Module MAU23203: Analysis in Several Real Variables

Michaelmas Term 2023

Section 5: Continuous Functions of Several Real Variables

D. R. Wilkins

Copyright © Trinity College Dublin 2020–22

Contents

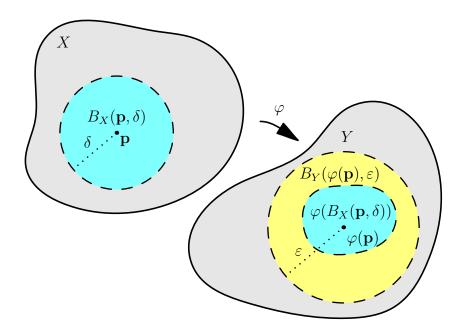
5	Cor	tinuous Functions of Several Real Variables	24
	5.1	The Concept and Basic Properties of Continuity	24
	5.2	Continuous Functions and Open Sets	28
	5.3	The Multidimensional Extreme Value Theorem	30
	5.4	Uniform Continuity for Functions of Several Real Variables	32

5 Continuous Functions of Several Real Variables

5.1 The Concept and Basic Properties of Continuity

Definition Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively. A function $\varphi: X \to Y$ from X to Y is said to be *continuous* at a point \mathbf{p} of X if and only if, given any strictly positive real number ε , there exists some strictly positive real number δ such that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$.

The function $\varphi: X \to Y$ is said to be continuous on X if and only if it is continuous at every point \mathbf{p} of X.



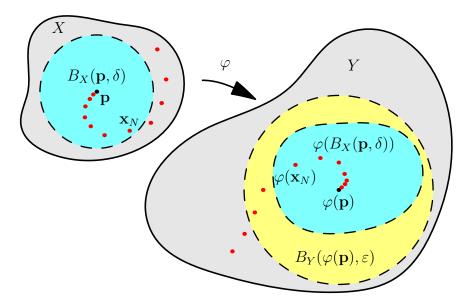
Proposition 5.1 Let X, Y and Z be subsets of Euclidean spaces, let $\varphi: X \to Y$ be a function from X to Y and let $\psi: Y \to Z$ be a function from Y to Z. Suppose that φ is continuous at some point \mathbf{p} of X and that ψ is continuous at $\varphi(\mathbf{p})$. Then the composition function $\psi \circ \varphi: X \to Z$ is continuous at \mathbf{p} .

Proof Let $\mathbf{q} = \varphi(\mathbf{p})$, and let some positive real number ε be given. Then there exists some positive real number η such that $|\psi(\mathbf{y}) - \psi(\mathbf{q})| < \varepsilon$ for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \mathbf{q}| < \eta$. But then there exists some positive real number δ such that $|\varphi(\mathbf{x}) - \mathbf{q}| < \eta$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. It

follows that $|\psi(\varphi(\mathbf{x})) - \psi(\varphi(\mathbf{p}))| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, and thus $\psi \circ \varphi$ is continuous at \mathbf{p} , as required.

Proposition 5.2 Let X and Y be subsets of Euclidean spaces, and let $\varphi: X \to Y$ be a continuous function from X to Y. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be an infinite sequence of points of X which converges to some point \mathbf{p} of X. Then the sequence $\varphi(\mathbf{x}_1), \varphi(\mathbf{x}_2), \varphi(\mathbf{x}_3), \ldots$ converges to $\varphi(\mathbf{p})$.

Proof Let some positive real number ε be given. The function φ is continuous at \mathbf{p} , and therefore there exists some positive real number δ such that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Also the infinite se-



quence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to the point \mathbf{p} , and therefore there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \delta$ whenever $j \geq N$. It follows that if $j \geq N$ then $|\varphi(\mathbf{x}_j) - \varphi(\mathbf{p})| < \varepsilon$. Thus the sequence $\varphi(\mathbf{x}_1), \varphi(\mathbf{x}_2), \varphi(\mathbf{x}_3), \ldots$ converges to $\varphi(\mathbf{p})$, as required.

