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11  Multiple Integrals

11.1 Darboux Sums and the Riemann Integral

We now set out the basic definitions and state some basic results concerning
the theory of integration of functions of a real variable that was developed
by Jean-Gaston Darboux (1842-1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darbouz integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

Definition A partition P of an interval [a, b] is a set {ug, u1,us, ..., uyn} of
real numbers satisfying a = ug < u; < ug < --- <uy_1 <uy =>b.

Given any bounded real-valued function f on [a,b], the upper sum (or
upper Darbouz sum) U(P, f) of f for the partition P of [a,b] is defined so

that
N

UP ) =3 Ml — i 1),

i=1
where M; = sup{f(z) : u;_1 <z < w;}.
Similarly the lower sum (or lower Darbouz sum) L(P, f) of f for the
partition P of [a,b] is defined so that

where m; = inf{f(z) : u;—; <z < w;}.
N
Clearly L(P, f) < U(P, f). Moreover > (u; —u;—1) = b— a, and therefore

1=1
for any real numbers m and M satisfying m < f(x) < M for all x € [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],
where a < b. The upper Riemann integral Z/{f: f(z)dx (or upper Darboux
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integral) and the lower Riemann integral Efabf(x) dz (or lower Darboux
integral) of the function f on [a,b] are defined by

b
LI/ f(x)de = inf{U(P, f): P is a partition of [a, ]},

b
L’/ f(z)dx = sup{L(P,f): P is a partition of [a,b]} .

The definition of upper and lower integrals thus requires that I/ fab f(z)dx

be the infimum of the values of U(P, f) and that £ f; f(z) dx be the supre-
mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].

Definition A bounded function f:[a,b] — R on a closed bounded interval
[a,b] is said to be Riemann-integrable (or Darbouz-integrable) on [a, b] if

L{/abf(x)dxzﬁ/abf(x)dx,

in which case the Riemann integral fab f(z)dx (or Darboux integral) of f on
[a,b] is defined to be the common value of U fab f(x)dr and L fab f(x)dx.

When a > b we define

/abf(x)dx:—/baf(x)d:c

for all Riemann-integrable functions f on [b, a]. We set f; f(z)dx = 0 when
b=a.

Any continuous real-valued function defined over a closed bounded inter-
val is Riemann-integrable on that interval. This result can be proved without
difficulty on applying the result that any continuous real-valued function de-
fined over a closed bounded interval is uniformly continuous on that interval
(see Theorem 5.11).

We now state without proof several results that follow as consequences
of the definition of the Riemann integral. The proofs of these results are
straightforward applications of the basic principles and standard proof tech-
niques of real analysis.

Let f:[a,b] — R and g: [a,b] — R be bounded Riemann-integrable func-
tions on a closed bounded interval [a,b], where a and b are real numbers
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satisfying a < b. Then the functions f + ¢ and f — ¢g are Riemann-integrable
on [a, b], and moreover

/ (F() + g(a)) do = / ) do+ / ' gla)de,

and

/ (F(e) = o) o = / o) de - / ' (o) o

[fcf@ﬂdx:walbf@ﬂdm

for all real numbers ¢, and

A%@w

where |f]: [a, b] — R is the function on [a, b] defined such that | f|(z) = | f(z)]
for all z € [a,b]. Moreover

Kﬂ@mz[ﬂ@m+[ﬂ@m

for all real numbers s satisfying a < s < b. And if Riemann-integrable
functions f:[a,b] — R and g: [a, b] — R satisfy f(z) < g(z) for all = € [a, b],

then , ,
/Gf(x)dxg/a g(x) du.

11.2 Multiple Integrals of Bounded Continuous Func-
tions

Also

< / @) d.

