MAU23203—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2023 Additional Presentation: Material Related to the Bolzano-Weierstrass Theorem

David R. Wilkins

An Alternative Proof of the Multidimensional Bolzano-Weierstrass Theorem

Given a point **p** in \mathbb{R}^n , and given a positive real number *s*, let the *n*-dimensional hypercube $H(\mathbf{p}, s)$ be defined so that

$$\begin{array}{ll} \mathcal{H}({\bf p},s) &=& \{(x_1,x_2,\ldots,x_n) \in \mathbb{R}^n : \\ & ({\bf p})_i \leq x_i \leq ({\bf p})_i + s \text{ for } i=1,2,\ldots,n \ \}. \end{array}$$

(Here, and in what follows, $(\mathbf{p})_i$ denotes the *i*th Cartesian coordinate of the point (or *position vector*) \mathbf{p} . This hypercube has sides of length *s*. In cases where n = 2 it is square with sides parallel to the coordinate axes; in cases where n = 3 it is a cube with sides parallel to the coordinate axes.

Let $H(\mathbf{p}, s)$ be a hypercube with sides of length s determined by a corner **p** (where Cartesian coordinates are minimized on the hypercube). This hypercube can be dissected into 2^n hypercubes with sides of length $\frac{1}{2}s$, where each of these hypercubes can be represented in the form $H(\mathbf{q}, \frac{1}{2}s)$ for some point **q** whose *i*th coordinate $(\mathbf{q})_i$ is equal to one or other of the numbers $(\mathbf{p})_i$ and $(\mathbf{p})_i + \frac{1}{2}s$, where $(\mathbf{p})_i$ here denotes the *i*th component of the determining corner **p** of the hypercube being dissected. Let us refer to the hypercubes formed in this fashion as the hypercubes resulting from the *natural dissection* of the hypercube $H(\mathbf{p}, s)$ into hypercubes with sides of length $\frac{1}{2}s$.

Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be an infinite sequence of points in \mathbb{R}^n . We say that a hypercube $H(\mathbf{p}, s)$ contains *infinitely many* members of this sequence if there are infinitely many positive integers j for which $\mathbf{x}_j \in H(\mathbf{p}, s)$.

Now if a hypercube $H(\mathbf{p}, s)$ with sides of length s contains infinitely many members of the infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ then the same must be true of at least one of the 2^n hypercubes with sides of length $\frac{1}{2}s$ arising from the natural dissection of the hypercube $H(\mathbf{p}, s)$. It follows from this that if a hypercube $H(\mathbf{p}, s)$ with sides of length s contains all members of a bounded infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n , then it must be possible to construct an infinite sequence $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \dots$ of points of \mathbb{R}^n , where $H(\mathbf{p}_1, s/2)$ arises from the natural dissection of $H(\mathbf{p}, s)$, the hypercube $H(\mathbf{p}_k, s/2^k)$ arises from the natural dissection of the hypercube $H(\mathbf{p}_{k-1}, s/2^{k-1})$ for each positive integer k greater than 1, and furthermore each hypercube $H(\mathbf{p}_k, s/2^k)$ is determined so as to contain infinitely many members of the infinite sequence **X**₁, **X**₂, **X**₃, . . .

Now $H(\mathbf{p}_{k-1}, s/2^{k-1}) \subset H(\mathbf{p}_k, s/2^k)$ for each positive integer k greater than 1, and $H(\mathbf{p}_k, s/2^k) \subset H(\mathbf{p}, s)$ for all positive integers k. Also, for each positive integer i between 1 and n,

$$(\mathbf{p}_1)_i \leq (\mathbf{p}_2)_i \leq (\mathbf{p}_3)_i \leq \cdots$$

(where $(\mathbf{p}_k)_i$ denotes the *i*th Cartesian component of the point \mathbf{p}_k for i = 1, 2, ..., n and for all positive integers k). Furthermore (where $(\mathbf{p}_k)_i \leq (\mathbf{p})_i + s$ for all positive integers k. Now any non-decreasing sequence of real numbers that is bounded above must converge to some real number. Accordingly there must exist a point \mathbf{q} of \mathbb{R}^n characterized by the property that

$$\lim_{k\to+\infty}(\mathbf{p}_k)_i=(\mathbf{q})_i\quad\text{for }i=1,2,\ldots,k.$$

We now show that, given any positive real number ε , there must exist infinitely many positive integers j for which $|\mathbf{x}_j - \mathbf{q}| < \varepsilon$. Now the convergence of $(\mathbf{p}_k)_i$ to $(\mathbf{q})_i$ for i = 1, 2, ..., n as $k \to +\infty$ ensures the existence of some positive integer N with the property that

$$(\mathbf{q})_i - rac{arepsilon}{\sqrt{n}} < (\mathbf{p}_k)_i \le (\mathbf{q})_i$$

for i = 1, 2, ..., k and for all positive integers k satisfying $k \ge N$. (Note that $(\mathbf{p}_k)_i \le (\mathbf{q})_i$ for i = 1, 2, ..., n and for all positive integers k, because the infinite sequence consisting of the *i*th components of the points \mathbf{p}_k is non-decreasing for i = 1, 2, ..., n.) Now the positive integer N may be chosen large enough to ensure that $s/2^N < \varepsilon/\sqrt{n}$. It follows that if **u** is a point of $H(\mathbf{p}_k, s/2^k)$, where $k \ge N$, then

$$(\mathbf{q})_i - \frac{\varepsilon}{\sqrt{n}} < (\mathbf{u})_i < (\mathbf{q})_i - \frac{\varepsilon}{\sqrt{n}}$$

for $i = 1, 2, \ldots, n$. Consequently

$$|\mathbf{u}-\mathbf{q}|^2 = \sum_{i=1}^n \left((\mathbf{u})_i - (\mathbf{q})_i \right)^2 \le \varepsilon^2,$$

and therefore $|\mathbf{u} - \mathbf{q}| < \varepsilon$. But, for each positive integer k, infinitely many members of the infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ belong to the hypercube $H(\mathbf{p}_k, 2^k)$. Consequently $|\mathbf{x}_j - \mathbf{q}| < \varepsilon$ for infinitely many positive integers j.

We have now shown that, given any positive real number ε , there exist infinitely many positive integers j for which $|\mathbf{x}_j - \mathbf{q}| < \varepsilon$. It follows that there must exist an increasing sequence

 j_1, j_2, j_3, \ldots

of positive integers which is such as to ensure that $|\mathbf{x}_{j_m} - \mathbf{q}| < 1/2^m$ for all positive integers j. Then the subsequence $\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3} \dots$ of the given bounded sequence converges to the point \mathbf{q} . We have therefore completed a proof of the multidimensional Bolzano-Weierstrass Theorem.