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $\varphi: X \to Y$ be a function from X to Y. Then

$$\varphi(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))$$

for all $\mathbf{x} \in X$, where f_1, f_2, \dots, f_n are functions from X to \mathbb{R} , referred to as the *components* of the function φ .

Proposition 5.3 Let X and Y be subsets of Euclidean spaces, and let $\mathbf{p} \in X$. A function $\varphi: X \to Y$ is continuous at the point \mathbf{p} if and only if its components are all continuous at \mathbf{p} .

Proof Let Y be a subset of n-dimensional Euclidean space \mathbb{R}^n . Note that the ith component f_i of φ is given by $f_i = \pi_i \circ \varphi$, where $\pi_i : \mathbb{R}^n \to \mathbb{R}$ is the continuous function which maps $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ onto its ith component y_i . Now any composition of continuous functions is continuous, by Proposition 5.1. Thus if φ is continuous at \mathbf{p} , then so are the components of φ .

Conversely suppose that the components of φ are continuous at $\mathbf{p} \in X$. Let some positive real number ε be given. Then there exist positive real numbers $\delta_1, \delta_2, \ldots, \delta_n$ such that $|f_i(\mathbf{x}) - f_i(\mathbf{p})| < \varepsilon/\sqrt{n}$ for $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta_i$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$. If $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$ then

$$|\varphi(\mathbf{x}) - \varphi(\mathbf{p})|^2 = \sum_{i=1}^n |f_i(\mathbf{x}) - f_i(\mathbf{p})|^2 < \varepsilon^2,$$

and hence $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$. Thus the function φ is continuous at \mathbf{p} , as required.

Lemma 5.4 Let functions $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ be defined so that s(x,y) = x + y and m(x,y) = xy for all real numbers x and y. Then the functions s and m are continuous.

Proof Let $(u,v) \in \mathbb{R}^2$. We first show that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u,v). Let some positive real number ε be given. Let $\delta = \frac{1}{2}\varepsilon$. If (x,y) is any point of \mathbb{R}^2 whose distance from (u,v) is less than δ then $|x-u| < \delta$ and $|y-v| < \delta$, and hence

$$|s(x,y) - s(u,v)| = |x + y - u - v| \le |x - u| + |y - v| < 2\delta = \varepsilon.$$

This shows that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v).

Next we show that $m: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v). Let some positive real number ε be given. Now

$$m(x,y) - m(u,v) = xy - uv = (x-u)(y-v) + u(y-v) + (x-u)v.$$

for all points (x,y) of \mathbb{R}^2 . Thus if the distance from (x,y) to (u,v) is less than δ then $|x-u|<\delta$ and $|y-v|<\delta$, and hence $|m(x,y)-m(u,v)|<\delta^2+(|u|+|v|)\delta$. Consequently if the positive real number δ is chosen to be the minimum of 1 and $\varepsilon/(1+|u|+|v|)$ then $\delta^2+(|u|+|v|)\delta\leq (1+|u|+|v|)\delta\leq \varepsilon$, and thus $|m(x,y)-m(u,v)|<\varepsilon$ for all points (x,y) of \mathbb{R}^2 whose distance from (u,v) is less than δ . This shows that $m:\mathbb{R}^2\to\mathbb{R}$ is continuous at (u,v).

Proposition 5.5 Let X be a subset of \mathbb{R}^n , and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions from X to \mathbb{R} . Then the functions f+g, f-g and $f \cdot g$ are continuous. If in addition $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ then the quotient function f/g is continuous.

