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10. The Inverse and Implicit Function Theorems (continued)

10.1. Contraction Mappings on Closed Subsets of Euclidean Spaces

Definition

Let F be a subset of Rn for some positive integer n. A function
ϕ : F → F mapping that set F into itself is said to be a
contraction mapping on F if there exists some non-negative real
number λ satisfying λ < 1 that is such as to ensure that

|ϕ(u)− ϕ(v)| ≤ λ|u− v|

for all points u and v of F .
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Theorem 10.1

Let F be a closed subset of Rn, and let ϕ : F → F be a
contraction mapping on the set F . Then there exists a unique
point p of F for which ϕ(p) = p.

Proof
The function ϕ : F → F is a contraction mapping. Therefore a
non-negative real number λ satisfying λ < 1 can be associated
with the function ϕ so as to ensure that

|ϕ(u)− ϕ(v)| ≤ λ|u− v|

for all points u and v of F .
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Choose x0 ∈ F , and let x1, x2, x3, . . . be the infinite sequence of
points of F defined such that xj = ϕ(xj−1) for all positive
integers j . Then

|xj+1 − xj | ≤ λ|xj − xj−1|

for all positive integers j . It follows that

|xj+1 − xj | ≤ λj |x1 − x0|

for all positive integers j , and therefore

|xk − xj | ≤

k−1∑
m=j

λm

 |x1 − x0| ≤
λj − λk

1− λ
|x1 − x0|

≤ λj

1− λ
|x1 − x0|

for all positive integers j and k satisfying j < k .



10. The Inverse and Implicit Function Theorems (continued)

Now the inequality λ < 1 ensures that, given any positive real
number ε, there exists a positive integer N large enough to ensure
that λj |x1 − x0| < (1− λ)ε for all integers j satisfying j ≥ N.
Then |xk − xj | < ε for all positive integers j and k satisfying
k > j ≥ N. The infinite sequence x1, x2, x3, . . . is thus a Cauchy
sequence of points of F . Now F ⊂ Rn and every Cauchy sequence
in Rn is convergent (see Theorem 3.7). We conclude therefore that
the infinite sequence x1, x2, x3, . . . is convergent. Let p = lim

j→+∞
xj .

Then p ∈ F , because F is closed in Rn (see Lemma 4.7). Moreover

p = lim
j→+∞

xj+1 = lim
j→+∞

ϕ(xj) = ϕ

(
lim

j→+∞
xj

)
= ϕ(p).

(This follows on applying Proposition 5.2.) We have thus proved
the existence of a point p of F for which ϕ(p) = p.
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Now let q be any point of the closed set F with the property that
ϕ(q) = q. Then

|q− p| = |ϕ(q)− ϕ(p)| ≤ λ|q− p|.

But λ < 1. It follows that the Euclidean distance |q− p| from q to
p cannot be strictly positive, and therefore q = p. We conclude
therefore that p is the unique point of F for which ϕ(p) = p, as
required.
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10.2. The Inverse Function Theorem

Lemma 10.2

Let X be an open set in Rm, let ϕ : X → Rn be a differentiable
function mapping X into Rn, let p be a point of X , and let K be a
positive real number. Suppose that |x− p| ≤ K |ϕ(x)− ϕ(p)| for
all points x of X . Then |w| ≤ K |(Dϕ)pw| for all w ∈ Rm.
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Proof
Let w ∈ Rm. Then

t|w| = |(p + tw)− p| ≤ K |ϕ(p + tw)− ϕ(p)|

for all positive real numbers t small enough to ensure that
p + tw ∈ X . Now

(Dϕ)pw = lim
t→0+

ϕ(p + tw)− ϕ(p)

t

(see Proposition 8.13). It follows that

|w| ≤ lim
t→0+

K

∣∣∣∣ϕ(p + tw)− ϕ(p)

t

∣∣∣∣
= K

∣∣∣∣ lim
t→0+

ϕ(p + tw)− ϕ(p)

t

∣∣∣∣ = K |(Dϕ)pw|,

as required.
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Proposition 10.3

