, b2]→ R be a continuous real-valued function
on the closed rectangle [a1, b1]× [a2, b2]. Then∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy =

∫ b1

a1

(∫ b2

a2

f (x , y) dy

)
dx .
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Proof
The function f : [a1, b1]× [a2, b2]→ R is continuous, and is
therefore uniformly continuous on [a1, b1]× [a2, b2] (see
Theorem 5.11). Let some positive real number ε be given. It
follows from the uniform continuity of the function f that there
exists some positive real number δ with the property that

|f (x , y)− f (u, v)| < ε

for all x , u ∈ [a1, b1] and y , v ∈ [a2, b2] satisfying |x − u| < δ and
|y − v | < δ.
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Let P be a partition of [a1, b1], and let Q be a partition of [a2, b2],
where

P = {u0, u1, . . . , up}, Q = {v0, v1, . . . , vq},

a1 = u0 < u1 < · · · < up = b1, a2 = v0 < v1 < · · · < vq = b2,

uj − uj−1 < δ for j = 1, 2, . . . , p and vk − vk−1 < δ for
k = 1, 2, . . . , q. Then

|f (x , y)− f (uj , vk)| < ε

whenever uj−1 ≤ x ≤ uj for some integer j between 1 and p and
vk−1 ≤ y ≤ vk for some integer k between 1 and q.
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Now∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy =

q∑
k=1

p∑
j=1

∫ vk

vk−1

(∫ uj

uj−1

f (x , y) dx

)
dy .

Moreover ∫ uj

uj−1

f (x , y) dx ≤
(
f (uj , vk) + ε

)
(uj − uj−1)

for all y ∈ [vk−1, vk ], and therefore∫ vk

vk−1

(∫ uj

uj−1

f (x , y) dx

)
dy ≤

(
f (uj , vk)+ε

)
(vk−vk−1)(uj−uj−1)

for all integers j between 1 and p and integers k between 1 and q.
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It follows that∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy

≤
q∑

k=1

p∑
j=1

(
f (uj , vk) + ε

)
(vk − vk−1)(uj − uj−1)

= S + ε(b1 − a1)(b2 − a2),

where

S =

q∑
k=1

p∑
j=1

f (uj , vk)(vk − vk−1)(uj − uj−1).
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Similarly∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy

≥
q∑

k=1

p∑
j=1

(
f (uj , vk)− ε

)
(vk − vk−1)(uj − uj−1)

= S − ε(b1 − a1)(b2 − a2).

Thus ∣∣∣∣∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy − S

∣∣∣∣ ≤ ε(b1 − a1)(b2 − a2).
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On interchanging the roles of the variables x and y , we conclude
similarly that∣∣∣∣∫ b1

a1

(∫ b2

a2

f (x , y) dy

)
dx − S

∣∣∣∣ ≤ ε(b2 − a2)(b1 − a1).

It follows that∣∣∣∣∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy −

∫ b1

a1

(∫ b2

a2

f (x , y) dy

)
dx

∣∣∣∣
≤ 2ε(b1 − a1)(b2 − a2).

Moreover the inequality just obtained must hold for every positive
real number ε, no matter how small the value of ε. It follows that∫ b2

a2

(∫ b1

a1

f (x , y) dx

)
dy =

∫ b1

a1

(∫ b2

a2

f (x , y) dy

)
dx ,

as required.
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Now let us consider a multiple integral involving a continuous
function of three real variables. Let

f : [a1, b1]× [a2, b2]× [a3, b3]→ R

be a continuous real-valued function, where a1, a2, a3, b1, b2 and
b3 are real numbers satisfying a1 < b1, a2 < b2 and a3 < b3. It
follows from Theorem 11.2 that∫ b1

a1

∫ b2

a2

f (x1, x2, x3) dx2 dx1 =

∫ b2

a2

∫ b1

a1

f (x1, x2, x3) dx1 dx2

for all real numbers x3 satisfying a3 < x3 < b3. It follows that∫ b3

a3

∫ b1

a1

∫ b2

a2

f (x1, x2, x3) dx2 dx1 dx3

=

∫ b3

a3

∫ b2

a2

∫ b1

a1

f (x1, x2, x3) dx1 dx2 dx3.
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Also it follows from Proposition 11.1 that the function sending
(x2, x3) to ∫ b1

a1

f (x1, x2, x3) dx1

for all (x2, x3) ∈ [a2, b2]× [a3, b3] is a continuous function of
(x2, x3). It then follows from Theorem 11.2 that∫ b2

a2

∫ b3

a3

∫ b1

a1

f (x1, x2, x3) dx1 dx3 dx2

=

∫ b3

a3

∫ b2

a2

∫ b1

a1

f (x1, x2, x3) dx1 dx2 dx3.
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Repeated applications of these results establish that the value of
the repeated integral with respect to the real variables x1, x2 and
x3 is independent of the order in which the successive integrations
are performed.

Corresponding results hold for integration of continuous real-valued
functions of four or more real variables. In general, if the integrand
is a continuous real-valued function of n real variables, and if this
function is integrated over a product of n closed bounded intervals,
by repeated integration, then the value of the integral is
independent of the order in which the integrals are performed.
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11.3. A Counterexample involving an Unbounded Function

Example
Let f : R2 → R be defined such that

f (x , y) =


4xy(x2 − y2)

(x2 + y2)3
if (x , y) 6= (0, 0);

0 if (x , y) = (0, 0).

Set u = x2 + y2. Then

f (x , y) =
2x(2x2 − u)

u3
∂u

∂y
,

and therefore, when x 6= 0,
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∫ 1

y=0
f (x , y) dy =

∫ x2+1

u=x2

(
4x3

u3
− 2x

u2

)
du

=

[
−2x3

u2
+

2x

u

]x2+1

u=x2

= − 2x3

(x2 + 1)2
+

2x

x2 + 1

=
2x

(x2 + 1)2
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It follows that∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx =

∫ 1

x=0

2x

(x2 + 1)2
dx

=

[
− 1

x2 + 1

]1
0

=
1

2
.

Now f (y , x) = −f (x , y) for all x and y . Interchanging x and y in
the above evaluation, we find that∫ 1

y=0

(∫ 1

x=0
f (x , y) dx

)
dy =

∫ 1

x=0

(∫ 1

y=0
f (y , x) dy

)
dx

= −
∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx

= −1

2
.
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Thus∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx 6=

∫ 1

y=0

(∫ 1

x=0
f (x , y) dx

)
dy .

when

f (x , y) =
4xy(x2 − y2)

(x2 + y2)3

for all (x , y) ∈ R2 distinct from (0, 0). Note that, in this case
f (2t, t)→ +∞ as t → 0+, and f (t, 2t)→ −∞ as t → 0−. Thus
the function f is not continuous at (0, 0) and does not remain
bounded as (x , y)→ (0, 0).
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