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Example Consider the function f :R2 → R that is defined such that f(x, y) =
min(|x|, |y|) for all (x, y) ∈ R2.

The function f is continuous at (0, 0). Inded |f(x, y)| ≤
√

x2 + y2 for all
(x, y) ∈ R2. Let some positive real number ε be given. If |(x, y)| < ε then
|f(x, y)| < ε. Thus the definition of continuity is satisfied at (x, y) = 0.

The function f is not differentiable at (0, 0). Note that

∂f

∂x

∣∣∣∣
(0,0)

= 0 and
∂f

∂y

∣∣∣∣
(0,0)

= 0.

If it were the case that the function were differentiable at zero, then the
derivative of the function at (0, 0) would be determined by the above partial
derivatives, and would therefore be zero. It would then follow that

lim
(x,y)→(0,0)

f(x, y)√
x2 + y2

= 0.

Suppose that x = y = t. Then f(x, y) = |t| and
√

x2 + y2 =
√
2 t. It follows

that

lim
t→0+

f(t, t)√
t2 + t2

=
1√
2
.

Thus it cannot be the case that lim
(x,y)→(0,0)

f(x, y)√
x2 + y2

= 0. Therefore the

function f is not differentiable at (0, 0).
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Example Consider the function f :R2 → R that is defined such that f(x, y) =
min(x2, y2) for all (x, y) ∈ R2.

This function is continuous and differentiable at (0, 0). Note that f(x, y) ≤
x2 + y2 for all (x, y) ∈ R2, and therefore

|f(x, y)|√
x2 + y2

≤
√

x2 + y2

for all (x, y) ∈ R2. It follows that

lim
(x,y)→(0,0)

|f(x, y)|√
x2 + y2

= 0.

It then follows from the definition of differentiability that that function f is
differentiable at (0, 0), and its derivative at (0, 0) is zero. Differentiability
implies continuity. The function f is thus continuous at (0, 0).

Example Consider the function f :R2 → R defined so that

f(x, y) =


x3 + y3

x2 + y2
if (x, y) ̸= (0, 0);

0 if (x, y) = (0, 0).

It follows from straightforward applications of the Product and Chain Rules
for functions of several real variables that the function f is differentiable at
each point of R2 \ {(0, 0)}. This result also follows from the fact that the
first order partial derivatives of the function f are defined and continuous
throughout the set R2 \ {(0, 0)}. Indeed calculating the first order partial
derivatives of the function f away from the origin, we find that

∂f

∂x
=

x4 + 3x2y2 − 2xy3

(x2 + y2)2
and

∂f

∂y
=

y4 + 3x2y2 − 2x3y

(x2 + y2)2

when (x, y) ̸= (0, 0). Thus, away from the origin (0, 0), the first order partial
derivatives of f are quotients of continuous functions, and must therefore
themselves be continuous functions.

The function f itself is continuous at (0, 0). Indeed |x3| ≤ (
√

x2 + y2)3

and |y3| ≤ (
√

x2 + y2)3 for all (x, y) ∈ R2, and therefore |f(x, y)| ≤ 2
√

x2 + y2

for all (x, y) ∈ R2. Thus, given any positive real number ε, the inequality
|f(x, y)| < ε is satisfied whenever the point (x, y) lies within a distance 1

2
ε of

the origin (0, 0).
Also

∂f

∂x

∣∣∣∣
(x,y)=(0,0)

= 1 and
∂f

∂y

∣∣∣∣
(x,y)=(0,0)

= 1.
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Now let b and c be real numbers, not both zero, and let ub,c(t) = f(bt, ct)
for all real numbers t. Then

ub,c(t) =
b3 + c3

b2 + c2
t

for all real numbers t, and therefore

d

dt
(ub,c(t)) =

b3 + c3

b2 + c2

for all real numbers t. Now if it were the case that the function f was differen-
tiable at (0, 0), it would follow on applying the Chain Rule for differentiable
functions of several real variables that

d

dt
(ub,c(t))

∣∣∣∣
t=0

= b
∂f

∂x

∣∣∣∣
(x,y)=(0,0)

+ c
∂f

∂y

∣∣∣∣
(x,y)=(0,0)

= b+ c

for all real numbers b and c that were not both zero. However the equation

b3 + c3

b2 + c2
= b+ c

is satisfied if and only if bc(b + c) = 0. It follows that the function f is not
differentiable at (0, 0).

