MAU23203: Analysis in Several Real Variables Michaelmas Term 2022

Disquisition IX: An Alternative Proof of the Multidimensional Chain Rule

David R. Wilkins

© Trinity College Dublin 2014–2021

Lemma A Let X be an open set in \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation from $\mathbb{R}^m \to \mathbb{R}^n$ and let \mathbf{p} be a point belonging to the domain X of the function φ . Also let $\sigma: X \to \mathbb{R}^n$ be the function defined throughout the domain X of the function φ that is uniquely characterized by the properties that $\sigma(\mathbf{p}) = \mathbf{0}$ and

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + T(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}| \sigma(\mathbf{x})$$

for all points \mathbf{x} of the domain X of the function φ . Then the function $\varphi \colon X \to \mathbb{R}^n$ is differentiable at the point \mathbf{p} , with derivative $T \colon \mathbb{R}^m \to \mathbb{R}^n$, if and only if the associated function σ is continuous at the point \mathbf{p} .

Proof Note that

$$\sigma(\mathbf{x}) = \begin{cases} \frac{1}{|\mathbf{x} - \mathbf{p}|} (\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - T(\mathbf{x} - \mathbf{p})) & \text{if } \mathbf{x} \neq \mathbf{p}; \\ \mathbf{0} & \text{if } \mathbf{x} = \mathbf{p}. \end{cases}$$

The very definition of differentiability therefore ensures that the function φ is differentiable at the point \mathbf{p} , with derivative T, if and only if

$$\lim_{\mathbf{x} \to \mathbf{p}} \sigma(\mathbf{x}) = \mathbf{0} = \sigma(\mathbf{p}).$$

Moreover $\lim_{\mathbf{x}\to\mathbf{p}} \sigma(\mathbf{x}) = \sigma(\mathbf{p})$ if and only if the function σ is continuous at the point \mathbf{p} (see Proposition 6.5). The result follows.

We recall the statement of the version of the Chain Rule that is applicable to compositions of vector-valued functions of several real variables (see Proposition 8.20).

The Chain Rule. Let X and Y be open sets in \mathbb{R}^m and \mathbb{R}^n respectively, let $\varphi: X \to \mathbb{R}^n$ and $\psi: Y \to \mathbb{R}^k$ be functions mapping X and Y into \mathbb{R}^n and \mathbb{R}^k respectively, where $\varphi(X) \subset Y$, and let \mathbf{p} be a point of X. Suppose that φ is differentiable at \mathbf{p} and that ψ is differentiable at $\varphi(\mathbf{p})$. Then the composition $\psi \circ \varphi: X \to \mathbb{R}^k$ is differentiable at \mathbf{p} , and

$$D(\psi \circ \varphi)_{\mathbf{p}} = (D\psi)_{\varphi(\mathbf{p})} \circ (D\varphi)_{\mathbf{p}}.$$

Thus the derivative of the composition $\psi \circ \varphi$ of the functions at the point \mathbf{p} is the composition of the derivatives of the functions φ and ψ at \mathbf{p} and $\varphi(\mathbf{p})$ respectively.

Proof Let $\mathbf{q} = \varphi(\mathbf{p})$, and let $\sigma: X \to \mathbb{R}^n$ and $\tau: Y \to \mathbb{R}^k$ be the uniquely-determined functions defined throughout the domains X and Y of the functions φ and ψ respectively so that $\sigma(\mathbf{p}) = \mathbf{0}$, $\tau(\mathbf{q}) = \mathbf{0}$,

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + (D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}| \sigma(\mathbf{x})$$

for all points **x** of the domain X of the function φ , and

$$\psi(\mathbf{y}) = \psi(\mathbf{q}) + (D\psi)_{\mathbf{q}}(\mathbf{y} - \mathbf{q}) + |\mathbf{y} - \mathbf{q}| \tau(\mathbf{y})$$

for all points \mathbf{y} of the domain Y of the function ψ . The differentiability of the functions φ and ψ at the points \mathbf{p} and \mathbf{q} then ensures that the functions σ and τ are continuous at the points \mathbf{p} and \mathbf{q} respectively, where $\mathbf{q} = \varphi(\mathbf{p})$ (see Lemma A). Moreover the composition function $\tau \circ \varphi$ is continuous at the point \mathbf{p} , because the functions φ and τ are continuous at the points \mathbf{p} and $\varphi(\mathbf{p})$ respectively (see Proposition 5.1).

