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11 Multiple Integrals

11.1 Darboux Sums and the Riemann Integral

We now set out the basic definitions and state some basic results concerning
the theory of integration of functions of a real variable that was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

Definition A partition P of an interval [a, b] is a set {u0, u1, u2, . . . , uN} of
real numbers satisfying a = u0 < u1 < u2 < · · · < uN−1 < uN = b.

Given any bounded real-valued function f on [a, b], the upper sum (or
upper Darboux sum) U(P, f) of f for the partition P of [a, b] is defined so
that

U(P, f) =
N∑
i=1

Mi(ui − ui−1),

where Mi = sup{f(x) : ui−1 ≤ x ≤ ui}.
Similarly the lower sum (or lower Darboux sum) L(P, f) of f for the

partition P of [a, b] is defined so that

L(P, f) =
N∑
i=1

mi(ui − ui−1),

where mi = inf{f(x) : ui−1 ≤ x ≤ ui}.

Clearly L(P, f) ≤ U(P, f). Moreover
N∑
i=1

(ui−ui−1) = b−a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b

a
f(x) dx (or upper Darboux
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integral) and the lower Riemann integral L
∫ b

a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) : P is a partition of [a, b]} .

The definition of upper and lower integrals thus requires that U
∫ b

a
f(x) dx

be the infimum of the values of U(P, f) and that L
∫ b

a
f(x) dx be the supre-

mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].

Definition A bounded function f : [a, b] → R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b

a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b

a
f(x) dx and L

∫ b

a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b

a
f(x) dx = 0 when

b = a.
Any continuous real-valued function defined over a closed bounded inter-

val is Riemann-integrable on that interval. This result can be proved without
difficulty on applying the result that any continuous real-valued function de-
fined over a closed bounded interval is uniformly continuous on that interval
(see Theorem 5.11).

We now state without proof several results that follow as consequences
of the definition of the Riemann integral. The proofs of these results are
straightforward applications of the basic principles and standard proof tech-
niques of real analysis.

Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-integrable func-
tions on a closed bounded interval [a, b], where a and b are real numbers
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satisfying a ≤ b. Then the functions f + g and f − g are Riemann-integrable
on [a, b], and moreover∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and ∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Also ∫ b

a

c f(x) dx = c

∫ b

a

f(x) dx,

for all real numbers c, and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx,

where |f |: [a, b]→ R is the function on [a, b] defined such that |f |(x) = |f(x)|
for all x ∈ [a, b]. Moreover∫ b

a

f(x) dx =

∫ s

a

f(x) dx+

∫ b

s

f(x) dx.

for all real numbers s satisfying a ≤ s ≤ b. And if Riemann-integrable
functions f : [a, b]→ R and g: [a, b]→ R satisfy f(x) ≤ g(x) for all x ∈ [a, b],
then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

11.2 Multiple Integrals of Bounded Continuous Func-
tions

We consider multiple integrals involving continuous real-valued functions of
several real variables over regions that are products of closed bounded in-
tervals. Any subset of n-dimensional Euclidean space Rn that is a product
of closed bounded intervals is a closed bounded set in Rn. It follows from
the Extreme Value Theorem (Theorem 5.10) that any continuous real-valued
function on a product of closed bounded intervals is necessarily bounded on
that product of intervals. It is also uniformly continuous on that product of
intervals (see Theorem 5.11)
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Proposition 11.1 Let n be an integer greater than 1, let a1, a2, . . . , an and
b1, b2, . . . , bn be real numbers, where ai < bi for i = 1, 2, . . . , n, let f : [a1, b1]×
· · · × [an, bn]→ R be a continuous real-valued function, and let

g(x1, x2, . . . , xn−1) =

∫ bn

an

f(x1, x2, . . . , xn−1, t) dt.

for all (n−1)-tuples (x1, x2, . . . , xn−1) of real numbers satisfying ai ≤ xi ≤ bi
for i = 1, 2, . . . , n− 1. Then the function

g: [a1, b1]× [a2, b2] · · · × [an−1, bn−1]→ R

is continuous.

