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3 Convergence in Euclidean Spaces

3.1 Convergence of Infinite Sequences of Real Num-
bers

An infinite sequence x1, x2, x3, . . . of real numbers associates to each positive
integer j a corresponding real number xj.

Definition An infinite sequence x1, x2, x3, . . . of real numbers is said to con-
verge to some real number p if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − p| < ε for all positive integers j
satisfying j ≥ N .

If an infinite sequence x1, x2, x3, . . . of real numbers converges to some real
number p, then p is said to be the limit of the sequence, and we can indicate
the convergence of the infinite sequence to p by writing ‘xj → p as j → +∞’,
or by writing ‘ lim

j→+∞
xj = p’.

Let x and p be real numbers, and let ε be a strictly positive real number.
Then |x − p| < ε if and only if both x − p < ε and p − x < ε. It follows
that |x− p| < ε if and only if p− ε < x < p + ε. The condition |x− p| < ε
essentially requires that the value of the real number x should agree with p
to within an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number p if and only if, given any positive
real number ε, there exists some positive integerN such that p−ε < xj < p+ε
for all positive integers j satisfying j ≥ N .

Definition We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that xj ≤ B for all
positive integers j. Similarly we say that this sequence is bounded below if
there exists some real number A such that xj ≥ A for all positive integers j.
A sequence is said to be bounded if it is bounded above and bounded below.
Thus the sequence x1, x2, x3, . . . is bounded if and only if there exist real
numbers A and B such that A ≤ xj ≤ B for all positive integers j.

Lemma 3.1 Every convergent infinite sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be an infinite sequence of real numbers that con-
verges to some real number p. On applying the formal definition of conver-
gence (with ε = 1), we deduce the existence of some positive integer N such
that p− 1 < xj < p+ 1 for all j ≥ N . But then A ≤ xj ≤ B for all positive
integers j, where A is the minimum of x1, x2, . . . , xN−1 and p − 1, and B is
the maximum of x1, x2, . . . , xN−1 and p+ 1.
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3.2 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.

Theorem 3.2 Any non-decreasing infinite sequence of real numbers that is
bounded above is convergent. Similarly any non-increasing infinite sequence
of real numbers that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Principle that
there exists a least upper bound p for the set {xj : j ∈ N}. We claim that
the sequence converges to p.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − p| < ε whenever j ≥ N .
Now p − ε is not an upper bound for the set {xj : j ∈ N} (because p is the
least upper bound), and therefore there must exist some positive integer N
such that xN > p − ε. But then p − ε < xj ≤ p whenever j ≥ N , since the
sequence is non-decreasing and bounded above by the real number p. Thus
|xj − p| < ε whenever j ≥ N . Therefore xj → p as j → +∞, as required.

Next we note that if an infinite sequence x1, x2, x3, . . . is non-increasing
and bounded below then the sequence −x1,−x2,−x3, . . . is non-decreasing
and bounded above, and is therefore convergent. It follows that the sequence
x1, x2, x3, . . . is also convergent.

3.3 Subsequences of Sequences of Real Numbers

Definition Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xj1 , xj2 , xj3 , . . .
where j1, j2, j3, . . . is an infinite sequence of positive integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The following
sequences are examples of subsequences of this sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .
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3.4 The Bolzano-Weierstrass Theorem in One Dimen-
sion

Theorem 3.3 (Bolzano-Weierstrass for the Real Line) Every bounded
infinite sequence of real numbers has a convergent subsequence.

Proof Let some bounded infinite sequence x1, x2, x3, . . . of real numbers be
given. We define a peak index to be a positive integer j with the property
that xj ≥ xk for all positive integers k satisfying k ≥ j. Thus a positive
integer j is a peak index if and only if the jth member of the infinite se-
quence x1, x2, x3, . . . is greater than or equal to all succeeding members of
the sequence. Let S be the set consisting of all peak indices. Then

S = {j ∈ N : xj ≥ xk for all k ≥ j}.

