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9. Second Order Partial Derivatives and the Hessian Matrix (continued)

9.1. Second Order Partial Derivatives

Let X be an open subset of Rn and let f : X → R be a real-valued
function on X . We consider the second order partial derivatives of
the function f defined by

∂2f

∂xi ∂xj
= ∂

∂xi

(
∂f

∂xj

)
.

We shall show that if the partial derivatives

∂f

∂xi
,

∂f

∂xj
,

∂2f

∂xi ∂xj
and ∂2f

∂xj ∂xi

all exist and are continuous then

∂2f

∂xi ∂xj
= ∂2f

∂xj ∂xi
.
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Now it would be incorrect to assert that if the second order partial
derivatives of a real-valued function f of real variables x1, x2, . . . , xn
all exist at some point of the domain of the function then

∂2f

∂xi ∂xj
and ∂2f

∂xj ∂xi
.

are equal for all values of i and j .
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First though we give a counterexample which demonstrates that
there exist functions f for which

∂2f

∂xi∂xj
6= ∂2f

∂xj∂xi
.
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Example
Let f : R2 → R be the function defined by

f (x , y) =


xy(x2 − y2)
x2 + y2 if (x , y) 6= (0, 0);

0 if (x , y) = (0, 0).

For convenience of notation, let us write

fx(x , y) = ∂f (x , y)
∂x

,

fy (x , y) = ∂f (x , y)
∂y

,

fxy (x , y) = ∂2f (x , y)
∂x∂y

,

fyx(x , y) = ∂2f (x , y)
∂y∂x

.
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If (x , y) 6= (0, 0) then

fx = (3x2y − y3)(x2 + y2)− 2x2y(x2 − y2)
(x2 + y2)2

= 3x4y + 3x2y3 − x2y3 − y5 − 2x4y + 2x2y3

(x2 + y2)2

= x4y + 4x2y3 − y5

(x2 + y2)2 .

Similarly

fy = −xy
4 − 4x3y2 + x5

(x2 + y2)2 .

(This can be deduced from the formula for fx on noticing that
f (x , y) changes sign on interchanging the variables x and y .)
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Differentiating again, when (x , y) 6= (0, 0), we find that

fxy (x , y) = ∂fy
∂x

= (−y4 − 12x2y2 + 5x4)(x2 + y2)
(x2 + y2)3

+ −4x(−xy4 − 4x3y2 + x5)
(x2 + y2)3

= −x2y4 − 12x4y2 + 5x6 − y6 − 12x2y4 + 5x4y2

(x2 + y2)3

+ 4x2y4 + 16x4y2 − 4x6

(x2 + y2)3

= x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3 .
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Now the expression just obtained for fxy when (x , y) 6= (0, 0)
changes sign when the variables x and y are interchanged. The
same is true of the expression defining f (x , y). It follows that fyx .
We conclude therefore that if (x , y) 6= (0, 0) then

fxy = fyx = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3 .

Now if (x , y) 6= (0, 0) and if r =
√

x2 + y2 then

|fx(x , y)| = |x
4y + 4x2y3 − y5|

r4 ≤ 6r5

r4 = 6r .

It follows that
lim

(x ,y)→(0,0)
fx(x , y) = 0.

Similarly
lim

(x ,y)→(0,0)
fy (x , y) = 0.
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However
lim

(x ,y)→(0,0)
fxy (x , y)

does not exist. Indeed

lim
x→0

fxy (x , 0) = lim
x→0

fyx(x , 0) = lim
x→0

x6

x6 = 1,

lim
y→0

fxy (0, y) = lim
y→0

fyx(0, y) = lim
y→0

−y6

y6 = −1.