Let X and Y be open sets in Rn, let ϕ : X → Rn be a
differentiable function mapping X into Rn, and let K be a positive
real number. Suppose that Y ⊂ ϕ(X ). Suppose also that
|u− v| ≤ K |ϕ(u)− ϕ(v)| for all points u and v of X . Then there
is a differentiable function µ : Y → Rn characterized by the
property that, for any point y of Y , µ(y) is the unique point of X
for which ϕ(µ(y)) = y. Moreover µ(Y ) is an open set in Rn, the
derivative (Dϕ)p of the function ϕ at p is an invertible linear
transformation, and (Dµ)ϕ(p) = (Dϕ)−1p for all p ∈ µ(Y ).
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Proof
Given any point y of Y , there exists at least one point x of X for
which ϕ(x) = y, because Y ⊂ ϕ(X ). Also the stated inequality in
the statement of the lemma ensures that, given any point y of Y ,
there cannot exist more than one point x of X for which ϕ(x) = y.
Consequently there is a well-defined function µ : Y → Rn

characterized by the property that, for all points y of the open
set Y , the point µ(y) is the unique point of the open set X for
which ϕ(x) = y. We must prove that this function µ is
differentiable and that it maps the open set Y onto an open set in
Rn.
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First we show that µ(Y ) is an open set in Rn. Let p be a point of
µ(Y ). The continuity of the function ϕ ensures that ϕ−1(Y ) is
open in X . Therefore there exists some positive real number δ that
is small enough to ensure both that all points x of Rn that satisfy
|x− p| < δ belong to the open set X and also that all points x of
that open set that satisfy |x− p| < δ are mapped by ϕ into the
open set Y . Consequently all points of the open ball of radius δ in
Rn centred on the point p are mapped by ϕ into the set Y and
therefore belong to µ(Y ). Consequently µ(Y ) is an open set in Rn.
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Next we show that the derivative (Dϕ)p of the function ϕ at the
point p is invertible. Now the hypotheses of the proposition ensure
that |x− p| ≤ K |ϕ(x)− ϕ(p)| for all points x of X . It follows that
|w| ≤ K |(Dϕ)pw| for all w ∈ Rm (see Lemma 10.2). This
inequality ensures that the kernel of the linear transformation
(Dϕ)p consists of just the zero element of Rn. Consequently the
range of this linear transformation has the same dimension as its
domain, and is thus the whole of Rn. Accordingly the linear
transformation (Dϕ)p must indeed be an invertible linear operator
on Rn.
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Let q ∈ Y , and let p = µ(q). Also let some positive real number ε
be given. The differentiability of the function ϕ at p ensures the
existence of a positive real number δ that is small enough to ensure
that all points x of Rn that satisfy the inequality |x− p| ≤ Kδ
belong to the open set X and also satisfy the inequality

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε

K 2
|x− p|.

Reducing the value of δ if necessary, we can also ensure that the
open ball of radius δ centred on the point q is contained in the
open set Y . Let y ∈ Y satisfy |y − q| < δ, and let x = µ(y). Then
ϕ(x) = y and ϕ(p) = q, and therefore

|x− p| ≤ K |ϕ(x)− ϕ(p)| = K |y − q| < Kδ.
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It follows that

|y − q− (Dϕ)p(x− p)| = |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|

≤ ε

K 2
|x− p| ≤ ε

K
|y − q|.

Consequently it follows (on applying Lemma 10.2) that∣∣(Dϕ)−1p (y − q)− (x− p)
∣∣

≤ K
∣∣(Dϕ)p

(
(Dϕ)−1p (y − q)− (x− p)

)∣∣
≤ K |y − q− (Dϕ)p(x− p)|
≤ ε|y − q|.
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But x = µ(y) and p = µ(q). We conclude therefore that, given
any positive real number ε, there exists some positive real
number δ such that y ∈ Y and∣∣µ(y)− µ(q)− (Dϕ)−1p (y − q)

∣∣ ≤ ε|y − q|

for all points y of Rn satisfying |y − q| < δ. It follows that the
function µ : Y → Rn is differentiable at q, and moreover

(Dµ)q = (Dϕ)−1p = (Dϕ)−1µ(q).

The result follows.
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Definition

A vector-valued function, defined over an open set in some
Euclidean space, is said to be continuously differentiable if it is
differentiable, with continuous first order partial derivatives
throughout its domain.