Proof Note that $f+g=s\circ\psi$ and $f\cdot g=m\circ\psi$, where the functions $\psi\colon X\to\mathbb{R}^2$, $s\colon\mathbb{R}^2\to\mathbb{R}$ and $m\colon\mathbb{R}^2\to\mathbb{R}$ are defined so that $\psi(\mathbf{x})=(f(\mathbf{x}),g(\mathbf{x}))$, s(u,v)=u+v and m(u,v)=uv for all $\mathbf{x}\in X$ and $u,v\in\mathbb{R}$. It follows from Proposition 5.3, Lemma 5.4 and Proposition 5.1 that f+g and $f\cdot g$ are continuous, being compositions of continuous functions. Now f-g=f+(-g), and both f and -g are continuous. Therefore f-g is continuous.

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$. Note that $1/g = r \circ g$, where $r: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is the reciprocal function, defined so that r(t) = 1/t for all non-zero real numbers t. Now the reciprocal function r is continuous. Thus the function 1/g is a composition of continuous functions and is thus continuous. But then, using the fact that a product of continuous real-valued functions is continuous, we deduce that f/g is continuous.

Example Consider the function $\varphi: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ defined so that

$$\varphi(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

for all real numbers x and y that are not both zero. The continuity of the components of this function φ follows from straightforward applications of Proposition 5.5. It then follows from Proposition 5.3 that the function φ is continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$.

Lemma 5.6 Let X be a subset of \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ be a continuous function mapping X into \mathbb{R}^n , and let $|\varphi|: X \to \mathbb{R}$ be the real-valued function on X defined such that $|\varphi|(\mathbf{x}) = |\varphi(\mathbf{x})|$ for all $\mathbf{x} \in X$. Then the real-valued function $|\varphi|$ is continuous on X.

Proof Let \mathbf{x} and \mathbf{p} be points of X. Then

$$|\varphi(\mathbf{x})| = |(\varphi(\mathbf{x}) - \varphi(\mathbf{p})) + \varphi(\mathbf{p})| \le |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| + |\varphi(\mathbf{p})|$$

and

$$|\varphi(\mathbf{p})| = |(\varphi(\mathbf{p}) - \varphi(\mathbf{x})) + \varphi(\mathbf{x})| \le |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| + |\varphi(\mathbf{x})|,$$

and therefore

$$||\varphi(\mathbf{x})| - |\varphi(\mathbf{p})|| \le |\varphi(\mathbf{x}) - \varphi(\mathbf{p})|.$$

The result now follows on applying the definition of continuity, using the above inequality. Indeed let \mathbf{p} be a point of X, and let some positive real number ε be given. Then there exists a positive real number δ small enough to ensure that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. But then

 $||\varphi(\mathbf{x})| - |\varphi(\mathbf{p})|| \le |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$

for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, and thus the function $|\varphi|$ is continuous, as required.

5.2 Continuous Functions and Open Sets

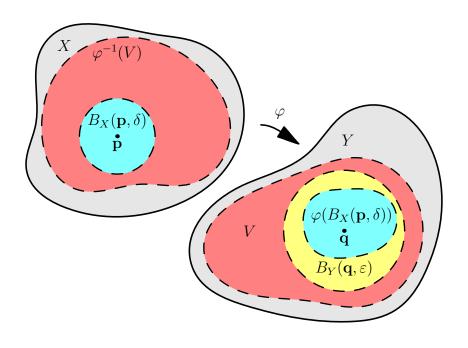
Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $\varphi: X \to Y$ be a function from X to Y. We recall that the function φ is continuous at a point \mathbf{p} of X if and only if, given any positive real number ε , there exists some positive real number δ such that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$ for all points \mathbf{x} of X satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Thus the function $\varphi: X \to Y$ is continuous at \mathbf{p} if and only if, given any positive real number ε , there exists some positive real number δ such that the function φ maps the open ball $B_X(\mathbf{p}, \delta)$ in X of radius δ centred on the point \mathbf{p} into the open ball $B_Y(\mathbf{q}, \varepsilon)$ in Y of radius ε centered on the point \mathbf{q} , where $\mathbf{q} = \varphi(\mathbf{p})$.

