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8 Differentiation of Functions of Several Real

Variables

8.1 Functions with First Order Partial Derivatives

If a real-valued function of a single real variable is differentiable, then it is
guaranteed to be continuous. However, for a function of two or more real
variables, the mere existence of first order partial derivatives throughout the
domain of the function is not sufficient to ensure continuity.

Example Let f :R2 → R be defined so that

f(x, y) =


2xy

x2 + y2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

If (x, y) 6= (0, 0) then the partial derivatives of f are well-defined at (x, y),
and

∂f

∂x
=

2y(x2 − y2)
(x2 + y2)2

,
∂f

∂y
=
−2x(x2 − y2)

(x2 + y2)2
.

The partial derivatives of the function f at (0, 0) are also well-defined, and
are equal to zero, because the function f has the value zero along the lines
y = 0 and x = 0. Thus the first order partial derivatives of the function f
are well-defined throughout the domain R2 of the function.

Nevertheless f(x, y) = 1 at all points of the line x = y with the exception
of the origin (0, 0), where the function takes the value zero. It follows from
this that the function f is discontinuous at (0, 0).

Example Let g:R2 → R be defined so that

g(x, y) =


2xy

x2 + y2
e

1
x2+y2 if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

This function g also have well-defined first order partial derivatives through-
out R2. But |g(x, y)| increases faster than any negative power of the distance
from the origin as the point (x, y) approaches the origin along any straight
line other than the lines y = 0 and x = 0.

Example Let h:R2 → R be defined so that

h(x, y) =


2x2y

x4 + y2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).
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The function h takes the value zero along the lines y = 0 and x = 0. It
therefore has well-defined first order partial derivatives at the origin that
have the value zero. It also has well-defined first order partial derivatives at
all other points of R2.

Now if (u, v) is a point of R2, and if v 6= 0 and t 6= 0, then

h(tu, tv) =
2tu2v

t2u4 + v2
.

It follows that lim
t→0

h(tu, tv) = 0 whenever v 6= 0. This limit is also zero

when v = 0 because the function takes the value zero along the line y = 0.
Nevertheless h(t, t2) = 1 for all non-zero real numbers t. The point (t, t2)
approaches the origin (0, 0) as t tends to zero, and h(0, 0) = 0. It follows
that the function h is not continuous at the origin.

8.2 Growth of Functions with Bounded Partial Deriva-
tives

An open set X in Rm is a product of open intervals J1, J2, . . . , Jm if

X = J1 × J2 × · · · × Jm
= {(x1, x2, . . . , xm) ∈ Rm : xi ∈ Ji for i = 1, 2, . . . ,m}.

Suppose that u and v are points of X, where X is an open set in Rm that is a
product of open intervals Ji for i = 1, 2, . . . , n. Then there exist real numbers
ai and bi in the open interval Ji for i = 1, 2, . . . ,m such that ai < ui < bi
and ai < vi < bi for i = 1, 2, . . . ,m. Let H be the closed subset of Rm

consisting of those points (x1, x2, . . . , xm) whose ith coordinate xi satisfies
min(ui, vi) ≤ xi ≤ max(ui, vi) for i = 1, 2, . . . ,m. Then H ⊂ X.

Lemma 8.1 Let u and v be points of Rm. Then

m∑
i=1

|ui − vi| ≤
√
m |u− v|.

Proof Consider the scalar product (u−v).s of the m-dimensional vector u−
v with the vector s whose ith component si is determined for i = 1, 2, . . . ,m

so that si = 1 if ui ≥ vi and si = −1 if ui < vi. Now (u−v) . s =
m∑
i=1

|ui− vi|

and |s| =
√
m. Schwarz’s Inequality (Lemma 2.1) ensures that (u− v) . s ≤

|u− v| |s|. The required inequality follows immediately.
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Proposition 8.2 Let X be an open set in Rm that is a product of open
intervals, let f :X → R be a real-valued function on X, and let M be a
positive constant. Suppose that ∣∣∣∣ ∂f∂xi

∣∣∣∣ ≤M

throughout the open set X for i = 1, 2, . . . ,m. Then

|f(u)− f(v)| ≤
√
mM |u− v|

for all points u and v of X.