It follows directly from a result previously established that if a
vector-valued function defined over an open set in a Euclidean
space has continuous first order partial derivatives then that
function must necessarily be differentiable (see Proposition 8.12).
Thus the existence of continuous first order partial derivatives
throughout the domain of such a function is sufficient to ensure
that the function is continuously differentiable over its domain. No
additional differentiability criterion is required in order to ensure
continuous differentiability.
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Theorem 10.4 (Inverse Function Theorem)

Let ϕ : X → Rn be a continuously differentiable function defined
over an open set X in n-dimensional Euclidean space Rn and
mapping X into Rn, and let p be a point of X . Suppose that the
derivative (Dϕ)p : Rn → Rn of the function ϕ at the point p is an
invertible linear transformation. Then there exists an open set Y in
Rn and a continuously differentiable function µ : Y → Rn that
satisfies the following conditions:—

(i) µ(Y ) is an open set in Rn contained in X , and p ∈ µ(Y );

(ii) ϕ(µ(y)) = y for all y ∈ Y .
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Proof
The derivative (Dϕ)p : Rn → Rn of ϕ at the point p is an
invertible linear operator on the real vector space Rn. In other
words, it is an invertible linear transformation mapping Rn onto
itself. Let T = (Dϕ)−1p , and let a positive real number K be
chosen such that 2|Tw| ≤ K for all w ∈ Rn satisfying |w| = 1.
Then |Tw| ≤ 1

2K |w| for all w ∈ Rn.
Also let ψ : X → Rn be defined such that

ψ(x) = x− T (ϕ(x)− q)

for all x ∈ X , where q = ϕ(p).
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Now the derivative of any linear transformation at any point is
equal to that linear transformation (see Lemma 8.9). It follows on
applying the Chain Rule (Proposition 8.20) that the derivative of
the composition function T ◦ ϕ at any point x of X is equal to
T (Dϕ)x. Consequently (Dψ)x = I − T (Dϕ)x for all x ∈ X , where
I denotes the identity operator on Rn. In particular
(Dψ)p = I − T (Dϕ)p = 0. Moreover ψ(p) = p.
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Now the first order derivatives of the function ϕ are continuous at
the point p. Therefore, given that (Dψ)p = 0, we can choose some
positive constant r that is small enough to ensure both that x ∈ X
for all elements x of Rn satisfying |x− p| ≤ r and also that

|ψ(u)− ψ(v)| ≤ 1
2 |u− v|

for all points u and v of X for which |u− p| ≤ r and |v − p| ≤ r
(see Corollary 8.7).
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Let u and v be points of X for which |u− p| ≤ r and |v − p| ≤ r .
Now ψ(x) = x− T (ϕ(x)− q) for all x ∈ X , and moreover T is a
linear operator. It follows that

ψ(u)− ψ(v) = u− v − T (ϕ(u)− ϕ(v)).

Therefore

|u− v| = |ψ(u)− ψ(v) + T (ϕ(u)− ϕ(v))|
≤ |ψ(u)− ψ(v)|+ |T (ϕ(u)− ϕ(v))|
≤ 1

2 |u− v|+ |T (ϕ(u)− ϕ(v))| .

Subtracting 1
2 |u− v| from both sides of this inequality, and

multiplying by 2, we deduce that

|u− v| ≤ 2 |T (ϕ(u)− ϕ(v))| ≤ K |ϕ(u)− ϕ(v)|,

for all points u and v of X satisfying |u− p| ≤ r and |v − p| ≤ r .
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Now let
F = {x ∈ Rn : |x− p| ≤ r}.