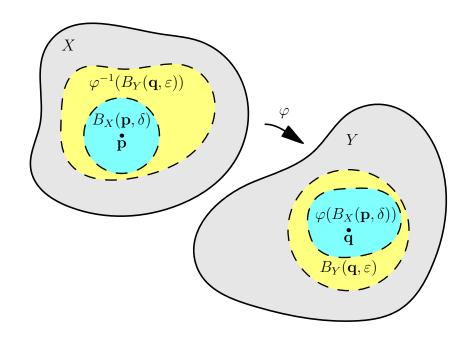
Given any function $\varphi: X \to Y$, we denote by $\varphi^{-1}(V)$ the *preimage* of a subset V of Y under the map φ , defined so that $\varphi^{-1}(V) = \{\mathbf{x} \in X : \varphi(\mathbf{x}) \in V\}$.

Proposition 5.7 Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $\varphi: X \to Y$ be a function from X to Y. The function φ is continuous if and only if $\varphi^{-1}(V)$ is open in X for every open subset V of Y.

Proof Suppose that $\varphi: X \to Y$ is continuous. Let V be an open set in Y. We must show that $\varphi^{-1}(V)$ is open in X. Let \mathbf{p} be a point of $\varphi^{-1}(V)$, and let $\mathbf{q} = \varphi(\mathbf{p})$. Then $\mathbf{q} \in V$. But V is open, hence there exists some positive real number ε with the property that $B_Y(\mathbf{q}, \varepsilon) \subset V$. But φ is continuous at \mathbf{p} . Therefore there exists some positive real number δ such that φ maps $B_X(\mathbf{p}, \delta)$ into $B_Y(\mathbf{q}, \varepsilon)$. Thus $\varphi(\mathbf{x}) \in V$ for all $\mathbf{x} \in B_X(\mathbf{p}, \delta)$, showing that $B_X(\mathbf{p}, \delta) \subset \varphi^{-1}(V)$. This shows that $\varphi^{-1}(V)$ is open in X for every open set V in Y.

Conversely suppose that $\varphi: X \to Y$ is a function with the property that $\varphi^{-1}(V)$ is open in X for every open set V in Y. Let $\mathbf{p} \in X$, and let $\mathbf{q} = \varphi(\mathbf{p})$. We must show that φ is continuous at \mathbf{p} . Let some positive real number ε be given. Then $B_Y(\mathbf{q}, \varepsilon)$ is an open set in Y, by Lemma 4.1, hence $\varphi^{-1}(B_Y(\mathbf{q}, \varepsilon))$ is an open set in X which contains \mathbf{p} . It follows that there exists some positive





real number δ such that $B_X(\mathbf{p}, \delta) \subset \varphi^{-1}(B_Y(\mathbf{q}, \varepsilon))$. Thus, given any positive real number ε , there exists some positive real number δ such that φ maps $B_X(\mathbf{p}, \delta)$ into $B_Y(\mathbf{q}, \varepsilon)$. We conclude that φ is continuous at the point \mathbf{p} , as required.

Let X be a subset of \mathbb{R}^n , let $f: X \to \mathbb{R}$ be continuous, and let c be some real number. Then the sets

$$\{\mathbf{x} \in X : f(\mathbf{x}) > c\}$$

and

$$\{\mathbf{x} \in X : f(\mathbf{x}) < c\}$$

are open in X, and, given real numbers a and b satisfying a < b, the set

$$\{ \mathbf{x} \in X : a < f(\mathbf{x}) < b \}$$

is open in X.