We consider multiple integrals involving continuous real-valued functions of
several real variables over regions that are products of closed bounded in-
tervals. Any subset of n-dimensional Euclidean space R™ that is a product
of closed bounded intervals is a closed bounded set in R™. It follows from
the Extreme Value Theorem (Theorem 5.10) that any continuous real-valued
function on a product of closed bounded intervals is necessarily bounded on
that product of intervals. It is also uniformly continuous on that product of
intervals (see Theorem 5.11)
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Proposition 11.1 Let n be an integer greater than 1, let ay,as,...,a, and
b1, ba, ..., b, be real numbers, where a; < b; fori=1,2,... n, let f:|a,b] ¥
- X [an, by] = R be a continuous real-valued function, and let

bn,
g(xy, T, .. ) = f(z1, 29, ..., Tpq,t)dt.
for all (n—1)-tuples (x1,x2, ..., Tn_1) of real numbers satisfying a; < x; < b;
fori=1,2,...,n—1. Then the function

g: [al, bl] X [GQ, bg] e X [an_l, bn—l] — R
15 continuous.

Proof Let some positive real number € be given, and let 9 be chosen so that
0 < (b, — an)eo < e. The function f is uniformly continuous on [ay, by] X
[ag, bo] - -+ X [an, by) (see Theorem 5.11). Therefore there exists some positive
real number ¢ such that

|f(x1, 20, .. Tno1, t) — fur,ug, .o up—1,t)| < eo
for all real numbers xy,xs,..., 2, 1, Uy, Us,...,u,_1 and t satisfying a; <
x; <bja; <wu; <band |z; —u| <dfori=1,2,....,n—1and a, <t < b,.
Consequently
|9($171‘27~-71’n—1) —Q(U17U2a---’un—1)|
brn
= / (f('rlax%""xnflyt)_f(u17u27"'7un717t))dt
an
b'll
S / |f($17$27"'axn—17t)_f(u17u27"'aun—17t)|dt
an

< eo(by, —ay) <e

whenever a; < x; < b;, a; < u; < b; and |x; —u;| < fori=1,2,...,n—1.
The result follows. |}

Proposition 11.1 ensures that, given a continuous real-valued function

filar, by] x -+ X [an, b,] — R, where ay,as,...,a, and by, bs, ..., b, are real
numbers and a; < b; for ¢ = 1,2,...,n, there is a well-defined multiple
integral

bn, ba b1
/ / / f(.fl’xQ,...?.an)dxldl'Q d:l,’n,
Tn=0an Tr2=a2 J r1=ai
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in which, at each stage of evaluation, the integrand is a continuous function
of its arguments. To evaluate this integral, one integrates first with respect
to x1, then with respect to x5, and so on, finally integrating with respect to
Ty

In fact, if the function f is continuous, the order of evaluation of the
integrals with respect to the individual variables does not affect the value
of the multiple integral. We prove this first for continuous functions of two
variables.

Theorem 11.2 Let f: a1, b1] X [ag, ba] — R be a continuous real-valued func-
tion on the closed rectangle [a1, by X |ag, by]. Then

bo by by b
/( f(x,y)dx) dy:/( f(x,y)dy) dx.

Proof The function f:[ay,b1] X [ag, bs] — R is continuous, and is therefore
uniformly continuous on [ay, b1] X [ag, by] (see Theorem 5.11). Let some pos-
itive real number € be given. It follows from the uniform continuity of the
function f that there exists some positive real number ¢ with the property
that

‘f($,y) —f(u,v)] <é

for all z,u € [a1,b;] and y,v € [ag, by] satisfying |z — u| < ¢ and |y — v| < 4.
Let P be a partition of [ay, b;1], and let @) be a partition of [ag, by, where

P ={up,u,...,u,}, Q={vo,v1,...,04},
ap =uyg<up <---<u=0by, ay=vy) <V << vy = by,
uj —uj_y <odforj=1,2,...,pand v —vp_1 < for k=1,2,...,¢q. Then
|f(@,y) = fluj,ve)| <e

whenever u;_; < x < u; for some integer j between 1 and p and v, <y < vy
for some integer k£ between 1 and gq.