Then F is a closed subset of Rn, and F ⊂ X . Moreover
|ψ(u)− ψ(v)| ≤ 1

2 |u− v| for all u ∈ F and v ∈ F .
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Let y ∈ Rn satisfy |y − q| < s, where q = ϕ(p) and s = r/K . Also
let z = p + T (y − q), and let

θ(x) = ψ(x) + z− p

for all x ∈ X . Now z− p = T (y− q) and ψ(x) = x− T (ϕ(x)− q)
for all x ∈ X . It follows from the definition of θ(x) and the linearity
of T that

θ(x)− x = z− p + ψ(x)− x

= T (y − q)− T (ϕ(x)− q)

= T (y − ϕ(x))

for all x ∈ X . Moreover the linear operator T is invertible.
Consequently a point x of X satisfies the equation x = θ(x) if and
only if ϕ(x) = y.
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Accordingly if we can show that the restriction of the function θ to
the closed set F maps that closed set into itself, where

F = {x ∈ Rn : |x− p| ≤ r},

and if we can also show that the restriction of the function θ to
the closed set F is a contraction mapping on that closed set, then
we can use the result (Theorem 10.1) concerning contraction
mappings on closed sets previously established to deduce the
existence of a fixed point x for θ located within the closed set F .
That fixed point x will then satisfy the equation ϕ(x) = y.
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Now the positive constant K was chosen at the beginning of the
proof so as to ensure that |Tw| ≤ 1

2K |w| for all w ∈ Rn. Also
|y − q| < s, where s = r/K . Consequently

|z− p| = |T (y − q)| ≤ 1
2K |y − q| < 1

2Ks = 1
2 r .

Also ψ(p) = p, and consequently

θ(x)− z = ψ(x)− p = ψ(x)− ψ(p).

Moreover |ψ(u)−ψ(v)| ≤ 1
2 |u− v| for all points u and v of X that

satisfy |u−p| ≤ r and |v−p| ≤ r . Consequently if |x−p| ≤ r then

|θ(x)− z| ≤ 1
2 |x− p| ≤ 1

2 r ,

and therefore

|θ(x)− p| ≤ |θ(x)− z|+ |z− p| < r .
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We have thus shown that if x ∈ Rn satisfies |x− p| ≤ r then x ∈ X
and |θ(x)− p| < r . We conclude therefore that θ maps the closed
set F into its interior, where

F = {x ∈ Rn : |x− p| ≤ r}.

Moreover

|θ(u)− θ(v)| = |ψ(u)− ψ(v)| ≤ 1
2 |u− v|

for all u ∈ F and v ∈ F . It then follows from Theorem 10.1 that
there exists a point x of F for which θ(x) = x. It then follows from
results previously established that |x− p| < r and ϕ(x) = y.
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We have now established that, given any point y of Rn satisfying
|y − q| < s, where q = ϕ(p), there exists a point x of X satisfying
|x− p| < r for which ϕ(x) = y. Accordingly let

Y = {y ∈ Rn : |y − ϕ(p)| < s}.

Then
Y ⊂ ϕ

(
{x ∈ Rn : |x− p| < r}

)
.

It therefore follows (on applying Proposition 10.3) that there is a
well-defined function µ : Y → Rn characterized by the properties
that |µ(y)− p| < r and y = ϕ(µ(y)) for all y ∈ Y . Moreover this
function µ is differentiable, and (Dµ)ϕ(x) = (Dϕ)−1x for all
x ∈ µ(Y ).
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Now the function µ : Y → Rn is continuous, because it is
differentiable. Also the coefficients of the Jacobian matrix
representing the derivative of ϕ at points x of µ(Y ) are continuous
functions of x on µ(Y ). It follows that the coefficients of the
inverse of the Jacobian matrix of the function ϕ are also
continuous functions of x on µ(Y ). Each coefficient of the
Jacobian matrix of the function µ is thus the composition of the
continuous function µ with a continuous real-valued function on
µ(Y ), and must therefore itself be a continuous real-valued
function on Y . It follows that the function µ : Y → Rn is
continuously differentiable on Y . This completes the proof.
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10.3. The Implicit Function Theorem

Lemma 10.5

Let L be an m × n matrix where m < n, let Li ,j denote the
coefficient in the ith row and jth column of the matrix L for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and let J be the n × n matrix
whose coefficient Ji ,j in the ith row and jth column is determined
for all integers i and j between 1 and n so as to satisfy the
following conditions:—

Ji ,j = Li ,j whenever 1 ≤ i ≤ m and 1 ≤ j ≤ n,

Ji ,j = 1 whenever m + 1 ≤ i ≤ n and j = i ,

Ji ,j = 0 whenever m + 1 ≤ i ≤ n and j 6= i .