Proof Let some positive real number ε be given, and let ε0 be chosen so that
0 < (bn − an)ε0 < ε. The function f is uniformly continuous on [a1, b1] ×
[a2, b2] · · · × [an, bn] (see Theorem 5.11). Therefore there exists some positive
real number δ such that

|f(x1, x2, . . . , xn−1, t)− f(u1, u2, . . . , un−1, t)| < ε0

for all real numbers x1, x2, . . . , xn−1, u1, u2, . . . , un−1 and t satisfying ai ≤
xi ≤ bi, ai ≤ ui < bi and |xi − ui| < δ for i = 1, 2, . . . , n− 1 and an ≤ t ≤ bn.
Consequently

|g(x1, x2, . . . , xn−1)− g(u1, u2, . . . , un−1)|

=

∣∣∣∣∫ bn

an

(f(x1, x2, . . . , xn−1, t)− f(u1, u2, . . . , un−1, t)) dt

∣∣∣∣
≤

∫ bn

an

|f(x1, x2, . . . , xn−1, t)− f(u1, u2, . . . , un−1, t)| dt

≤ ε0(bn − an) < ε

whenever ai ≤ xi ≤ bi, ai ≤ ui < bi and |xi − ui| < δ for i = 1, 2, . . . , n − 1.
The result follows.

Proposition 11.1 ensures that, given a continuous real-valued function
f : [a1, b1] × · · · × [an, bn] → R, where a1, a2, . . . , an and b1, b2, . . . , bn are real
numbers and ai < bi for i = 1, 2, . . . , n, there is a well-defined multiple
integral ∫ bn

xn=an

· · ·
∫ b2

x2=a2

∫ b1

x1=a1

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn,
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in which, at each stage of evaluation, the integrand is a continuous function
of its arguments. To evaluate this integral, one integrates first with respect
to x1, then with respect to x2, and so on, finally integrating with respect to
xn.

In fact, if the function f is continuous, the order of evaluation of the
integrals with respect to the individual variables does not affect the value
of the multiple integral. We prove this first for continuous functions of two
variables.

Theorem 11.2 Let f : [a1, b1]×[a2, b2]→ R be a continuous real-valued func-
tion on the closed rectangle [a1, b1]× [a2, b2]. Then∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy =

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx.

Proof The function f : [a1, b1] × [a2, b2] → R is continuous, and is therefore
uniformly continuous on [a1, b1]× [a2, b2] (see Theorem 5.11). Let some pos-
itive real number ε be given. It follows from the uniform continuity of the
function f that there exists some positive real number δ with the property
that

|f(x, y)− f(u, v)| < ε

for all x, u ∈ [a1, b1] and y, v ∈ [a2, b2] satisfying |x− u| < δ and |y − v| < δ.
Let P be a partition of [a1, b1], and let Q be a partition of [a2, b2], where

P = {u0, u1, . . . , up}, Q = {v0, v1, . . . , vq},

a1 = u0 < u1 < · · · < up = b1, a2 = v0 < v1 < · · · < vq = b2,

uj − uj−1 < δ for j = 1, 2, . . . , p and vk − vk−1 < δ for k = 1, 2, . . . , q. Then

|f(x, y)− f(uj, vk)| < ε

whenever uj−1 ≤ x ≤ uj for some integer j between 1 and p and vk−1 ≤ y ≤ vk
for some integer k between 1 and q.

Now∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy =

q∑
k=1

p∑
j=1

∫ vk

vk−1

(∫ uj

uj−1

f(x, y) dx

)
dy.

Moreover ∫ uj

uj−1

f(x, y) dx ≤
(
f(uj, vk) + ε)(uj − uj−1)
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for all y ∈ [vk−1, vk], and therefore∫ vk

vk−1

(∫ uj

uj−1

f(x, y) dx

)
dy ≤

(
f(uj, vk) + ε

)
(vk − vk−1)(uj − uj−1)

for all integers j between 1 and p and integers k between 1 and q. It follows
that∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy ≤

q∑
k=1

p∑
j=1

(
f(uj, vk) + ε

)
(vk − vk−1)(uj − uj−1)

= S + ε(b1 − a1)(b2 − a2),

where

S =

q∑
k=1

p∑
j=1

f(uj, vk)(vk − vk−1)(uj − uj−1).

Similarly∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy ≥

q∑
k=1

p∑
j=1

(
f(uj, vk)− ε

)
(vk − vk−1)(uj − uj−1)

= S − ε(b1 − a1)(b2 − a2).