Proof Let u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm). Then real numbers
ai and bi can be found such that ai < ui < bi, ai < vi < bi and ai and bi
both belong to or are endpoints of the interval Ji for i = 1, 2, . . . ,m. For
each integer k between 0 and m, let

wk = (wk,1, wk,2, . . . , wk,m)

where

wk,i =

{
vi if i ≤ k;
ui if i > k.

Then ai < wk,i < bi for k = 0, 1, 2, . . . ,m and i = 1, 2, . . . ,m. Moreover,
for each integer k between 1 and m, the points wk−1 and and wk differ only
in the kth coordinate, and the line segment joining these points is wholly
contained in the open set X. It follows that

d

dt
(f((1− t)wk−1 + twk)) = (vk − uk)

∂f

∂xk

∣∣∣∣
(1−t)wk−1+twk

.

Consequently ∣∣∣∣ ddt (f((1− t)wk−1 + twk))

∣∣∣∣ ≤M |uk − vk|,

and therefore
|f(wk−1)− f(wk)| ≤M |uk − vk|

for i = 1, 2, . . . ,m (see Corollary 7.9). Thus (applying the inequality stated
in Lemma 8.1,) we conclude that

|f(u)− f(v)| ≤
m∑
k=1

|f(wk−1)− f(wk)| ≤M
m∑
k=1

|uk − vk|

≤
√
mM |u− v|,

as required.
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Example Let f :Rm → R be the function defined so that f(x1, x2, . . . , xm) =
m∑
i=1

xi for all (x1, x2, . . . , xm) ∈ Rm. Now
∂f

∂xi
= 1 throughout Rm for i =

1, 2, . . . ,m. Let u = (0, 0, . . . , 0) and v = (1, 1, . . . , 1). Then |u − v| =
√
m

and |f(u)−f(v)| = m, and thus |f(u)−f(v)| =
√
m |u−v|. This shows that

the inequality proved in Proposition 8.2 is sharp, i.e., there exist instances
where, with an appropriate choice of the function f and the points u and v,
the stated upper bound on |f(u)− f(v)| is attained.

Corollary 8.3 Let X be an open set in Rm that is a product of open in-
tervals, let ϕ:X → Rn be a function mapping X into Rn, and let M be a
positive constant. Suppose that ∣∣∣∣∂fj∂xi

∣∣∣∣ ≤M

throughout the open set X for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where
fj:X → R is the jth component of the map ϕ. Then

|ϕ(u)− ϕ(v)| ≤
√
mnM |u− v|

for all points u and v of X.

Proof Let u and v be points of X. Then (on applying the inequality stated
in Proposition 8.2,) we find that

|ϕ(u)− ϕ(v)|2 =
n∑

j=1

(fj(u)− fj(v))2 ≤ mnM2 |u− v|2.

The result follows.

Corollary 8.4 Let X be an open set in Rm, let ϕ:X → Rn be a function
mapping X into Rn, and let M be a positive constant. Suppose that∣∣∣∣∂fj∂xi

∣∣∣∣ ≤M

throughout the open set X for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where
fj:X → R is the jth component of the map ϕ. Then the function ϕ is
continuous on X.

Proof Let p be a point of X. The set X is open in Rm, and therefore there
exists an open set V that is a product of open intervals such that p ∈ V and
V ⊂ X. It then follows from Corollary 8.3 that

|ϕ(u)− ϕ(v)| ≤
√
mnM |u− v|

for all points u and v of V . This inequality ensures that the function ϕ is
continuous around the point p. The result follows.
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8.3 Functions with Continuous Partial Derivatives

We now investigate the behaviour of functions of several real variables whose
first order partial derivatives are continuous.

Definition Let X be an open set in Rm, and let f :X → Rn be real-valued
function on X, and let p be a point of X. Suppose that the first order
partial derivatives of f are defined at the point p. The gradient (∇f)p of f
at the point p is the m-dimensional vector whose components are the partial
derivatives of the function f at the point p. Thus

(∇f)p =

(
∂f

∂x1

∣∣∣∣
x=p

,
∂f

∂x2

∣∣∣∣
x=p

, . . .
∂f

∂xm

∣∣∣∣
x=p

)
.

The mere existence of first order partial derivatives of a real-valued func-
tion around a given point is not sufficient to enable the gradient of that
function to provide a reasonable approximation to the function around that
point. On the other hand, as we shall see, if the first order partial derivatives
are not only defined around that point but are also continuous there, then
the gradient of the function does determine a “first order” approximation to
the function around that point.