The linearity of $(D\psi)_{\mathbf{q}}: \mathbb{R}^n \to \mathbb{R}^k$ then ensures that

$$\psi(\varphi(\mathbf{x})) = \psi(\mathbf{q}) + (D\psi)_{\mathbf{q}}(\varphi(\mathbf{x}) - \mathbf{q}) + |\varphi(\mathbf{x}) - \mathbf{q}| \tau(\varphi(\mathbf{x}))$$

$$= \psi(\varphi(\mathbf{p})) + (D\psi)_{\mathbf{q}}(\varphi(\mathbf{x}) - \varphi(\mathbf{p})) + |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \tau(\varphi(\mathbf{x}))$$

$$= \psi(\varphi(\mathbf{p})) + (D\psi)_{\mathbf{q}}(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}|(D\psi)_{\mathbf{q}}(\sigma(\mathbf{x}))$$

$$+ |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \tau(\varphi(\mathbf{x}))$$

$$= \psi(\varphi(\mathbf{p})) + (D\psi)_{\mathbf{q}}(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}|\chi(\mathbf{x})$$

for all $\mathbf{x} \in X$, where $\chi: X \to \mathbb{R}^k$ is the uniquely-determined function on the domain X of the function φ defined so that $\chi(\mathbf{p}) = 0$ and

$$\chi(\mathbf{x}) = (D\psi)_{\mathbf{q}}(\sigma(\mathbf{x})) + \frac{|\varphi(\mathbf{x}) - \varphi(\mathbf{p})|}{|\mathbf{x} - \mathbf{p}|} \tau(\varphi(\mathbf{x}))$$

for all points \mathbf{x} of the set X that are distinct from the point \mathbf{p} . Thus, in order to complete the proof of the differentiability of the composition function $\psi \circ \varphi$ at the point \mathbf{p} , it suffices to show that that the function χ is continuous at the point \mathbf{p} (see Lemma A), and moreover the continuity of the function χ at the point \mathbf{p} can be established by verifying that $\lim_{\mathbf{x}\to\mathbf{p}}\chi(\mathbf{p})=\mathbf{0}$.

Now $\lim_{\mathbf{x}\to\mathbf{p}} \sigma(\mathbf{x}) = \mathbf{0}$. The continuity of the linear transformation $(D\psi)_{\mathbf{q}}$ therefore ensures that

$$\lim_{\mathbf{x}\to\mathbf{p}}(D\psi)_{\mathbf{q}}(\sigma(\mathbf{x})) = (D\psi)_{\mathbf{q}}\left(\lim_{\mathbf{x}\to\mathbf{p}}\sigma(\mathbf{x})\right) = (D\psi)_{\mathbf{q}}(\mathbf{0}) = \mathbf{0}.$$

Also there exist positive real numbers M and δ_0 such that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \le M|\mathbf{x} - \mathbf{p}|$ whenever $|\mathbf{x} - \mathbf{p}| < \delta_0$ (see Proposition 8.18). Then, given any positive real number ε , there exists some real number δ satisfying $0 < \delta < \delta_0$ which is small enough to ensure that $|\tau(\varphi(\mathbf{x}))| < \varepsilon/M$ whenever $|\mathbf{x} - \mathbf{p}| < \delta$, because $\tau(\varphi(\mathbf{p})) = \tau(\mathbf{q}) = \mathbf{0}$ and the composition function $\tau \circ \varphi$ is continuous at the point \mathbf{p} . It follows that

$$\frac{|\varphi(\mathbf{x}) - \varphi(\mathbf{p})|}{|\mathbf{x} - \mathbf{p}|} |\tau(\varphi(\mathbf{x}))| < \varepsilon$$

whenever $|\mathbf{x} - \mathbf{p}| < \delta$. Consequently

$$\lim_{\mathbf{x} \to \mathbf{p}} \left(\frac{|\varphi(\mathbf{x}) - \varphi(\mathbf{p})|}{|\mathbf{x} - \mathbf{p}|} \left| \tau(\varphi(\mathbf{x})) \right| \right) = \mathbf{0}.$$

We can now conclude that

$$\lim_{\mathbf{x}\to\mathbf{p}}\chi(\mathbf{x})=\lim_{\mathbf{x}\to\mathbf{p}}(D\psi)_{\mathbf{q}}(\sigma(\mathbf{x}))+\lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{|\varphi(\mathbf{x})-\varphi(\mathbf{p})|}{|\mathbf{x}-\mathbf{p}|}\,\tau(\varphi(\mathbf{x}))\right)=\mathbf{0}=\chi(\mathbf{p}),$$

and consequently the composition function $\psi \circ \varphi$ is differentiable at the point \mathbf{p} , with derivative $(D\psi)_{\varphi(\mathbf{p})} \circ (D\varphi)_{\mathbf{p}}$, as required.