Next we show that fx , fy , fxy and fyx all exist at (0, 0), and thus
exist everywhere on R2. Now f (x , 0) = 0 for all x , hence
fx(0, 0) = 0. Also f (0, y) = 0 for all y , hence fy (0, 0) = 0. Thus

fy (x , 0) = x , fx(0, y) = −y

for all x , y ∈ R.
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We conclude that

fxy (0, 0) = d(fy (x , 0))
dx

∣∣∣∣
x=0

= 1,

fyx(0, 0) = d(fx(0, y))
dy

∣∣∣∣
y=0

= −1,

Thus
∂2f

∂x∂y
6= ∂2f

∂y∂x

at (0, 0).
Observe that in this example the functions fxy and fyx are
continuous throughout R2 \ {(0, 0)} and are equal to one another
there. Although the functions fxy and fyx are well-defined at (0, 0),
they are not continuous at (0, 0) and fxy (0, 0) 6= fyx(0, 0).
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Theorem 9.1

Let X be an open set in R2 and let f : X → R be a real-valued
function on X . Suppose that the partial derivatives

∂f

∂x
,

∂f

∂y
and ∂2f

∂x∂y

exist and are continuous throughout X . Then the partial derivative

∂2f

∂y∂x

exists and is continuous on X , and

∂2f

∂x∂y
= ∂2f

∂y∂x
.
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Proof
Let

fx(x , y) = ∂f

∂x
, fy (x , y) = ∂f

∂y
,

fxy (x , y) = ∂2f

∂x∂y
and fyx(x , y) = ∂2f

∂y∂x

and let (a, b) be a point of X . The set X is open in R2 and
therefore there exists some positive real number L such that
(a+h, b+ k) ∈ X for all (h, k) ∈ R2 satisfying |h| < L and |k| < L.
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Let

S(h, k) = f (a + h, b + k) + f (a, b)− f (a + h, b)− f (a, b + k)

for all real numbers h and k satisfying |h| < L and |k| < L. First
consider h to be fixed, where |h| < L, and let q : (b−L, b+L)→ R
be defined so that q(t) = f (a + h, t)− f (a, t) for all real
numbers t satisfying b − L < t < b + L. Then
S(h, k) = q(b + k)− q(b). It then follows from the Mean Value
Theorem (Theorem 7.5) that there exists some real number v lying
between b and b + k for which q(b + k)− q(b) = kq′(v). But
q′(v) = fy (a + h, v)− fy (a, v). It follows that

S(h, k) = k(fy (a + h, v)− fy (a, v)).
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The Mean Value Theorem can now be applied to the function
sending real numbers s in the interval (a− L, a + L) to fy (s, v) to
deduce the existence of a real number u lying between a and a + h
for which

S(h, k) = k(fy (a + h, v)− fy (a, v))
= hkfxy (u, v)

= hk
∂2f

∂x∂y

∣∣∣∣
(x ,y)=(u,v)

.
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Now let some positive real number ε be given. The function fxy is
continuous. Therefore there exists some real number δ satisfying
0 < δ < L such that |fxy (a + h, b + k)− fxy (a, b)| ≤ ε whenever
|h| < δ and |k | < δ. It follows that∣∣∣∣S(h, k)

hk
− fxy (a, b)

∣∣∣∣ ≤ ε
for all real numbers h and k satisfying 0 < |h| < δ and
0 < |k| < δ. Now

lim
h→0

S(h, k)
hk

= 1
k

lim
h→0

f (a + h, b + k)− f (a, b + k)
h

− 1
k

lim
h→0

f (a + h, b)− f (a, b)
h

= fx(a, b + k)− fx(a, b)
k

.
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It follows that∣∣∣∣ fx(a, b + k)− fx(a, b)
k

− fxy (a, b)
∣∣∣∣ ≤ ε

whenever 0 < |k | < δ.