Proposition 8.5 Let X be an open set in Rm, let f :X → R be a real-
valued function on X, and let p be a point of X. Suppose that the first order
partial derivatives of the function f are defined throughout the set X and
are continuous at the point p. Then, given any positive real number ε, there
exists some positive real number δ such that

|f(u)− f(v)− (∇f)p . (u− v)| ≤ ε |u− v|

for all points u and v of X satisfying |u − p| < δ and |v − p| < δ, where
(∇f)p denotes the gradient of the function f at the point p.

Proof Let p = (p1, p2, . . . , pm), and let g:X → R be the real-valued function
on X defined so that

g(x) = f(x)− f(p)− (∇f)p . (x− p)

for all x ∈ X. Then the function g has first order partial derivatives, defined
throughout the open set X, which are continuous at the point p. Moreover
g(p) = 0 and

∂g

∂xi

∣∣∣∣
x=p

= 0
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for i = 1, 2, . . . , n. Moreover

g(u)− g(v) = f(u)− f(v)− (∇f)p . (u− v)

for all points u and v of X.
Let some positive real number ε be given. Now the domain X of the

functions f and g is an open subset of Rm. This, together with the continuity
of the first order partial derivatives of the function g at the point p, ensures
that some positive real number δ can then be chosen small enough to ensure
both that

{(x1, x2, . . . , xm) ∈ Rm : |pi − xi| ≤ δ for i = 1, 2, . . . ,m} ⊂ X

and also that ∣∣∣∣ ∂g∂xi
∣∣∣∣ ≤ ε√

m

for i = 1, 2, . . . ,m at all points (x1, x2, . . . , xm) of Rm that satisfy |xi−pi| < δ
for i = 1, 2, . . . ,m.

It now follows (on applying Proposition 8.2) that

|g(u)− g(v)| ≤ ε |u− v|

when the components of u and v satisfy |ui − pi| < δ and |vi − pi| < δ for
i = 1, 2, . . . ,m. The result follows.

Corollary 8.6 Let X be an open set in Rm, let f :X → Rn be a real-valued
function on X, and let p be a point of X. Suppose that the first order
partial derivatives of the function f are defined throughout the set X and are
continuous at the point p. Then

lim
x→p

1

|x− p|
|f(x)− f(p)− (∇f)p . (x− p))| = 0,

where (∇f)p denotes the gradient of the function f at the point p.

Proof Proposition 8.5 ensures that, given any positive real number ε, there
exists a positive real number δ such that

1

|x− p|
|f(x)− f(p)− (∇f)p . (x− p)| ≤ ε

for all points x of X satisfying 0 < |x − p| < δ. The result therefore
follows directly from the formal definition of limits of functions of several
real variables.
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Corollary 8.7 Let X be an open set in Rm, let ϕ:X → Rn be a function
on X taking values in Rn, let f1, f2, . . . , fn be the components of the map ϕ,
and let p be a point of X. Suppose that the first order partial derivatives
of the components of the map ϕ are defined throughout the set X and are
continuous at the point p. Then, given any positive real number ε, there
exists some positive real number δ such that

|ϕ(u)− ϕ(v)− (Dϕ)p (u− v)| ≤ ε |u− v|

for all points u and v of X satisfying |u− p| < δ and |v − p| < δ, where

(Dϕ)p w = ((∇f1)p .w, (∇f2)p .w, . . . , (∇fn)p .w)

for all w ∈ Rm.

Proof It follows from Proposition 8.5 that, given any positive real number ε,
there exists some positive real number δ such that

|fj(u)− fj(v)− (∇fj)p . (u− v)| ≤ ε√
n
|u− v|

for j = 1, 2, . . . , n, and for all points u and v of X satisfying |u−p| < δ and
|v − p| < δ. Then

|ϕ(u)− ϕ(v)− (Dϕ)p (u− v)|2

=
n∑

j=1

(fj(u)− fj(v)− (∇fj)p . (u− v))2

≤ ε2 |u− v|2

for all points u and v of X satisfying |u−p| < δ and |v−p| < δ. The result
follows.