Note also that

∂f

∂x
=

∂f

∂y
= 1

2
whenever x = y and (x, y) ̸= (0, 0).

But thes partial derivatives have the value 1 when (x, y) = (0, 0). Thus the
first order partial derivatives of the function f are not continuous at the
origin (0, 0).

Example Consider the function f :R2 → R defined so that

f(x, y) =

{ xy

(x2 + y2)2
if (x, y) ̸= (0, 0);

0 if (x, y) = (0, 0).

Note that this function is not continuous at (0, 0). Indeed f(t, t) = 1/(4t2)
if t ̸= 0 so that f(t, t) → +∞ as t → 0, yet f(x, 0) = f(0, y) = 0 for all
x, y ∈ R, thus showing that

lim
(x,y)→(0,0)

f(x, y)
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cannot possibly exist. Because f is not continuous at (0, 0) we conclude from
Lemma 8.11 that f cannot be differentiable at (0, 0). However it is easy to
show that the partial derivatives

∂f(x, y)

∂x
and

∂f(x, y)

∂y

exist everywhere on R2, even at (0, 0). Indeed

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= 0,
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= 0

on account of the fact that f(x, 0) = f(0, y) = 0 for all x, y ∈ R.

Example Consider the function f :R2 → R defined so that

f(x, y) =


xy2

x2 + y4
if (x, y) ̸= (0, 0);

0 if (x, y) = (0, 0).

Given real numbers b and c, let ub,c:R → R be defined so that ub,c(t) =
f(bt, ct) for all t ∈ R. If b = 0 or c = 0 then ub,c(t) = 0 for all t ∈ R. If b ̸= 0
and c ̸= 0 then

ub,c(t) =
bc2t3

b2t2 + c4t4
=

bc2t

b2 + c2t2
.

We now show that the function ub,c:R → R has derivatives of all orders.
This is obvious when b = 0, and when c = 0. If b and c are both non-zero, and
if the function ub,c has a derivative u

(k)
b,c (t) of order k that can be represented

in the form
u
(k)
b,c (t) = pk(t)(b

2 + c2t2)−k−1,

where pk(t) is a polynomial of degree at most k+1, then it follows from stan-

dard single-variable calculus that the function ub,c has a derivative u
(k+1)
b,c (t)

of order k + 1 that can be represented in the form

u
(k+1)
b,c (t) = pk+1(t)(b

2 + c2t2)−k−2,

where pk+1(t) is the polynomial of degree at most k + 2 determined by the
formula

pk+1(t) = p′k(t)(b
2 + c2t2)− 2(k + 1)c2tpk(t).

Thus the function ub,c:R → R has derivatives of all orders.
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Moreover the first derivative u′
b,c(0) of ub,c(t) at t = 0 is given by the

formula

u′
b,c(0) =


c2

b
if b ̸= 0;

0 if b = 0.

We have shown that the restriction of the function f :R2 → R to any line
passing through the origin determines a function that may be differentiated
any number of times with respect to distance along the line. Analogous
arguments show that the restriction of the function g to any other line in the
plane also determines a function that may be differentiated any number of
times with respect to distance along the line.

Now f(x, y) = 1
2
for all (x, y) ∈ R2 satisfying x > 0 and y = ±

√
x, and

similarly f(x, y) = −1
2
for all (x, y) ∈ R2 satisfying x < 0 and y = ±

√
−x.

It follows that every open disk about the origin (0, 0) contains some points
at which the function f takes the value 1

2
, and other points at which the

function takes the value −1
2
, and indeed the function f will take on all real

values between −1
2
and 1

2
on any open disk about the origin, no matter how

small the disk. Therefore the function f :R2 → R is not continuous at zero,
even though the partial derivatives of the function f with respect to x and
y exist at each point of R2.

Remark Examination of some of the examples discussed above establishes
that even if all the partial derivatives of a function exist at some point, this
does not necessarily imply that the function is differentiable at that point.
However it is a standard result in the theory of differentiability for func-
tions of several real variables that if the first order partial derivatives of the
components of a function exist and are continuous throughout some neigh-
bourhood of a given point then the function is differentiable at that point
(see Proposition 8.12).
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