Thus the difference quotient fx(a, b + k)− fx(a, b)
k

tends to
fxy (a, b) as k tends to zero, and therefore the second order partial
derivative fyx exists at the point (a, b) and

fyx(a, b) = lim
k→0

fx(a, b + k)− fx(a, b)
k

= fxy (a, b),

as required.
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Corollary 9.2

Let X be an open set in Rn and let f : X → R be a real-valued
function on X . Suppose that the partial derivatives

∂f

∂xi
and ∂2f

∂xi∂xj

exist and are continuous on X for all integers i and j between 1
and n. Then

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi

for all integers i and j between 1 and n.
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9.2. Local Maxima and Minima

Definition
A function ϕ : X → Rp, defined over an open set X in Rn and
mapping that open set into Rp for some positive integers n and p,
is said to be k times continuously differentiable if the partial
derivatives of the components of the functions ϕ of all orders less
than or equal to k exist and are continuous throughout the
domain X of the function ϕ.
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Let f : X → R be a twice continuously differentiable real-valued
function defined over some open subset X of Rn. (In other words,
let f be a real-valued function defined on an open set X in Rn

whose first and second order partial derivatives exist and are
continuous throughout the domain X of the function f .) Suppose
that f has a local minimum at some point p of X , where
p = (p1, p2, . . . , pn). Now for each integer i between 1 and n the
map

t 7→ f (p1, . . . , pi−1, t, pi+1, . . . , pn)

has a local minimum at t = pi . It follows that the derivative of
this map vanishes there. Thus if f has a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0.
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In many situations the values of the second order partial
derivatives of a twice continuously differentiable function of several
real variables at a stationary point determines the qualitative
behaviour of the function around that stationary point, in
particular ensuring, in some situations, that the stationary point is
a local minimum or a local maximum.
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Proposition 9.3

Let f be a twice continuously differentiable real-valued function
defined over an open ball in Rn of radius δ centred on some point
p of Rn. Then, given any vector h in Rn satisfying |h| < δ, there
exists some real number θ satisfying 0 < θ < 1 for which

f (p + h) = f (p) +
n∑

k=1
hk

∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j ,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

.
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Proof
Let h satisfy |h| < δ, and let q(t) = f (p + th) for all real
numbers t in some appropriately chosen open interval in the real
line that contains the real numbers 0 and 1.
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The function q is the composition function in which the function f
follows the function that sends real numbers t in the domain of q
to the point p + th of Rn. It follows, on applying the Chain Rule
for differentiable functions of several real variables (Theorem 8.20)
that

q′(t) =
n∑

k=1
hk(∂k f )(p + th)

and

q′′(t) =
n∑

j ,k=1
hjhk(∂j∂k f )(p + th),

where
(∂j f )(x1, x2, . . . , xn) = ∂f (x1, x2, . . . , xn)

∂xj

and
(∂j∂k f )(x1, x2, . . . , xn) = ∂2f (x1, x2, . . . , xn)

∂xj ∂xk
.
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Now
q(1) = q(0) + q′(0) + 1

2q
′′(θ)

for some real number θ satisfying 0 < θ < 1 (see
Proposition 7.10). Consequently

f (p + h) = f (p) +
n∑

k=1
hk(∂k f )(p)

+ 1
2

n∑
j ,k=1

hjhk(∂j∂k f )(p + θh)

= f (p) +
n∑

k=1
hk

∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j ,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

,

as required.
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Let f be a twice continuously differentiable real-valued function
defined over an open ball of radius δ about some given point p of
Rn. It follows from Proposition 9.3 that if

∂f

∂xj

∣∣∣∣
p

= 0

for j = 1, 2, . . . , n, and if |h| < δ then there exists some real
number θ satisfying 0 < θ < 1 for which

f (p + h) = f (p) + 1
2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

.
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Let f be a real-valued function defined over an open set in Rn

whose second order partial derivative are defined at a point p of its
domain. Let us denote by (Hi ,j(p)) the Hessian matrix at the point
p, defined by

Hi ,j(p) = ∂2f

∂xi∂xj

∣∣∣∣
x=p

.

Suppose now that the function f is twice continuously
differentiable on its domain. Then Hi ,j(p) = Hj ,i (p) for all integers
i and j between 1 and n, by Corollary 9.2, and thus the Hessian
matrix is symmetric.
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We now recall some facts concerning symmetric matrices.

