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3. Convergence in Euclidean Spaces (continued)

3.1. Convergence of Infinite Sequences of Real Numbers

An infinite sequence x1, x2, x3, . . . of real numbers associates to
each positive integer j a corresponding real number xj .

Definition

An infinite sequence x1, x2, x3, . . . of real numbers is said to
converge to some real number p if and only if the following
criterion is satisfied:

given any strictly positive real number ε, there exists some
positive integer N such that |xj − p| < ε for all positive
integers j satisfying j ≥ N.

If an infinite sequence x1, x2, x3, . . . of real numbers converges to
some real number p, then p is said to be the limit of the sequence,
and we can indicate the convergence of the infinite sequence to p
by writing ‘xj → p as j → +∞’, or by writing ‘ lim

j→+∞
xj = p’.



3. Convergence in Euclidean Spaces (continued)

Let x and p be real numbers, and let ε be a strictly positive real
number. Then |x − p| < ε if and only if both x − p < ε and
p − x < ε. It follows that |x − p| < ε if and only if
p − ε < x < p + ε. The condition |x − p| < ε essentially requires
that the value of the real number x should agree with p to within
an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number p if and only if, given any
positive real number ε, there exists some positive integer N such
that p − ε < xj < p + ε for all positive integers j satisfying j ≥ N.



3. Convergence in Euclidean Spaces (continued)

Definition

We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that
xj ≤ B for all positive integers j . Similarly we say that this
sequence is bounded below if there exists some real number A such
that xj ≥ A for all positive integers j . A sequence is said to be
bounded if it is bounded above and bounded below. Thus the
sequence x1, x2, x3, . . . is bounded if and only if there exist real
numbers A and B such that A ≤ xj ≤ B for all positive integers j .



3. Convergence in Euclidean Spaces (continued)

Lemma 3.1

Every convergent infinite sequence of real numbers is bounded.

Proof
Let x1, x2, x3, . . . be an infinite sequence of real numbers that
converges to some real number p. On applying the formal
definition of convergence (with ε = 1), we deduce the existence of
some positive integer N such that p− 1 < xj < p + 1 for all j ≥ N.
But then A ≤ xj ≤ B for all positive integers j , where A is the
minimum of x1, x2, . . . , xN−1 and p − 1, and B is the maximum of
x1, x2, . . . , xN−1 and p + 1.



3. Convergence in Euclidean Spaces (continued)

3.2. Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be
strictly increasing if xj+1 > xj for all positive integers j , strictly
decreasing if xj+1 < xj for all positive integers j , non-decreasing if
xj+1 ≥ xj for all positive integers j , non-increasing if xj+1 ≤ xj for
all positive integers j . A sequence satisfying any one of these
conditions is said to be monotonic; thus a monotonic sequence is
either non-decreasing or non-increasing.



3. Convergence in Euclidean Spaces (continued)

Theorem 3.2

Any non-decreasing infinite sequence of real numbers that is
bounded above is convergent. Similarly any non-increasing infinite
sequence of real numbers that is bounded below is convergent.

Proof
Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers
that is bounded above. It follows from the Least Upper Bound
Principle that there exists a least upper bound p for the set
{xj : j ∈ N}. We claim that the sequence converges to p.



3. Convergence in Euclidean Spaces (continued)

Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that |xj − p| < ε
whenever j ≥ N. Now p − ε is not an upper bound for the set
{xj : j ∈ N} (because p is the least upper bound), and therefore
there must exist some positive integer N such that xN > p − ε.
But then p − ε < xj ≤ p whenever j ≥ N, since the sequence is
non-decreasing and bounded above by the real number p. Thus
|xj − p| < ε whenever j ≥ N. Therefore xj → p as j → +∞, as
required.

Next we note that if an infinite sequence x1, x2, x3, . . . is
non-increasing and bounded below then the sequence
−x1,−x2,−x3, . . . is non-decreasing and bounded above, and is
therefore convergent. It follows that the sequence x1, x2, x3, . . . is
also convergent.



3. Convergence in Euclidean Spaces (continued)

3.3. Subsequences of Sequences of Real Numbers

Definition

Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form
xj1 , xj2 , xj3 , . . . where j1, j2, j3, . . . is an infinite sequence of positive
integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The
following sequences are examples of subsequences of this
sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .



3. Convergence in Euclidean Spaces (continued)

Theorem 3.3 (Bolzano-Weierstrass for the Real Line)

Every bounded infinite sequence of real numbers has a convergent
subsequence.

Proof
Let some bounded infinite sequence x1, x2, x3, . . . of real numbers
be given. We define a peak index to be a positive integer j with
the property that xj ≥ xk for all positive integers k satisfying
k ≥ j . Thus a positive integer j is a peak index if and only if the
jth member of the infinite sequence x1, x2, x3, . . . is greater than or
equal to all succeeding members of the sequence. Let S be the set
consisting of all peak indices. Then

S = {j ∈ N : xj ≥ xk for all k ≥ j}.