Again let X be a subset of \mathbb{R}^n , let $f: X \to \mathbb{R}$ be continuous, and let c be some real number. Now a subset of X is closed in X if and only if its complement is open in X. Consequently the sets

$$\{\mathbf{x} \in X : f(\mathbf{x}) \le c\}$$

and

$$\{\mathbf{x} \in X : f(\mathbf{x}) \ge c\},\$$

being the complements in X of sets that are open in X, must themselves be closed in X. It follows that that set

$$\{\mathbf{x} \in X : f(\mathbf{x}) = c\},\$$

being the intersection of two subsets X that are closed in X, must itself be closed in X.

5.3 The Multidimensional Extreme Value Theorem

Lemma 5.8 Let X be a non-empty closed bounded set in \mathbb{R}^m , and let $f: X \to \mathbb{R}$ be a continuous real-valued function defined on X. Suppose that the set of values of the function f on X is bounded below. Then there exists a point \mathbf{u} of X such that $f(\mathbf{u}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in X$.

Proof Let

$$L = \inf\{f(\mathbf{x}) : \mathbf{x} \in X\}.$$

Then there exists an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots$ in X such that

$$f(\mathbf{x}_j) < L + \frac{1}{j}$$

for all positive integers j. It follows from the multidimensional Bolzano-Weierstrass Theorem (Theorem 3.5) that this sequence has a subsequence $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$ which converges to some point \mathbf{u} of \mathbb{R}^m .

Now the point \mathbf{u} belongs to X because X is closed (see Lemma 4.7). Also

$$L \le f(\mathbf{x}_{k_j}) < L + \frac{1}{k_j}$$

for all positive integers j. It follows that $\lim_{j\to+\infty} f(\mathbf{x}_{k_j}) = L$. Consequently

$$f(\mathbf{u}) = f\left(\lim_{j \to +\infty} \mathbf{x}_{k_j}\right) = \lim_{j \to +\infty} f(\mathbf{x}_{k_j}) = L$$

(see Proposition 5.2). It follows therefore that $f(\mathbf{x}) \geq f(\mathbf{u})$ for all $\mathbf{x} \in X$, Thus the function f attains a minimum value at the point \mathbf{u} of X, which is what we were required to prove.

Lemma 5.9 Let X be a non-empty closed bounded set in \mathbb{R}^m , and let $\varphi: X \to \mathbb{R}^n$ be a continuous function mapping X into \mathbb{R}^n . Then there exists a positive real number M with the property that $|\varphi(\mathbf{x})| \leq M$ for all $\mathbf{x} \in X$.

Proof Let $g: X \to \mathbb{R}$ be defined such that

$$g(\mathbf{x}) = \frac{1}{1 + |\varphi(\mathbf{x})|}$$

for all $\mathbf{x} \in X$. Now the real-valued function mapping each $\mathbf{x} \in X$ to $|\varphi(\mathbf{x})|$ is continuous (see Lemma 5.6) and quotients of continuous real-valued functions are continuous where they are defined (see Lemma 5.5). It follows that the function $g: X \to \mathbb{R}$ is continuous. Moreover the values of this function are bounded below by zero. Consequently there exists some point \mathbf{w} of X with the property that $g(\mathbf{x}) \geq g(\mathbf{w})$ for all $\mathbf{x} \in X$ (see Lemma 5.8). Let $M = |\varphi(\mathbf{w})|$. Then $|\varphi(\mathbf{x})| \leq M$ for all $\mathbf{x} \in X$. The result follows.

Theorem 5.10 (The Multidimensional Extreme Value Theorem)

Let X be a non-empty closed bounded set in \mathbb{R}^m , and let $f: X \to \mathbb{R}$ be a continuous real-valued function defined on X. Then there exist points \mathbf{u} and \mathbf{v} of X such that $f(\mathbf{u}) \leq f(\mathbf{x}) \leq f(\mathbf{v})$ for all $\mathbf{x} \in X$.

Proof It follows from Lemma 5.9 that there exists positive real number M with the property that $-M \leq f(\mathbf{x}) \leq M$ for all $\mathbf{x} \in X$. Thus the set of values of the function f is bounded above and below on X. Consequently there exist points \mathbf{u} and \mathbf{v} where the functions f and -f respectively attain their minimum values on the set X (see Lemma 5.8). The result follows.