Corollary 8.8 Let X be an open set in Rm, let ϕ:X → Rn be a function
on X taking values in Rn, let f1, f2, . . . , fn be the components of the map ϕ,
and let p be a point of X. Suppose that the first order partial derivatives
of the components of the map ϕ are defined throughout the set X and are
continuous at the point p. Then

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− (Df)p (x− p))| = 0,

where
(Dϕ)p w = ((∇f1)p .w, (∇f2)p .w, . . . , (∇fn)p .w)

for all w ∈ Rm.
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Proof Proposition 8.7 ensures that, given any positive real number ε, there
exists a positive real number δ such that

1

|x− p|
|ϕ(x)− ϕ(p)− (Df)p (x− p)| ≤ ε

for all points x of X satisfying 0 < |x − p| < δ. The result therefore
follows directly from the formal definition of limits of functions of several
real variables.

8.4 Derivatives of Functions of Several Variables

Definition Let X be an open subset of Rm let ϕ:X → Rn be a function
mapping X into Rn, let T :Rm → Rn be a linear transformation from Rm to
Rn, and let p be a point of X. The function ϕ is said to be differentiable at
p, with derivative T :Rm → Rn if and only if

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) = 0.

Henceforth we shall usually denote the derivative of a differentiable map
ϕ:X → Rn at a point p of its domain X by (Dϕ)p.

The derivative (Dϕ)p of ϕ at p is sometimes referred to as the total
derivative of ϕ at p. If ϕ is differentiable at every point of X then we say
that ϕ is differentiable on X.

Lemma 8.9 Let T :Rm → Rn be a linear transformation from Rm into Rn.
Then T is differentiable at each point p of Rm, and (DT )p = T .

Proof This follows immediately from definition of differentiability, given
that Tx− Tp− T (x− p) = 0 for all x ∈ Rm.

Lemma 8.10 Let X be an open subset of Rm let ϕ:X → Rn be a function
mapping X into Rn, let T :Rm → Rn be a linear transformation from Rm

to Rn, and let p be a point of X. Then the function ϕ is differentiable at
p, with derivative T , if and only if, given any positive real number ε, there
exists some positive real number δ such that

|ϕ(x)− ϕ(p)− T (x− p)| ≤ ε|x− p|

at all points x of X that satisfy |x− p| < δ.
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Proof First suppose that the function ϕ:X → Rn has the property that,
given any positive real number ε0, there exists some positive real number δ
such that

|ϕ(x)− ϕ(p)− T (x− p)| ≤ ε0|x− p|

at all points x of X that satisfy |x − p| < δ. Let some positive number ε
be given, and let ε0 be chosen so that 0 < ε0 < ε. Then there exists some
positive real number δ such that the above inequality holds at all points x of
X that satisfy |x− p| < δ. But then

1

|x− p|
|ϕ(x)− ϕ(p)− T (x− p)| < ε

at all points x of X that satisfy 0 < |x− p| < δ, and therefore

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) = 0.

Thus the function ϕ is differentiable at the point p.
Conversely suppose that the function ϕ is differentiable at the point p.

Let some positive real number ε be given. Then there exists some positive
real number δ such that

1

|x− p|
|ϕ(x)− ϕ(p)− T (x− p)| < ε

at all points x of X that satisfy 0 < |x− p| < δ. Considering separately the
cases when x = p and when 0 < |x− p| < δ, it then follows that

|ϕ(x)− ϕ(p)− T (x− p)| ≤ ε|x− p|

at all points x of X that satisfy |x− p| < δ. The result follows.

Lemma 8.11 Let X be an open subset of Rm let ϕ:X → Rn be a function
mapping X into Rn, and let p be a point of X. Suppose that the function ϕ
is differentiable at the point p. Then ϕ is continuous at p.

Proof Suppose that the function ϕ is differentiable at p with derivative
(Dϕ)p. It then follows from the definition of differentiability that

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| = 0.
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It then follows from basic properties of limits that

lim
x→p
|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|

=

(
lim
x→p
|x− p|

)(
lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|

)
= 0.

Therefore
lim
x→p

(ϕ(x)− ϕ(p)− (Dϕ)p(x− p)) = 0.

But then
lim
x→p

ϕ(x) = lim
x→p

(ϕ(p) + (Dϕ)p(x− p)) = ϕ(p).

Consequently the function ϕ is continuous at p. The result follows.

Proposition 8.12 Let X be an open set in Rm, let ϕ:X → Rn be a function
on X taking values in Rn, and let p be a point of X. Suppose that the
first order partial derivatives of the components of the map ϕ are defined
throughout some open set to which the point p belongs and are also continuous
at the point p itself. Then the function ϕ is differentiable at the point p.