Also let M denote the m ×m matrix whose coefficient in the ith
row and jth column is equal to Li ,j for all integers i and j between
1 and m. Suppose that the matrix M is invertible. Then the
matrix J is invertible.
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Proof
Let Mi ,j denote the coefficient in the ith row and jth column of
the matrix M for all integers i and j between 1 and m. Then
Ji ,j = Li ,j = Mi ,j for all integers i and j between 1 and m. Let
v1, v2, . . . , vn be real numbers, and let v = (v1, v2, . . . , vn). Now
the matrix M is invertible. Consequently there exist real numbers
w1,w2, . . . ,wm such that, for each integer i between 1 and m,

m∑
j=1

Ji ,jwj = vi −
n∑

j=m+1

Ji ,jvj .

Let wj = vj for all integers j for which m + 1 ≤ j ≤ n. Then

vi =
m∑
j=1

Ji ,jwj +
n∑

j=m+1

Ji ,jwj =
n∑

j=1

Ji ,jwj

for each integer i between 1 and m.
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Moreover vi =
n∑

j=1
Ji ,jwj for each integer i between m + 1 and n

because Ji ,i = 1 whenever i > m and also Ji ,j = 0 whenever i > m
and j 6= i . It follows that Jw = v, where w = (w1,w2, . . . ,wn).
Now if u is any vector in Rn satisfying the equation Ju = v, and if
u = (u1, u2, . . . , un), then ui = vi = wi for all integers i greater
than m, and consequently

m∑
j=1

Ji ,juj = vi −
n∑

j=m+1

Ji ,jvj =
m∑
j=1

Ji ,jwj .

It then follows from the invertibility of the m ×m matrix M that
ui = wi for all integers i between 1 and m. We have already noted
that ui = wi for all integers i between m + 1 and n. Consequently
u = w. We conclude therefore that the vector w is the unique
vector in Rn that satisfies the equation Jw = v. We have
accordingly established that the n × n matrix J is invertible, as
required.
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Proposition 10.6

Let X and Y be open sets in Rn, and let ϕ : X → Rn and
µ : Y → Rn be continuous functions with the properties that µ(Y )
is open in Rn, µ(Y ) ⊂ X and ϕ(µ(y)) = y for all y ∈ Y . Also let
f1, f2, . . . , fn be the real-valued functions on X that are the
components of the vector-valued function ϕ, so that

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X. Suppose that there exists an integer m satisfying
0 < m < n which is such as to ensure that fi (x1, x2, . . . , xn) = xi
for all (x1, x2, . . . , xn) ∈ X and for all integers i satisfying
m < i ≤ n.
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Let
S = {x ∈ X : fi (x) = 0 when 1 ≤ i ≤ m}.

Then there exist open sets V and D in Rn and Rn−m respectively,
where S ∩ µ(Y ) ⊂ V ⊂ X and (xm+1, . . . , xn) ∈ D for all
(x1, . . . , xn) ∈ V , and continuous real-valued functions h1, . . . , hm
defined over D which are such as to ensure that

S ∩ V = {(x1, x2, . . . , xn) ∈ V :

xi = hi (xm+1, . . . , xn) when 1 ≤ i ≤ m}.
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Proof
Let ρ : Rn → Rn−m and σ : Rn−m → Rn be the functions defined
such that

ρ(y1, y2, . . . , yn) = (ym+1, ym+2, . . . , yn)

for all (y1, y2, . . . , yn) ∈ Rn and

σ(z1, z2, . . . , zn−m) = (0, . . . , 0, z1, z2, . . . , zn−m)

for all (z1, z2, . . . , zn−n) ∈ Rn−m. (Thus, for all y ∈ Rn, the
components of ρ(y) are the successive final n −m components of
the n-dimensional vector y, and, for all z ∈ Rn−m, the first m
components of σ(z) are zero, and the final n −m components of
σ(z) are the successive components of the (n −m)-dimensional
vector z.) Then

σ(ρ(y1, y2, . . . , yn)) = (0, . . . , 0, ym+1, ym+2, . . . , yn)

for all (y1, y2, . . . , yn) ∈ Rn.
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The set S is by definition the subset of X consisting of those
points of X at which the first m components f1, f2, . . . , fm of the
function ϕ are all equal to zero. It follows that

S = {x ∈ X : ϕ(x) = σ(ρ(ϕ(x)))}.

