MAU23203—Analysis in Several Variables
School of Mathematics, Trinity College
Michaelmas Term 2022
Section 6: Limits of Functions of Several
Real Variables

Trinity College Dublin

6. Limits of Functions of Several Real Variables

- 6. Limits of Functions of Several Real Variables
 - 6.1. Limit Points of Subsets of Euclidean Spaces

Definition

Let X be a subset of n-dimensional Euclidean space \mathbb{R}^n , and let $\mathbf{p} \in \mathbb{R}^n$. The point \mathbf{p} is said to be a *limit point* of the set X if, given any positive real number δ , there exists some point \mathbf{x} of X for which $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

6.2. Basic Properties of Limits of Functions of Several Real Variables

Definition

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $\varphi \colon X \to \mathbb{R}^n$ be a function mapping the set X into n-dimensional Euclidean space \mathbb{R}^n , let \mathbf{p} be a limit point of the set X, and let \mathbf{v} be a vector in \mathbb{R}^n . The point \mathbf{v} is said to be the *limit* of $\varphi(\mathbf{x})$, as \mathbf{x} tends to \mathbf{p} in X, if and only if, given any strictly positive real number ε , there exists some strictly positive real number δ such that $|\varphi(\mathbf{x}) - \mathbf{v}| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $\varphi \colon X \to \mathbb{R}^n$ be a function mapping the set X into n-dimensional Euclidean space \mathbb{R}^n , let \mathbf{p} be a limit point of the set X, and let \mathbf{v} be a vector in \mathbb{R}^n . If \mathbf{v} is the limit of $\varphi(\mathbf{x})$ as \mathbf{x} tends to \mathbf{p} in X then we can denote this fact by writing $\lim_{\mathbf{x} \to \mathbf{p}} \varphi(\mathbf{x}) = \mathbf{v}$.

Proposition 6.1

Let X be a subset of \mathbb{R}^m , let \mathbf{p} be a limit point of X, and let \mathbf{v} be a vector in \mathbb{R}^n . A function $\varphi \colon X \to \mathbb{R}^n$ has the property that

$$\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x})=\mathbf{v}$$

if and only if

$$\lim_{\mathbf{x}\to\mathbf{p}}f_i(\mathbf{x})=v_i$$

for i = 1, 2, ..., n, where $f_1, f_2, ..., f_n$ are the components of the function φ and $\mathbf{v} = (v_1, v_2, ..., v_n)$.

Proof

Suppose that $\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x})=\mathbf{v}$. Let i be an integer between 1 and n, and let some positive real number ε be given. Then there exists some positive real number δ such that $|\varphi(\mathbf{x})-\mathbf{v}|<\varepsilon$ whenever $0<|\mathbf{x}-\mathbf{p}|<\delta$. It then follows from the definition of the Euclidean norm that

$$|f_i(\mathbf{x}) - v_i| \le |\varphi(\mathbf{x}) - \mathbf{v}| < \varepsilon$$

whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta$. Thus if $\lim_{\mathbf{x} \to \mathbf{p}} \varphi(\mathbf{x}) = \mathbf{v}$ then $\lim_{\mathbf{x} \to \mathbf{p}} f_i(\mathbf{x}) = v_i$ for $i = 1, 2, \dots, n$.

Conversely suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f_i(\mathbf{x})=v_i$$

for $i=1,2,\ldots,n$. Let some positive real number ε be given. Then there exist positive real numbers $\delta_1,\delta_2,\ldots,\delta_n$ such that $|f_i(\mathbf{x})-v_i|<\varepsilon/\sqrt{n}$ for $\mathbf{x}\in X$ satisfying $0<|\mathbf{x}-\mathbf{p}|<\delta_i$. Let δ be the minimum of $\delta_1,\delta_2,\ldots,\delta_n$. If $\mathbf{x}\in X$ satisfies $0<|\mathbf{x}-\mathbf{p}|<\delta$ then

$$|\varphi(\mathbf{x}) - \mathbf{v}|^2 = \sum_{i=1}^n (f_i(\mathbf{x}) - v_i)^2 < \varepsilon^2,$$

and hence $|\varphi(\mathbf{x}) - \mathbf{v}| < \varepsilon$. Thus

$$\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x})=\mathbf{v},$$

as required.

Proposition 6.2

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $\varphi \colon X \to \mathbb{R}^n$ and $\psi \colon X \to \mathbb{R}^n$ be functions mapping X into n-dimensional Euclidean space \mathbb{R}^n , let \mathbf{p} be a limit point of X, and let \mathbf{v} and \mathbf{w} be points of \mathbb{R}^n . Suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x})=\mathbf{v}$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\mathbf{x})=\mathbf{w}.$$

Then

$$\lim_{\mathbf{x}\to\mathbf{p}}(\varphi(\mathbf{x})+\psi(\mathbf{x}))=\mathbf{v}+\mathbf{w}.$$

Proof

Let some strictly positive real number ε be given. Then there exist strictly positive real numbers δ_1 and δ_2 such that

$$|arphi(\mathbf{x}) - \mathbf{v}| < rac{1}{2}arepsilon$$

whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$ and

$$|\psi(\mathbf{x}) - \mathbf{w}| < \frac{1}{2}\varepsilon$$

whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_2$.