Now
b2 b1 9 P Vg uj
/ ( f(z,y) dx) dy = ZZ/ flz,y)dx | dy.
a2 @ k=1 j=1 7 Vk=1 \YUj-1
Moreover



for all y € [vg_1, vg], and therefore

/vvk </Juj flx,y) d$> dy < <f(ug',vk) + 5) (0n = vp—1)(u; = uj1)

for all integers j between 1 and p and integers k between 1 and ¢. It follows
that

/; < abl f@y) dx) v < i i<f<uj’v’“> T 5) (v — ve—1)(u; — ;1)

1 k=1 j=1

= S + 8(()1 — a1)<bg — CLQ),

where
5= i i F (g o) (v = ) (1 — ;1)
Similarly o
/b2 ( " o da:) dy > Zq:i(f(uj,vk> — ) o vy~ w5)
o - e
Thus

/: ( abl f(x,y) d:c) dy — S‘ < &by — ay)(bs — a»).

1

On interchanging the roles of the variables x and y, we conclude similarly
that

/:1 ( :2 fz.y) dy) dr — S‘ < e(by — az)(by — ay).

2

It follows that

ba b1 by b2
/ ( f(x,y)d:c) dy — / ( f<x,y>dy) d

Moreover the inequality just obtained must hold for every positive real num-
ber €, no matter how small the value of . It follows that

ba b1 b1 b
/ ( f(x,y>d:c) dy = / ( f(m)dy) dz,

as required. |

< 2e(by — a1) (b2 — az).
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Now let us consider a multiple integral involving a continuous function of
three real variables. Let

fl [al,bl] X [az,bg] X [ag,bg] — R

be a continuous real-valued function, where a;, as, as, b1, by and bz are real
numbers satisfying a; < by, as < by and ag < bs. It follows from Theorem 11.2
that

b1 bo ba b1
/ f(I1,$2,$3) dzy dry = / f($1,$27$3) dxy dzy
al as a2 al

for all real numbers x5 satisfying az < x3 < bs. It follows that

b3 b1 b2 b3 b2 bl
/ / f(x1, z9, x3) drg dry drs = / / f(xy, z9, x3) dxy dxy dzs.
as ai a2 as a2 ai

Also it follows from Proposition 11.1 that the function sending (z5, x3) to

b1
f(xla T2, CU?)) dwl
al
for all (xq,23) € [ag, bs] X [as, b3] is a continuous function of (xq,x3). It then
follows from Theorem 11.2 that

bo b3 b1 b3 b2 by
/ / f(z1, 9, 23) dry drgdry = / / f(x1, 29, x3) day dg ds.
a2 as al as a2 ai

Repeated applications of these results establish that the value of the repeated
integral with respect to the real variables =1, x5 and 3 is independent of the
order in which the successive integrations are performed.

Corresponding results hold for integration of continuous real-valued func-
tions of four or more real variables. In general, if the integrand is a continuous
real-valued function of n real variables, and if this function is integrated over
a product of n closed bounded intervals, by repeated integration, then the
value of the integral is independent of the order in which the integrals are
performed.

11.3 A Counterexample involving an Unbounded Func-
tion
Example Let f:R? — R be defined such that

M if (x .
f(z,y) = (22 +42)3 f (z,y) # (0,0);

0 if (z,y) = (0,0).
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Set u = 2% + y%. Then

and therefore, when x # 0,

1 z2+1 3
4x 2x
dy = = )4
/?J:O f(x’ y) Y /u:m2 < u? u? ) !

u=x2
_ 223 2x
N (x241)2  22+1
B 2x
(22 + 1)?

It follows that

/xlo (/ylof(w,y)dy> dz — /;clo(:c??TIl)?dx

B 171
o 2241, 2

Now f(y,z) = —f(z,y) for all x and y. Interchanging = and y in the above
evaluation, we find that

/y10 ( /;Of(x,y)dx) dy = /0( ylof(y,x)dy) s
(e

B 1
T2
Thus . . . .
z,y)dy | dx z,y)dr | dy.
/x:o(/y:of( ,Y) y) %/yzo(/xzof( ,Y) ) y
when A (2 2)
o axrylx” —y
f(may)_ (w2+y2)3

for all (x,y) € R? distinct from (0, 0). Note that, in this case f(2t,t) — +o0
as t — 0%, and f(¢,2t) - —oco as t — 0. Thus the function f is not
continuous at (0,0) and does not remain bounded as (x,y) — (0,0).
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