Proof Let f1, f2, . . . , fn be the components of the map ϕ. It follows from
Corollary 8.8 that

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− (Df)p (x− p))| = 0,

where
(Dϕ)p w = ((∇f1)p .w, (∇f2)p .w, . . . , (∇fn)p .w)

for all w ∈ Rm. The function ϕ therefore satisfies the definition of differen-
tiability at p, as required.

8.5 The Jacobian Matrix of a Differentiable Function

Proposition 8.13 Let X be an open set in Rm, let ϕ:X → Rn be a function
mapping X into Rn, and let p be a point of X at which the function ϕ is
differentiable. Let w be an element of Rm. Then

(Dϕ)pw = lim
t→0

1

t
(ϕ(p + tw)− ϕ(p)) .

Thus the derivative (Dϕ)p of ϕ at p is uniquely determined by the map ϕ.
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Proof Let w be some vector in Rm, and let some positive real number ε be
given. Then let some positive real number ε0 be chosen so that ε0|w| ≤ ε.
The differentiability of ϕ at p then ensures that there exists some positive
real number δ0 which is small enough to ensure that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε0|x− p|

at all points x of X that satisfy |x − p| < δ0. (see Lemma 8.10). Setting
x = p + tw, and choosing a positive real number δ for which |w|δ ≤ δ0, we
find that

1

|t|
|ϕ(p + tw)− ϕ(p)− t(Dϕ)pw| ≤ ε0 |w| ≤ ε

whenever 0 < |t| < δ.
Considering separately the cases as t tends to zero through positive and

negative values, we can then conclude that

lim
t→0+

1

t
(ϕ(p + tw)− ϕ(p)− t(Dϕ)pw) = 0

and

lim
t→0−

1

t
(ϕ(p + tw)− ϕ(p)− t(Dϕ)pw) = 0,

It follows that

lim
t→0

1

t
(ϕ(p + tw)− ϕ(p)) = (Dϕ)pw,

as required.

Corollary 8.14 Let X be an open set in Rm, let ϕ:X → Rn be a function
mapping X into Rn, and let p be a point of X at which the function ϕ is
differentiable. Then the derivative (Dϕ)p of ϕ at the point p is uniquely
determined by the map ϕ.

Proof The result of Proposition 8.13 shows that, for all w ∈ Rm, the value
of (Dϕ)p w is expressible as a limit involving the function ϕ itself and is
thus uniquely determined by the function ϕ itself. Thus there cannot be
more than one linear transformation from Rm to Rn that can represent the
derivative of the function ϕ at the point p.

Corollary 8.15 Let X be an open set in Rm, let ϕ:X → Rn be a function
mapping X into Rn, and let p be a point of X at which the function ϕ is
differentiable. Let f1, f2, . . . , fn denote the components of the function let
ϕ:X → Rn. Then the first order partial derivatives of the components of ϕ
are all defined at the point p, and the derivative (Dϕ)p of the map ϕ at the
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point p is represented by the n ×m matrix whose coefficient in the ith row

and jth column is equal to the value at p of the partial derivative
∂fi
∂xj

of fi

with respect to the jth coordinate function xj on X.

Proof Let e1, e2, . . . , em denote the standard basis of Rm, where the ith com-
ponent of the vector ej is equal to 1 when i = j, but is equal to zero otherwise.
Basic linear algebra ensures that the linear transformation (Dϕ)p:Rm → Rn

is represented by the matrix J(p) whose coefficient Ji,j(p) in the ith row and
jth column is equal to the ith component of the vector (Dϕ)p ej. It then
follows (applying Proposition 8.14) that

Ji,j(p) = lim
t→0

1

t
(fi(p + tej)− fi(p)) =

∂fi
∂xj

∣∣∣∣
x=p

,

as required.

Let X be an open set in Rm, let ϕ:X → Rn be a differentiable function
mapping X into Rn. Corollary 8.15 ensures that the derivative of ϕ at any
point p of X is the linear transformation from Rm to Rn that sends w ∈ Rm

to J(p)w, where J is the n×m matrix

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xm


of functions on X whose coefficients are the first order partial derivatives of
the components f1, f2, . . . , fn of the map ϕ. This matrix of partial derivatives
is known as the Jacobian matrix of the map ϕ.