Let δ be the minimum of δ_1 and δ_2 . Then $\delta>0$, and if $\mathbf{x}\in X$ satisfies $0<|\mathbf{x}-\mathbf{p}|<\delta$ then

$$|arphi(\mathbf{x}) - \mathbf{v}| < rac{1}{2}arepsilon$$

and

$$|\psi(\mathbf{x}) - \mathbf{w}| < \frac{1}{2}\varepsilon,$$

and therefore

$$\begin{aligned} |\varphi(\mathbf{x}) + \psi(\mathbf{x}) - (\mathbf{v} + \mathbf{w})| &\leq |\varphi(\mathbf{x}) - \mathbf{v}| + |\psi(\mathbf{x}) - \mathbf{w}| \\ &< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \end{aligned}$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{n}}(\varphi(\mathbf{x})+\psi(\mathbf{x}))=\mathbf{v}+\mathbf{w},$$

as required.

Lemma 6.3

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, let \mathbf{p} be a limit point of X, let \mathbf{v} be a point of Y, let $\varphi \colon X \to Y$ be a function mapping the set X into the set Y, and let $\psi \colon Y \to \mathbb{R}^k$ be a function mapping the set Y into \mathbb{R}^k . Suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x})=\mathbf{v}$$

and that the function ψ is continuous at \mathbf{v} . Then

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\varphi(\mathbf{x}))=\psi(\mathbf{v}).$$

Proof

Let some positive real number ε be given. Then there exists some positive real number η such that $|\psi(\mathbf{y}) - \psi(\mathbf{v})| < \varepsilon$ for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \mathbf{v}| < \eta$, because the function ψ is continuous at \mathbf{v} . But then there exists some positive real number δ such that $|\varphi(\mathbf{x}) - \mathbf{v}| < \eta$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|\psi(\varphi(\mathbf{x})) - \psi(\mathbf{v})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$, and thus

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\varphi(\mathbf{x}))=\psi(\mathbf{v}),$$

as required.

Proposition 6.4

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be real-valued functions on X, and let \mathbf{p} be a limit point of the set X. Suppose that $\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x})$ and $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x})$ both exist. Then so do $\lim_{\mathbf{x} \to \mathbf{p}} (f(\mathbf{x}) + g(\mathbf{x}))$, $\lim_{\mathbf{x} \to \mathbf{p}} (f(\mathbf{x}) - g(\mathbf{x}))$ and $\lim_{\mathbf{x} \to \mathbf{p}} (f(\mathbf{x})g(\mathbf{x}))$, and moreover

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x}) + \lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),
\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x}) - \lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),
\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x}) \times \lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),$$

If moreover $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$ then

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})}=\frac{\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})}{\lim_{\mathbf{x}\to\mathbf{n}}g(\mathbf{x})}.$$

Proof

Let $q=\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})$ and $r=\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})$, and let $\psi\colon X\to\mathbb{R}^2$ be defined such that

$$\psi(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x}))$$

for all $\mathbf{x} \in X$. Then

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\mathbf{x})=(q,r)$$

(see Proposition 6.1).

Let $s\colon \mathbb{R}^2 \to \mathbb{R}$ and $m\colon \mathbb{R}^2 \to \mathbb{R}$ be the functions from \mathbb{R}^2 to \mathbb{R} defined such that s(u,v)=u+v and m(u,v)=uv for all $u,v\in \mathbb{R}$. Then the functions s and m are continuous (see Lemma 5.4). Also $f+g=s\circ \psi$ and $f\cdot g=m\circ \psi$. It follows from this that

$$\lim_{\mathbf{x} \to \mathbf{p}} (f(\mathbf{x}) + g(\mathbf{x})) = \lim_{\mathbf{x} \to \mathbf{p}} s(f(\mathbf{x}), g(\mathbf{x})) = \lim_{\mathbf{x} \to \mathbf{p}} s(\psi(\mathbf{x}))$$

$$= s \left(\lim_{\mathbf{x} \to \mathbf{p}} \psi(\mathbf{x}) \right) = s(q, r) = q + r,$$

(see Lemma 6.3), and

$$\lim_{\mathbf{x}\to\mathbf{p}}(-g(\mathbf{x}))=-r.$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x}))=q-r.$$

Similarly, when taking limits of products of functions,

$$\lim_{\mathbf{x} \to \mathbf{p}} (f(\mathbf{x})g(\mathbf{x})) = \lim_{\mathbf{x} \to \mathbf{p}} m(f(\mathbf{x}), g(\mathbf{x})) = \lim_{\mathbf{x} \to \mathbf{p}} m(\psi(\mathbf{x}))$$

$$= m \left(\lim_{\mathbf{x} \to \mathbf{p}} \psi(\mathbf{x}) \right) = m(q, r) = qr$$

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and that $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$.

Representing the function sending $\mathbf{x} \in X$ to $1/g(\mathbf{x})$ as the composition of the function g and the reciprocal function $e \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$, where e(t) = 1/t for all non-zero real numbers t, we find, as in the first proof, that the function sending each point \mathbf{x} of X to

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{1}{g(\mathbf{x})}\right)=\frac{1}{r}.$$

It then follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})}=\frac{q}{r},$$

as required.

6.3. Relationships between Limits and Continuity

Proposition 6.5

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into \mathbb{R}^n , and let \mathbf{p} be a point of the set X that is also a limit point of X. Then the function f is continuous at the point \mathbf{p} if and only if $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = f(\mathbf{p})$.

Proof

The result follows directly on comparing the relevant definitions.

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , and let \mathbf{p} be a point of the set X. Suppose that the point \mathbf{p} is not a limit point of the set X. Then there exists some strictly positive real number δ_0 such that $|\mathbf{x} - \mathbf{p}| \geq \delta_0$ for all $\mathbf{x} \in X$ satisfying $\mathbf{x} \neq \mathbf{p}$. The point \mathbf{p} is then said to be an *isolated point* of X.

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m . The definition of continuity then ensures that any function $\varphi \colon X \to \mathbb{R}^n$ mapping the set X into n-dimensional Euclidean space \mathbb{R}^n is continuous at any isolated point of its domain X.