3. Convergence in Euclidean Spaces (continued)

First let us suppose that the set of peak indices is infinite. Arrange
the set S of peak indices in increasing order so that
S = {j1, j2, j3, j4, . . .}, where j1 < j2 < j3 < j4 < · · · . It follows
from the definition of peak indices that xj1 ≥ xj2 ≥ xj3 ≥ xj4 ≥ · · · .
Thus xj1 , xj2 , xj3 , . . . is a non-increasing subsequence of the given
infinite sequence x1, x2, x3, . . .. This subsequence is bounded below
(since the given infinite sequence is bounded). It follows from
Theorem 3.2 that xj1 , xj2 , xj3 , . . . is a convergent subsequence of the
given infinite sequence.



3. Convergence in Euclidean Spaces (continued)

Now suppose that the set S of peak indices is finite. Choose a
positive integer j1 which is greater than every peak index. Then j1
is not a peak index. Therefore there must exist some positive
integer j2 satisfying j2 > j1 such that xj2 > xj1 . Moreover j2 is not
a peak index (because j2 is greater than j1 and j1 in turn is greater
than every peak index). Therefore there must exist some positive
integer j3 satisfying j3 > j2 such that xj3 > xj2 . We can continue in
this fashion to construct (by induction on j) a strictly increasing
subsequence xj1 , xj2 , xj3 , . . . of our original sequence. This
increasing subsequence is bounded above (since the original
sequence is bounded) and thus is convergent, by Theorem 3.2.
This completes the proof of the one-dimensional case of the
Bolzano-Weierstrass Theorem.



3. Convergence in Euclidean Spaces (continued)

3.5. Convergence of Sequences in Euclidean Spaces

Definition

An infinite sequence x1, x2, x3, . . . of points in Rn is said to
converge to a point p if and only if, given strictly positive real
number ε, there exists some positive integer N such that
|xj − p| < ε whenever j ≥ N.

Given a convergent infinite sequence x1, x2, x3, . . . of points in Rn,
the point p to which the sequence converges is referred to as the
limit of the infinite sequence, and may be denoted by lim

j→+∞
xj .



3. Convergence in Euclidean Spaces (continued)

Lemma 3.4

Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then an
infinite sequence x1, x2, x3, . . . of points in Rn converges to p if
and only if the ith components of the elements of this sequence
converge to pi for i = 1, 2, . . . , n.

Proof
For each positive integer j , let (xj)i denote the ith component of
xj . Then |(xj)i − pi | ≤ |xj − p| for i = 1, 2, . . . , n and for all
positive integers j . It follows directly from the definition of
convergence that if xj → p as j → +∞ then (xj)i → pi as
j → +∞.



3. Convergence in Euclidean Spaces (continued)

Conversely suppose that, for each integer i between 1 and n,
(xj)i → pi as j → +∞. Let some positive real number ε be given.
Then there exist positive integers N1,N2, . . . ,Nn such that
|(xj)i − pi | < ε/

√
n whenever j ≥ Ni . Let N be the maximum of

N1,N2, . . . ,Nn. If j ≥ N then j ≥ Ni for i = 1, 2, . . . , n, and
therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi )
2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.



3. Convergence in Euclidean Spaces (continued)

3.6. The Multidimensional Bolzano-Weierstrass Theorem

Theorem 3.5 (Multidimensional Bolzano-Weierstrass
Theorem)

Every bounded sequence of points in a Euclidean space has a
convergent subsequence.



3. Convergence in Euclidean Spaces (continued)

Proof
The theorem is proved by induction on the dimension n of the
space Rn within which the points reside. When n = 1, the required
result is the one-dimensional case of the Bolzano-Weierstrass
Theorem, and the result has already been established in this case
(see Theorem 3.3).

When n > 1, the result is proved in dimension n asssuming the
result in dimensions n − 1 and 1. Consequently the result is
established successively in dimensions 2, 3, 4, . . ., and therefore is
valid for bounded sequences in Rn for all positive integers n.



3. Convergence in Euclidean Spaces (continued)

It has been shown that every bounded infinite sequence of real
numbers has a convergent subsequence (Theorem 3.3). Let n be
an integer greater than one, and suppose, as an induction
hypothesis, that, in cases where n > 2, all bounded sequences of
points in Rn−1 have convergent subsequences. Let x1, x2, x3, . . . be
a bounded infinite sequence in Rn and, for each positive integer j ,
let sj denote the point of Rn−1 whose ith component is equal to
the ith component xj ,i of xj for each integer i between 1 and n− 1.



3. Convergence in Euclidean Spaces (continued)

Let some strictly positive real number ε be given. Now the infinite
sequence

s1, s2, s3, . . .

of points of Rn−1 is a bounded infinite sequence. In the case when
n = 2 we can apply the one-dimensional Bolzano-Weierstrass
Theorem (Theorem 3.3) to conclude that this sequence of real
numbers has a convergent subsequence. In cases where n > 2, we
are supposing as our induction hypothesis that any bounded
sequence in Rn−1 has a convergent subsequence. Thus, assuming
this induction hypothesis in cases where n > 2, we can conclude, in
all cases with n > 1, that the bounded infinite sequence
s1, s2, s3, . . . of points in Rn−1 has a convergent subsequence.