First let us suppose that the set of peak indices is infinite. Arrange the
set S of peak indices in increasing order so that S = {j1, j2, j3, j4, . . .}, where
j1 < j2 < j3 < j4 < · · ·. It follows from the definition of peak indices
that xj1 ≥ xj2 ≥ xj3 ≥ xj4 ≥ · · · . Thus xj1 , xj2 , xj3 , . . . is a non-increasing
subsequence of the given infinite sequence x1, x2, x3, . . .. This subsequence
is bounded below (since the given infinite sequence is bounded). It follows
from Theorem 3.2 that xj1 , xj2 , xj3 , . . . is a convergent subsequence of the
given infinite sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j1 which is greater than every peak index. Then j1 is not a peak
index. Therefore there must exist some positive integer j2 satisfying j2 > j1
such that xj2 > xj1 . Moreover j2 is not a peak index (because j2 is greater
than j1 and j1 in turn is greater than every peak index). Therefore there
must exist some positive integer j3 satisfying j3 > j2 such that xj3 > xj2 .
We can continue in this fashion to construct (by induction on j) a strictly
increasing subsequence xj1 , xj2 , xj3 , . . . of our original sequence. This increas-
ing subsequence is bounded above (since the original sequence is bounded)
and thus is convergent, by Theorem 3.2. This completes the proof of the
one-dimensional case of the Bolzano-Weierstrass Theorem.

3.5 Convergence of Sequences in Euclidean Spaces

Definition An infinite sequence x1,x2,x3, . . . of points in Rn is said to con-
verge to a point p if and only if, given any strictly positive real number ε,
there exists some positive integer N such that |xj −p| < ε whenever j ≥ N .
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Given a convergent infinite sequence x1,x2,x3, . . . of points in Rn, the
point p to which the sequence converges is referred to as the limit of the
infinite sequence, and may be denoted by lim

j→+∞
xj.

Lemma 3.4 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then an
infinite sequence x1,x2,x3, . . . of points in Rn converges to p if and only
if the ith components of the elements of this sequence converge to pi for
i = 1, 2, . . . , n.

Proof For each positive integer j, let (xj)i denote the ith component of xj.
Then |(xj)i−pi| ≤ |xj−p| for i = 1, 2, . . . , n and for all positive integers j. It
follows directly from the definition of convergence that if xj → p as j → +∞
then (xj)i → pi as j → +∞.

Conversely suppose that, for each integer i between 1 and n, (xj)i → pi as
j → +∞. Let some positive real number ε be given. Then there exist positive
integersN1, N2, . . . , Nn such that |(xj)i−pi| < ε/

√
n whenever j ≥ Ni. LetN

be the maximum of N1, N2, . . . , Nn. If j ≥ N then j ≥ Ni for i = 1, 2, . . . , n,
and therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi)
2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.

3.6 The Multidimensional Bolzano-Weierstrass Theo-
rem

Theorem 3.5 (Multidimensional Bolzano-Weierstrass Theorem)
Every bounded sequence of points in a Euclidean space has a convergent sub-
sequence.

Proof The theorem is proved by induction on the dimension n of the
space Rn within which the points reside. When n = 1, the required result is
the one-dimensional case of the Bolzano-Weierstrass Theorem, and the result
has already been established in this case (see Theorem 3.3).

When n > 1, the result is proved in dimension n asssuming the result in
dimensions n − 1 and 1. Consequently the result is established successively
in dimensions 2, 3, 4, . . ., and therefore is valid for bounded sequences in Rn

for all positive integers n.
It has been shown that every bounded infinite sequence of real numbers

has a convergent subsequence (Theorem 3.3). Let n be an integer greater than
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one, and suppose, as an induction hypothesis, that, in cases where n > 2,
all bounded sequences of points in Rn−1 have convergent subsequences. Let
x1,x2,x3, . . . be a bounded infinite sequence in Rn and, for each positive
integer j, let sj denote the point of Rn−1 whose ith component is equal to
the ith component xj,i of xj for each integer i between 1 and n− 1.

Let some strictly positive real number ε be given. Now the infinite se-
quence

s1, s2, s3, . . .

of points of Rn−1 is a bounded infinite sequence. In the case when n = 2 we
can apply the one-dimensional Bolzano-Weierstrass Theorem (Theorem 3.3)
to conclude that this sequence of real numbers has a convergent subsequence.
In cases where n > 2, we are supposing as our induction hypothesis that any
bounded sequence in Rn−1 has a convergent subsequence. Thus, assuming
this induction hypothesis in cases where n > 2, we can conclude, in all cases
with n > 1, that the bounded infinite sequence s1, s2, s3, . . . of points in Rn−1

has a convergent subsequence. Let that convergent subsequence be

sm1 , sm2 , sm3 , . . . ,

where m1,m2,m3, . . . is a strictly increasing infinite sequence of positive in-
tegers, and let q = lim

j→+∞
smj

. There then exists some positive integer L such

that
|smj

− q| < 1
2
ε

for all positive integers j for which mj ≥ L. (Indeed the definition of conver-
gence ensures the existence of a positive integer N that is large enough to
ensure that |smj