5.4 Uniform Continuity for Functions of Several Real Variables

Definition Let X be a subset of \mathbb{R}^m . A function $\varphi: X \to \mathbb{R}^n$ from X to \mathbb{R}^n is said to be *uniformly continuous* if, given any positive real number ε , there exists some positive real number δ (whose value does not depend on either \mathbf{y} or \mathbf{z}) such that $|\varphi(\mathbf{y}) - \varphi(\mathbf{z})| < \varepsilon$ for all points \mathbf{y} and \mathbf{z} of X satisfying $|\mathbf{y} - \mathbf{z}| < \delta$.

Theorem 5.11 Let X be a non-empty closed bounded set in \mathbb{R}^m . Then any continuous function $\varphi: X \to \mathbb{R}^n$ is uniformly continuous.

Proof Let some positive real number ε be given. Suppose that there did not exist any positive real number δ small enough to ensure that $|\varphi(\mathbf{y}) - \varphi(\mathbf{z})| < \varepsilon$ for all points \mathbf{y} and \mathbf{z} of the set X satisfying $|\mathbf{y} - \mathbf{z}| < \delta$. Then, for each positive integer j, there would exist points \mathbf{u}_j and \mathbf{v}_j in X such that $|\mathbf{u}_j - \mathbf{v}_j| < 1/j$ and $|\varphi(\mathbf{u}_j) - \varphi(\mathbf{v}_j)| \ge \varepsilon$. But the sequence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$ would be bounded, since X is bounded, and thus would possess a subsequence $\mathbf{u}_{k_1}, \mathbf{u}_{k_2}, \mathbf{u}_{k_3}, \ldots$ converging to some point \mathbf{p} (Theorem 3.5). Moreover $\mathbf{p} \in X$, because X is closed in \mathbb{R}^n . The sequence $\mathbf{v}_{k_1}, \mathbf{v}_{k_2}, \mathbf{v}_{k_3}, \ldots$ would also converge to \mathbf{p} , because

$$\lim_{j \to +\infty} |\mathbf{v}_{k_j} - \mathbf{u}_{k_j}| = 0.$$

But then the sequences

$$\varphi(\mathbf{u}_{k_1}), \varphi(\mathbf{u}_{k_2}), \varphi(\mathbf{u}_{k_2}), \dots$$

and

$$\varphi(\mathbf{v}_{k_1}), \varphi(\mathbf{v}_{k_2}), \varphi(\mathbf{v}_{k_3}), \dots$$

would both converge to $\varphi(\mathbf{p})$, because φ is continuous (see Proposition 5.2). Therefore

$$\lim_{j \to +\infty} \left| \varphi(\mathbf{u}_{k_j}) - \varphi(\mathbf{v}_{k_j}) \right| = 0.$$

But, assuming that no positive real number δ could be found satisfying the stated requirements, the points \mathbf{u}_j and \mathbf{v}_j had been chosen for all positive

integers j so that $|\mathbf{u}_j - \mathbf{v}_j| < 1/j$ and $|\varphi(\mathbf{u}_j) - \varphi(\mathbf{v}_j)| \ge \varepsilon$. Consequently $\varphi(\mathbf{u}_{k_j})$ and $\varphi(\mathbf{v}_{k_j})$ could not both converge to $\varphi(\mathbf{p})$ as j increases to infinity. Thus the assumption that no positive real number δ would have the required property would lead to a contradiction. We conclude therefore that, in order to avoid arriving at this contradiction, there must exist some positive real number δ such that $|\varphi(\mathbf{y}) - \varphi(\mathbf{z})| < \varepsilon$ for all points \mathbf{y} and \mathbf{z} of the set X satisfying $|\mathbf{y} - \mathbf{z}| < \delta$, as required.