Let
W = {y ∈ Y : σ(ρ(y)) ∈ Y },

and let V = µ(W ). Then W is an open subset of Y , being the
preimage in Y of the set Y itself under the continuous
function σ ◦ ρ. Now, given any point x of µ(Y ), there exists some
point y for which x = µ(y). Then ϕ(x) = y. It follows that
x ∈ ϕ−1(W ) ∩ µ(Y ) if and only if y ∈W , in which case
x ∈ µ(W ). Consequently V = µ(W ) = ϕ−1(W ) ∩ µ(Y ). It
follows from this that the set V is an open set in Rn, being the
intersection of the open set µ(Y ) with the open subset ϕ−1(W ) of
the open set X . Also the definitions of S , V and W ensure that
S ∩ µ(Y ) ⊂ V ⊂ X .
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Now
S ∩ V = {x ∈ V : ϕ(x) = σ(ρ(ϕ(x)))},

and ϕ(x) ∈ Y and σ(ρ(ϕ(x))) ∈ Y for all x ∈ V . Moreover the
function µ : Y → Rn is injective, and µ(σ(x)) = x for all x ∈ µ(Y ).
Also ρ(ϕ(x)) = ρ(x) for all x ∈ V , because the ith component of
ϕ(x) is equal to the ith component of x itself when i > m.
Consequently

S ∩ V = {x ∈ V : x = µ(σ(ρ(x)))},

where

σ(ρ(x1, x2, . . . , xn)) = σ(xm+1, . . . , xn) = (0, . . . , 0, xm+1, . . . , xn)

for all (x1, x2, . . . , xn) ∈ Rn.
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Let gi denote the ith Cartesian component of the continuously
differentiable function µ : Y → Rn for i = 1, 2, . . . , n. Then
gi : Y → R is a continuously differentiable real-valued function on
Y for i = 1, 2, . . . , n. If (y1, y2, . . . , yn) ∈ Y then

(y1, y2, . . . , yn) = ϕ(µ(y1, y2, . . . , yn)).

It then follows from the definition of the function ϕ that yi is the
ith Cartesian component of µ(y1, y2, . . . , yn) when i > m, and thus

yi = gi (y1, y2, . . . , yn) when m + 1 ≤ i ≤ n.

Consequently xi = gi (σ(ρ(x))) whenever i > m, and therefore
x = µ(σ(ρ(x))) if and only if

xi = gi (σ(ρ(x))) = gi (0, . . . , 0, xm+1, . . . , xn)

for i = 1, 2, . . . ,m.
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Let
D = {z ∈ Rn−m : σ(z) ∈ Y },

and let hi : D → R be defined for i = 1, 2, . . . ,m so that
hi (z) = gi (σ(z)) for all z ∈ D. Then the set D is open in Rn−m,
and a point x of V with x = (x1, x2, . . . , xn) satisfies
x = µ(σ(ρ(ϕ(x)))) if and only if xi = hi (ρ(x)) for i = 1, 2, . . . ,m.
Consequently

S ∩ V = {(x1, x2, . . . , xn) ∈ V :

xi = hi (xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

We have therefore constructed the required open sets V and D
and continuous real-valued functions h1, . . . , hm, thereby
completing the proof of the proposition.
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Theorem 10.7 (Implicit Function Theorem)

Let X be an open set in Rn, let f1, f2, . . . , fm be continuously
differentiable real-valued functions on X , where m < n, let

S = {x ∈ X : fi (x) = 0 for i = 1, 2, . . . ,m},

and let p be a point of S.
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Suppose that the matrix

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xm


is invertible at the point p. Then there exists an open
neighbourhood V of p and continuously differentiable
functions h1, h2, . . . , hm of n −m real variables, defined around
(pm+1, . . . , pn) in Rn−m, such that

S ∩ V = {(x1, x2, . . . , xn) ∈ V :

xi = hi (xm+1, . . . , xn) when 1 ≤ i ≤ m}.
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Proof
Let ϕ : X → Rn be the continuously differentiable function defined
such that