3. Convergence in Euclidean Spaces (continued)

Let that convergent subsequence be

sm1 , sm2 , sm3 , . . . ,

where m1,m2,m3, . . . is a strictly increasing infinite sequence of
positive integers, and let q = lim

j→+∞
smj . There then exists some

positive integer L such that

|smj − q| < 1
2ε

for all positive integers j for which mj ≥ L. (Indeed the definition
of convergence ensures the existence of a positive integer N that is
large enough to ensure that |smj − q| < 1

2ε whenever j ≥ N.
Taking L = mN then ensures that j ≥ N whenever mj ≥ L.)



3. Convergence in Euclidean Spaces (continued)

Let tj denote the nth component of the point xj of Rn for each
positive integer j . The one-dimensional Bolzano-Weierstrass
Theorem ensures that the bounded infinite sequence

tm1 , tm2 , tm3 , . . .

of real numbers has a convergent subsequence. It follows that
there is a strictly increasing infinite sequence k1, k2, k3, . . . of
positive integers, where each kj is equal to one of the positive
integers m1,m2,m3, . . ., such that the infinite sequence

tk1 , tk2 , tk3 , . . .

is convergent.



3. Convergence in Euclidean Spaces (continued)

Let r = lim
j→+∞

tkj . There then exists some positive integer M such

that M ≥ L and
|tkj − r | < 1

2ε

for all positive integers j for which kj ≥ M. It follows that if
kj ≥ M then

|skj − q| < 1
2ε and |tkj − r | < 1

2ε.

Now there is a point p of Rn, where p = (p1, p2, . . . , pn),
determined so that the ith components of the point p of Rn is
equal to the ith component of the point q of Rn−1 for each
integer i between 1 and n − 1 and also the nth component of the
point p is equal to the real number t.



3. Convergence in Euclidean Spaces (continued)

Also it follows from the definition of the Euclidean norm that

|xkj − p|2 = |skj − q|2 + |tkj − r |2 < 1
2ε

2

whenever kj ≥ M. But then |xkj − p| < ε for all positive integers j
for which kj ≥ M. It follows that lim

j→+∞
xkj = p. We conclude

therefore that the bounded infinite sequence x1, x2, x3, . . . does
indeed have a convergent subsequence. This completes the proof
of the Bolzano-Weierstrass Theorem in dimension n for all positive
integers n.



3. Convergence in Euclidean Spaces (continued)

3.7. Cauchy Sequences in Euclidean Spaces

Definition

An infinite sequence x1, x2, x3, . . . of points of n-dimensional
Euclidean space Rn is said to be a Cauchy sequence if, given any
strictly positive real number ε, there exists some positive integer N
such that |xj − xk | < ε for all positive integers j and k satisfying
j ≥ N and k ≥ N.



3. Convergence in Euclidean Spaces (continued)

Lemma 3.6

Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is bounded.

Proof
Let x1, x2, x3, . . . be a Cauchy sequence of points in Rn. Then
there exists some positive integer N such that |xj − xk | < 1
whenever j ≥ N and k ≥ N. In particular, |xj | ≤ |xN |+ 1 whenever
j ≥ N. Therefore |xj | ≤ R for all positive integers j , where R is the
maximum of the real numbers |x1|, |x2|, . . . , |xN−1| and |xN |+ 1.
Thus the sequence is bounded, as required.



3. Convergence in Euclidean Spaces (continued)

Theorem 3.7 (Cauchy’s Criterion for Convergence)

An infinite sequence of points of n-dimensional Euclidean space Rn

is convergent if and only if it is a Cauchy sequence.

Proof
First we show that convergent sequences in Rn are Cauchy
sequences. Let x1, x2, x3, . . . be a convergent sequence of points in
Rn, and let p = lim

j→+∞
xj . Let some strictly positive real number ε

be given. Then there exists some positive integer N such that
|xj − p| < 1

2ε for all j ≥ N. Thus if j ≥ N and k ≥ N then
|xj − p| < 1

2ε and |xk − p| < 1
2ε, and hence

|xj − xk | = |(xj − p)− (xk − p)| ≤ |xj − p|+ |xk − p| < ε.

Thus the sequence x1, x2, x3, . . . is a Cauchy sequence.
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Conversely we must show that any Cauchy sequence x1, x2, x3, . . .
in Rn is convergent. Now Cauchy sequences are bounded, by
Lemma 3.6. The sequence x1, x2, x3, . . . therefore has a convergent
subsequence xk1 , xk2 , xk3 , . . ., by the multidimensional
Bolzano-Weierstrass Theorem (Theorem 3.5). Let p = lim

j→+∞
xkj .

We claim that the sequence x1, x2, x3, . . . itself converges to p.
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Let some strictly positive real number ε be given. Then there
exists some positive integer N such that |xj − xk | < 1

2ε whenever
j ≥ N and k ≥ N (since the sequence is a Cauchy sequence). Let
m be chosen large enough to ensure that km ≥ N and
|xkm − p| < 1

2ε. Then

|xj − p| ≤ |xj − xkm |+ |xkm − p| < 1
2ε + 1

2ε = ε

whenever j ≥ N. It follows that xj → p as j → +∞, as
required.
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