Example Let ϕ:R2 → R2 be defined so that

ϕ

((
x
y

))
=

(
x2 − y2

2xy

)
for all real numbers x and y. Let p and q be fixed real numbers. Then

ϕ

((
x
y

))
− ϕ

((
p
q

))
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=

(
x2 − y2

2xy

)
−
(
p2 − q2

2pq

)
=

(
(x+ p)(x− p)− (y + q)(y − q)

2q(x− p) + 2p(y − q) + 2(x− p)(y − q)

)
=

(
2p(x− p)− 2q(y − q) + (x− p)2 − (y − q)2

2q(x− p) + 2p(y − q) + 2(x− p)(y − q)

)
=

(
2p −2q
2q 2p

)(
x− p
y − q

)
+

(
(x− p)2 − (y − q)2

2(x− p)(y − q)

)
.

Now, given (x, y) ∈ R2, let r =
√

(x− p)2 + (y − q)2. Then |x − p| < r
and |y − q| < r, and therefore

|(x− p)2 − (y − q)2| ≤ |x− p|2 + |y − q|2 ≤ 2r2

and 2(x− p)(y − q) ≤ 2r2, and thus

|(x− p)2 − (y − q)2|√
(x− p)2 + (y − q)2

≤ 2r and
|2(x− p)(y − q)|√
(x− p)2 + (y − q)2

≤ 2r.

Thus, given any positive real number ε, let δ = 1
2
ε. Then∣∣∣∣∣ (x− p)2 − (y − q)2√

(x− p)2 + (y − q)2

∣∣∣∣∣ < ε and

∣∣∣∣∣ 2(x− p)(y − q)√
(x− p)2 + (y − q)2

∣∣∣∣∣ < ε

whenever 0 < |(x, y)− (p, q)| < δ. It follows therefore that

lim
(x,y)→(0,0)

1√
(x− p)2 + (y − q)2

(
(x− p)2 − (y − q)2

2(x− p)(y − q)

)
=

(
0
0

)
.

Thus the function ϕ:R2 → R2 is differentiable at (p, q), and the derivative of
this function at (p, q) is the linear transformation represented by the matrix(

2p −2q
2q 2p

)
.

8.6 Sums, Differences and Multiples of Differentiable
Functions

Proposition 8.16 Let X be an open set in Rm, and let f :X → R and
g:X → R be functions mapping X into R. Let p be a point of X. Suppose
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that f and g are differentiable at p. Then the functions f + g and f − g are
differentiable at p, and

D(f + g)p = (Df)p + (Dg)p

and
D(f − g)p = (Df)p − (Dg)p.

Moreover, given any real number c, the function cf is differentiable at p and

D(cf)p = c(Df)p.

Proof The limit of a sum of functions is the sum of the limits of those
functions, provided that these limits exist. Applying the definition of differ-
entiability, it therefore follows that

lim
x→p

1

|x− p|

(
f(x) + g(x)− (f(p) + g(p))− ((Df)p + (Dg)p)(x− p)

)
= lim

x→p

1

|x− p|

(
f(x)− f(p)− (Df)p(x− p)

)
+ lim

x→p

1

|x− p|

(
g(x)− g(p)− (Dg)p(x− p)

)
= 0.

Therefore
D(f + g)p = (Df)p + (Dg)p.

Also the function −g is differentiable, with derivative −(Dg)p. It follows
that f − g is differentiable, with derivative (Df)p − (Dg)p.

Let c be a real number. Then

lim
x→p

1

|x− p|

(
cf(x)− cf(p)− c(Df)p(x− p)

)
= c lim

x→p

1

|x− p|

(
f(x)− f(p)− (Df)p(x− p)

)
= 0.

It follows that the function cf is differentiable at p, and D(cf)p = c(Df)p,
as required.

8.7 An Inequality limiting the Growth of a Differen-
tiable Function

We shall derive an inequality bounding the growth of a function of of several
real variables around a point where it is differentiable. The statement of
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the result makes reference to the operator norm of a linear transformation.
Accordingly we now give the definition of operator norms.

Definition Let T :Rm → Rn be a linear transformation. The operator norm
‖T‖op of T is the smallest non-negative real number with the property that
|Tw| ≤ ‖T‖op |w| for all w ∈ Rm.

The operator norm ‖T‖op of a linear transformation T :Rm → Rn may be
characterized as the maximum value attained by |Tw| as w ranges over all
vectors in Rm that satisfy |w| = 1.