Thus ∣∣∣∣∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy − S

∣∣∣∣ ≤ ε(b1 − a1)(b2 − a2).

On interchanging the roles of the variables x and y, we conclude similarly
that ∣∣∣∣∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx− S

∣∣∣∣ ≤ ε(b2 − a2)(b1 − a1).

It follows that∣∣∣∣∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy −

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx

∣∣∣∣ ≤ 2ε(b1 − a1)(b2 − a2).

Moreover the inequality just obtained must hold for every positive real num-
ber ε, no matter how small the value of ε. It follows that∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy =

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx,

as required.
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Now let us consider a multiple integral involving a continuous function of
three real variables. Let

f : [a1, b1]× [a2, b2]× [a3, b3]→ R

be a continuous real-valued function, where a1, a2, a3, b1, b2 and b3 are real
numbers satisfying a1 < b1, a2 < b2 and a3 < b3. It follows from Theorem 11.2
that ∫ b1

a1

∫ b2

a2

f(x1, x2, x3) dx2 dx1 =

∫ b2

a2

∫ b1

a1

f(x1, x2, x3) dx1 dx2

for all real numbers x3 satisfying a3 < x3 < b3. It follows that∫ b3

a3

∫ b1

a1

∫ b2

a2

f(x1, x2, x3) dx2 dx1 dx3 =

∫ b3

a3

∫ b2

a2

∫ b1

a1

f(x1, x2, x3) dx1 dx2 dx3.

Also it follows from Proposition 11.1 that the function sending (x2, x3) to∫ b1

a1

f(x1, x2, x3) dx1

for all (x2, x3) ∈ [a2, b2]× [a3, b3] is a continuous function of (x2, x3). It then
follows from Theorem 11.2 that∫ b2

a2

∫ b3

a3

∫ b1

a1

f(x1, x2, x3) dx1 dx3 dx2 =

∫ b3

a3

∫ b2

a2

∫ b1

a1

f(x1, x2, x3) dx1 dx2 dx3.

Repeated applications of these results establish that the value of the repeated
integral with respect to the real variables x1, x2 and x3 is independent of the
order in which the successive integrations are performed.

Corresponding results hold for integration of continuous real-valued func-
tions of four or more real variables. In general, if the integrand is a continuous
real-valued function of n real variables, and if this function is integrated over
a product of n closed bounded intervals, by repeated integration, then the
value of the integral is independent of the order in which the integrals are
performed.

11.3 A Counterexample involving an Unbounded Func-
tion

Example Let f :R2 → R be defined such that

f(x, y) =


4xy(x2 − y2)

(x2 + y2)3
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).
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Set u = x2 + y2. Then

f(x, y) =
2x(2x2 − u)

u3
∂u

∂y
,

and therefore, when x 6= 0,∫ 1

y=0

f(x, y) dy =

∫ x2+1

u=x2

(
4x3

u3
− 2x

u2

)
du

=

[
−2x3

u2
+

2x

u

]x2+1

u=x2

= − 2x3

(x2 + 1)2
+

2x

x2 + 1

=
2x

(x2 + 1)2

It follows that∫ 1

x=0

(∫ 1

y=0

f(x, y) dy

)
dx =

∫ 1

x=0

2x

(x2 + 1)2
dx

=

[
− 1

x2 + 1

]1
0

=
1

2
.

Now f(y, x) = −f(x, y) for all x and y. Interchanging x and y in the above
evaluation, we find that∫ 1

y=0

(∫ 1

x=0

f(x, y) dx

)
dy =

∫ 1

x=0

(∫ 1

y=0

f(y, x) dy

)
dx

= −
∫ 1

x=0

(∫ 1

y=0

f(x, y) dy

)
dx

= −1

2
.

Thus ∫ 1

x=0

(∫ 1

y=0

f(x, y) dy

)
dx 6=

∫ 1

y=0

(∫ 1

x=0

f(x, y) dx

)
dy.

when

f(x, y) =
4xy(x2 − y2)

(x2 + y2)3

for all (x, y) ∈ R2 distinct from (0, 0). Note that, in this case f(2t, t)→ +∞
as t → 0+, and f(t, 2t) → −∞ as t → 0−. Thus the function f is not
continuous at (0, 0) and does not remain bounded as (x, y)→ (0, 0).
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