− q| < 1
2
ε whenever j ≥ N . Taking L = mN then ensures

that j ≥ N whenever mj ≥ L.)
Let tj denote the nth component of the point xj of Rn for each positive

integer j. The one-dimensional Bolzano-Weierstrass Theorem ensures that
the bounded infinite sequence

tm1 , tm2 , tm3 , . . .

of real numbers has a convergent subsequence. It follows that there is a
strictly increasing infinite sequence k1, k2, k3, . . . of positive integers, where
each kj is equal to one of the positive integers m1,m2,m3, . . ., such that the
infinite sequence

tk1 , tk2 , tk3 , . . .

is convergent. Let r = lim
j→+∞

tkj . There then exists some positive integer M

such that M ≥ L and
|tkj − r| < 1

2
ε
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for all positive integers j for which kj ≥ M . It follows that if kj ≥ M then

|skj − q| < 1
2
ε and |tkj − r| < 1

2
ε.

Now there is a point p of Rn, where p = (p1, p2, . . . , pn), determined so that
the ith components of the point p of Rn is equal to the ith component of
the point q of Rn−1 for each integer i between 1 and n− 1 and also the nth
component of the point p is equal to the real number r.

Also it follows from the definition of the Euclidean norm that

|xkj − p|2 = |skj − q|2 + |tkj − r|2 < 1
2
ε2

whenever kj ≥ M . But then |xkj − p| < ε for all positive integers j for
which kj ≥ M . It follows that lim

j→+∞
xkj = p. We conclude therefore that

the bounded infinite sequence x1,x2,x3, . . . does indeed have a convergent
subsequence. This completes the proof of the Bolzano-Weierstrass Theorem
in dimension n for all positive integers n.

3.7 Cauchy Sequences in Euclidean Spaces

Definition An infinite sequence x1,x2,x3, . . . of points of n-dimensional Eu-
clidean space Rn is said to be a Cauchy sequence if, given any strictly positive
real number ε, there exists some positive integer N such that |xj − xk| < ε
for all positive integers j and k satisfying j ≥ N and k ≥ N .

Lemma 3.6 Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is bounded.

Proof Let x1,x2,x3, . . . be a Cauchy sequence of points in Rn. Then there
exists some positive integer N such that |xj − xk| < 1 whenever j ≥ N
and k ≥ N . In particular, |xj| ≤ |xN | + 1 whenever j ≥ N . Therefore
|xj| ≤ R for all positive integers j, where R is the maximum of the real
numbers |x1|, |x2|, . . . , |xN−1| and |xN | + 1. Thus the sequence is bounded,
as required.

Theorem 3.7 (Cauchy’s Criterion for Convergence) An infinite se-
quence of points of n-dimensional Euclidean space Rn is convergent if and
only if it is a Cauchy sequence.

Proof First we show that convergent sequences in Rn are Cauchy sequences.
Let x1,x2,x3, . . . be a convergent sequence of points in Rn, and let p =
lim

j→+∞
xj. Let some strictly positive real number ε be given. Then there
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exists some positive integer N such that |xj − p| < 1
2
ε for all j ≥ N . Thus

if j ≥ N and k ≥ N then |xj − p| < 1
2
ε and |xk − p| < 1

2
ε, and hence

|xj − xk| = |(xj − p)− (xk − p)| ≤ |xj − p|+ |xk − p| < ε.

Thus the sequence x1,x2,x3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence x1,x2,x3, . . . in Rn

is convergent. Now Cauchy sequences are bounded, by Lemma 3.6. The se-
quence x1,x2,x3, . . . therefore has a convergent subsequence xk1 ,xk2 ,xk3 , . . .,
by the multidimensional Bolzano-Weierstrass Theorem (Theorem 3.5). Let
p = lim

j→+∞
xkj . We claim that the sequence x1,x2,x3, . . . itself converges to p.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − xk| < 1

2
ε whenever j ≥ N and k ≥ N

(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that km ≥ N and |xkm − p| < 1

2
ε. Then

|xj − p| ≤ |xj − xkm |+ |xkm − p| < 1
2
ε+ 1

2
ε = ε

whenever j ≥ N . It follows that xj → p as j → +∞, as required.

15