Lemma 8.17 Let T :Rm → Rn be a linear transformation from Rm to Rn,
and let ‖T‖op denote the operator norm of T . Also let Ai,j = Tei . Tej for
all integers i and j between 1 and m, where, for each integer j between 1 and
m, the vector ej is the jth standard vector whose jth component is equal to
one and whose other components are all zero. Then let A denote the matrix
whose coefficient in the ith row and jth column is Ai,j, and let λmax denote the
maximum eigenvalue of the real symmetric matrix A. Then ‖T‖op =

√
λmax.

Proof The matrix A is a real symmetric matrix, and, given any such matrix,
there exists an orthogonal matrix R, with transpose RT for which RART is
diagonal. The inverse of the matrix R is then equal to its transpose RT . Let
λi denote the coefficient in the ith row and column of the diagonal matrix
RART for i = 1, 2, . . . ,m. Then λ1, λ2, . . . , λm are the eigenvalues of the
matrix A.

Let w ∈ Rm, and let w = (w1, w2, . . . , wm). Then

|Tw|2 =

(
m∑
i=1

wiTei

)
.

(
m∑
j=1

wjTej

)
=

m∑
i=1

m∑
j=1

Ai,jwiwj.

Thus if we represent w in matrix algebra as a column vector with coefficients
w1, w2, . . . , wn then |Tw|2 = wTAw, where wT denotes the row vector that
is the transpose of the column vector w.

Let u = Rw, so that uk =
m∑
j=1

Rk,jwj for k = 1, 2, . . . ,m. Then w = RTu,

and therefore

|Tw|2 = wTAw = uTRARTu =
m∑
k=1

λku
2
k ≤ λmax

m∑
k=1

u2k.

Moreover
n∑

k=1

u2k = uTu = wTRTRw = wTw = |w|2.
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We conclude therefore that

|Tw|2 ≤ λmax|w|2

for all w ∈ Rm. Moreover if w = RTek, where k is an integer between 1 and
m for which λk = λmax, then

|Tw|2 = λmax|w|2.

The result follows.

Proposition 8.18 Let X be an open set in Rm, let ϕ:X → Rn be a func-
tion mapping X into Rn, let p be a point of X at which the function ϕ is
differentiable, and let M be a real number satisfying M > ‖(Dϕ)p‖op, where
‖(Dϕ)p‖op denotes the operator norm of the derivative (Dϕ)p of ϕ at p.
Then there exists some positive real number δ such that

|ϕ(x)− ϕ(p)| ≤M |x− p|

for all points x of X satisfying |x− p| < δ.

Proof Let ε = M − ‖(Dϕ)p‖op. Then ε > 0. Now

|(Dϕ)pw| ≤ ‖(Dϕ)p‖op |w|

for all w ∈ Rm. Also the differentiability of the function ϕ at the point p
ensures that there exists some positive real number δ that is small enough
to ensure that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε |x− p|

for all x ∈ X satisfying |x− p| < δ (see Lemma 8.10).
It then follows from the Triangle Inequality satisfied by the Euclidean

distance function that

|ϕ(x)− ϕ(p)| ≤ |(Dϕ)p(x− p)|+ ε|x− p|

for all x ∈ X satisfying |x− p| < δ. But the definition of the operator norm
ensures that

|(Dϕ)p(x− p)| ≤ ‖(Dϕ)p‖op |x− p|
for all x ∈ X. It follows that

|ϕ(x)− ϕ(p)| ≤ (‖(Dϕ)p‖op + ε)|x− p| = M |x− p|

for all x ∈ X satisfying |x− p| < δ, as required.
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8.8 The Product Rule for Functions of Several Vari-
ables

Let f :X → R and g:X → R be real-valued functions defined over an open
subset X of Rm. We denote by f · g the product of the functions f and g,
defined so that (f · g)(x) = f(x)g(x) for all x ∈ X.

Proposition 8.19 (Product Rule) Let X be an open set in Rm, let
f :X → R and g:X → R be real-valued functions on X, and let p be a
point of X. Suppose that f and g are differentiable at p. Then the function
f · g is differentiable at p, and

D(f · g)p = g(p)(Df)p + f(p)(Dg)p.