Let (ci ,j) be a symmetric n × n matrix.

The matrix (ci ,j) is said to be positive semi-definite if
n∑

i=1

n∑
j=1

ci ,jhihj ≥ 0 for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci ,j) is said to be positive definite if
n∑

i=1

n∑
j=1

ci ,jhihj > 0 for all non-zero (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci ,j) is said to be negative semi-definite if
n∑

i=1

n∑
j=1

ci ,jhihj ≤ 0 for all (h1, h2, . . . , hn) ∈ Rn.
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The matrix (ci ,j) is said to be negative definite if
n∑

i=1

n∑
j=1

ci ,jhihj < 0 for all non-zero (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci ,j) is said to be indefinite if it is neither positive
semi-definite nor negative semi-definite.
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Lemma 9.4

Let (ci ,j) be a positive definite symmetric n× n matrix. Then there
exists some positive real number ε that is small enough to ensure
that any symmetric n × n matrix (bi ,j) whose components all
satisfy the inequality |bi ,j − ci ,j | < ε is positive definite.
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Proof
Let Sn−1 be the unit (n − 1)-sphere in Rn defined by

Sn−1 = {(h1, h2, . . . , hn) ∈ Rn : h2
1 + h2

2 + · · ·+ h2
n = 1}.

Observe that a symmetric n × n matrix (bi ,j) is positive definite if
and only if

n∑
i=1

n∑
j=1

bi ,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Now the matrix (ci ,j) is positive
definite, by assumption. Therefore

n∑
i=1

n∑
j=1

ci ,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1.
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But Sn−1 is a closed bounded set in Rn, it therefore follows from
Theorem 5.10 that there exists some (k1, k2, . . . , kn) ∈ Sn−1 with
the property that

n∑
i=1

n∑
j=1

ci ,jhihj ≥
n∑

i=1

n∑
j=1

ci ,jkikj

for all (h1, h2, . . . , hn) ∈ Sn−1. Let

A =
n∑

i=1

n∑
j=1

ci ,jkikj .

Then A > 0 and
n∑

i=1

n∑
j=1

ci ,jhihj ≥ A

for all (h1, h2, . . . , hn) ∈ Sn−1. Set ε = A/n2.
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If (bi ,j) is a symmetric n× n matrix all of whose coefficients satisfy
the inequality |bi ,j − ci ,j | < ε then∣∣∣∣∣∣

n∑
i=1

n∑
j=1

(bi ,j − ci ,j)hihj

∣∣∣∣∣∣ < εn2 = A,

for all (h1, h2, . . . , hn) ∈ Sn−1, hence

n∑
i=1

n∑
j=1

bi ,jhihj >
n∑

i=1

n∑
j=1

ci ,jhihj − A ≥ 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus the matrix (bi ,j) is positive
definite, as required.
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Using the fact that a symmetric n × n matrix (ci ,j) is negative
definite if and only if the matrix (−ci ,j) is positive definite, we see
that if (ci ,j) is a negative definite matrix then there exists some
ε > 0 with the following property: if all of the components of a
symmetric n × n matrix (bi ,j) satisfy the inequality |bi ,j − ci ,j | < ε
then the matrix (bi ,j) is negative definite.
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Let f : X → R be a twice continuously differentiable real-valued
function defined over some open set X in Rn, and let p be a point
of the open set X . We have already observed that if the function f
has a local maximum or a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).
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We now study the behaviour of the function f around a point p at
which the first order partial derivatives vanish. We consider the
Hessian matrix (Hi ,j(p)) defined by

Hi ,j(p) = ∂2f

∂xi∂xj

∣∣∣∣
x=p

.

Lemma 9.5

Let f : X → R be a twice continuously differentiable real-valued
function defined over an open set X in Rn, and let p be a point of
the open set X at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

If f has a local minimum at the point p then the Hessian matrix
(Hi ,j(p)) at p is positive semi-definite.
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Proof
The first order partial derivatives of f are zero at p. It follows that,
given any vector h ∈ Rn which is sufficiently close to 0, there exists
some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f (p + h) = f (p) + 1
2

n∑
i=1

n∑
j=1

hihjHi ,j(p + θh),

where
Hi ,j(p + θh) = ∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Proposition 9.3).
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It follows from this result that
n∑

i=1

n∑
j=1

hihjHi ,j(p) = lim
t→0

2(f (p + th)− f (p))
t2 ≥ 0.

The result follows.
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Let f : X → R be a twice continuously differentiable real-valued
function defined over some open set in Rn, and let p be a point of
the domain of f at which the first order partial derivatives of f are
zero. The above lemma shows that if the function f has a local
minimum at p then the Hessian matrix of f is positive
semi-definite at p. However the fact that the Hessian matrix of f
is positive semi-definite at p is not sufficient to ensure that f is has
a local minimum at p, as the following example shows.
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Example
Consider the function f : R2 → R defined by f (x , y) = x2 − y3.
The first order partial derivatives of f are zero at (0, 0). The
Hessian matrix of f at (0, 0) is the matrix(

2 0
0 0

)
.

This matrix is positive semi-definite. However (0, 0) is not a local
minimum of f because f (0, y) < f (0, 0) for all y > 0.
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The following theorem shows that if the Hessian matrix of the
function f is positive definite at a point at which the first order
partial derivatives of f vanish then f has a local minimum at that
point.

Theorem 9.6

Let f : X → R be a twice continuously differentiable real-valued
function defined over some open set X in Rn, and let p be a point
of X at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

Suppose that the Hessian matrix (Hi ,j(p)) of the function f at the
point p is positive definite. Then f has a local minimum at p.
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Proof
The first order partial derivatives of f take the value zero at p. It
follows that, given any vector h in Rn which is sufficiently close to
0, there exists some θ satisfying 0 < θ < 1 (where θ depends on h)
such that

f (p + h) = f (p) + 1
2

n∑
i=1

n∑
j=1

hihjHi ,j(p + θh),

where
Hi ,j(p + θh) = ∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Proposition 9.3). Suppose that the Hessian matrix (Hi ,j(p)) is
positive definite. Then there exists some positive real number ε
small enough to ensure that if |Hi ,j(x)− Hi ,j(p)| < ε for all i and j
then (Hi ,j(x)) is positive definite (see Lemma 9.4).
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But it follows from the continuity of the second order partial
derivatives of f that there exists some positive real number δ small
enough to ensure that x ∈ X and |Hi ,j(x)− Hi ,j(p)| < ε for all
integers i and j between 1 and n whenever |x− p| < δ. Thus if
0 < |h| < δ then (Hi ,j(p + θh)) is positive definite for all θ ∈ (0, 1)
so that f (p + h) > f (p). Thus p is a local minimum of the
function f .
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A symmetric n × n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if λ1 and
λ2 are the eigenvalues of a symmetric 2× 2 matrix C , then

λ1 + λ2 = traceC , λ1λ2 = detC .

Thus a symmetric 2× 2 matrix C is positive definite if and only if
its trace and determinant are both positive.
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Example
Consider the function f : R2 → R defined by

f (x , y) = 4x2 + 3y2 − 2xy − x3 − x2y − y3.

Now
∂f (x , y)
∂x

∣∣∣∣
(x ,y)=(0,0)

= 0 and ∂f (x , y)
∂y

∣∣∣∣
(x ,y)=(0,0)

= 0.

The Hessian matrix of f at (0, 0) is(
8 −2
−2 6

)
.

The trace and determinant of this matrix are 14 and 44
respectively. Hence this matrix is positive definite. We conclude
from Theorem 9.6 that the function f has a local minimum at
(0, 0).
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