Proof The differentiability of the functions f and g at p ensures the exis-
tence of positive real numbers ensures that there exist positive real numbers
M , N and δ that ensure that

|f(x)− f(p)| ≤M |x− p|

and
|g(x)− g(p)| ≤ N |x− p|

at all points x of Rm that satisfy |x − p| < δ. (This follows on applying
Proposition 8.18.) Let h:X → R be the real-valued function on X defined
so that

h(x) = (f(x)− f(p))(g(x)− g(p))

= f(x)g(x) + f(p)g(p)− f(p)g(x)− f(x)g(p)

for all x ∈ X. Then h(p) = 0 and

|h(x)|
|x− p|

=
1

|x− p|
|f(x)− f(p)| |g(x)− g(p)|

≤ MN |x− p|

at all points x of Rm that satisfy |x− p| < δ. It follows that

lim
x→p

1

|x− p|
h(x) = 0.

It then follows from the definition of differentiability that the function h:X →
R is differentiable at the point p, and (Dh)p = 0.
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Now

f(x)g(x) = f(p)g(x) + g(p)f(x)− f(p)g(p) + h(x)

for all x ∈ X. Differentiating, and using the fact that (Dh)p = 0, we find
that f · g is differentiable at p, and

(D(f · g))p = f(p) (Dg)p + g(p) (Df)p,

as required.

8.9 The Chain Rule for Functions of Several Variables

Proposition 8.20 (Chain Rule) Let X and Y be open sets in Rm and
Rn respectively, let ϕ:X → Rn and ψ:Y → Rk be functions mapping X and
Y into Rn and Rk respectively, where ϕ(X) ⊂ Y , and let p be a point of
X. Suppose that ϕ is differentiable at p and that ψ is differentiable at ϕ(p).
Then the composition ψ ◦ ϕ:X → Rk is differentiable at p, and

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p.

Thus the derivative of the composition ψ ◦ ϕ of the functions at the point p
is the composition of the derivatives of the functions ϕ and ψ at p and ϕ(p)
respectively.

Proof The differentiability of the functions ϕ and ψ at p and ϕ(p) respec-
tively ensures that there exist positive real numbers M , N , δ1 and η1 such
that the following conditions hold: x ∈ X and |ϕ(x)−ϕ(p)| ≤M |x−p| for
all x ∈ Rm satisfying |x−p| < δ1; y ∈ Y and |ψ(y)−ψ(ϕ(p))| ≤ N |y−ϕ(p)|
for all y ∈ Rn satisfying |y−ϕ(p)| < η1; |(Dψ)ϕ(p)w| ≤ N |w| for all w ∈ Rn.
(This follows on applying Proposition 8.18.)

Let some positive real number ε be given. It follows from the differentia-
bility of ψ at ϕ(p) that there exists some real number η2, where 0 < η2 ≤ η1,
such that∣∣ψ(y)− ψ(ϕ(p))− (Dψ)ϕ(p)(y − ϕ(p))

∣∣ ≤ ε

2M
|y − ϕ(p)|

for all y ∈ Y satisfying |y−ϕ(p)| < η2. (This follows from a direct application
of Lemma 8.10.) Let some real number δ2 be chosen so that 0 < δ2 ≤ δ1 and
Mδ2 ≤ η2. If x ∈ Rm satisfies |x− p| < δ2 then x ∈ X and |ϕ(x)− ϕ(p)| ≤
M |x− p| < η2. Consequently if |x− p| < δ2 then∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(ϕ(x)− ϕ(p))

∣∣ ≤ ε

2M
|ϕ(x)− ϕ(p)|

≤ 1
2
ε|x− p|.
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Now it follows from the differentiability of ϕ at p that there exists some real
number δ satisfying the inequalities 0 < δ ≤ δ2 that is small enough to ensure
that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε

2N
|x− p|

for all x ∈ Rm satisfying |x − p| < δ. Now |(Dψ)ϕ(p)w| ≤ N |w| for all
w ∈ Rn. It follows that∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
≤ N |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|
≤ 1

2
ε|x− p|

for all x ∈ Rm satisfying |x− p| < δ.
The inequalities obtained above ensure that x ∈ X and∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
≤

∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(ϕ(x)− ϕ(p))
∣∣

+
∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
≤ ε|x− p|

at all points x of Rm that satisfy |x − p| < δ. It follows from this that the
composition function ψ ◦ ϕ is differentiable at p, and that (D(ψ ◦ ϕ))p =
(Dψ)ϕ(p) ◦ (Dϕ)p, as required.
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