ϕ(x) =
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
for all x ∈ X . (Thus the ith Cartesian component of the function ϕ
is equal to fi for i ≤ m, but is equal to xi for m < i ≤ n.) Let J be
the Jacobian matrix of ϕ at the point p, let Ji ,j denote the
coefficient in the ith row and jth column of J. Then

Ji ,j =
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also Ji ,i = 1 if i > m, and
Ji ,j = 0 if i > m and j 6= i .
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Let M be the m ×m matrix whose coefficient in the ith row and
jth column is equal to Ji ,j for all integers i and j between 1 and m.
The conditions of the Implicit Function Theorem ensure that the
matrix M is invertible. It then follows from Lemma 10.5 that the
Jacobian matrix J of the function ϕ at the point p is invertible,
and thus the derivative (Dϕ)p : Rn → Rn of the function ϕ at the
point p is an invertible linear operator on Rn.
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The Inverse Function Theorem (Theorem 10.4) now ensures the
existence of a continuously differentiable function µ : Y → Rn,
defined over an open set Y in Rn, with the properties that µ(Y ) is
an open subset of X , p ∈ µ(Y ) and ϕ(µ(y)) = y for all y ∈ Y .

Applying Proposition 10.6, we conclude that there exist open sets
V and D in Rn and Rn−m respectively, where S ∩ µ(Y ) ⊂ V ⊂ X
and (xm+1, . . . , xn) ∈ D for all (x1, . . . , xn) ∈ V , and continuous
real-valued functions h1, . . . , hm defined over D which are such as
to ensure that

S ∩ V = {(x1, x2, . . . , xn) ∈ V :

xi = hi (xm+1, . . . , xn) when 1 ≤ i ≤ m}.

Moreover p ∈ S ∩ µ(Y ), and consequently p ∈ V . The required
conclusions of the Inverse Function Theorem have therefore been
established.
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The three following results are special cases of the Implicit
Function Theorem, and cover those standard cases in which the
theorem is applied to continuously differentiable scalar-valued and
vector-valued functions of two or three real variables.

These results are basic building blocks for establishing secure
logical foundations for that part of the field of differential geometry
that is concerned with the theory of curves and surfaces in
low-dimensional Euclidean spaces. Curves and surfaces specified in
terms of continuously differentiable functions, and their
higher-dimensional analogues in finite-dimensional Euclidean
spaces, are examples of submanifolds of the Euclidean spaces that
contain them. The Implicit Function Theorem generalizes the
results concerning curves and surfaces expressed in the following
corollaries so as to apply to submanifolds of Euclidean spaces of
any finite dimension.
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Corollary 10.8

Let f be a continuously differentiable real-valued function defined
over an open set in R2, and let (p, q) be a point of the domain of
the function f . Suppose that f (p, q) = 0 and

∂f

∂y
6= 0

at the point (p, q). Then there exists an open set V in R2, where
(p, q) ∈ V , and a continuously differentiable function h of a single
real variable, defined around the real number p, such that

{(x , y) ∈ V : f (x , y) = 0}
= {(x , y) ∈ V : y = h(x)}.
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Corollary 10.9

Let f be a continuously differentiable real-valued function defined
over an open set in R3, and let (p, q, r) be a point of the domain
of the function f . Suppose that f (p, q, r) = 0 and

∂f

∂z
6= 0

at the point (p, q, r). Then there exists an open set V in R3,
where (p, q, r) ∈ V , and a continuously differentiable function h of
two real variables, defined around the point (p, q) ∈ R2, such that

{(x , y , z) ∈ V : f (x , y , z) = 0}
= {(x , y , z) ∈ V : z = h(x , y)}.
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Corollary 10.10

Let v and w be continuously differentiable real-valued functions
defined over an open set in R3, and let (p, q, r) be a point of the
common domain of the functions v and w. Suppose that
v(p, q, r) = 0, w(p, q, r) = 0 and

∂v

∂y

∂w

∂z
− ∂v

∂z

∂w

∂y
6= 0

at the point (p, q, r). Then there exists an open set V in R3, where
(p, q, r) ∈ V , and continuously differentiable functions f and g of
a single real variable, defined around the real number p, such that

{(x , y , z) ∈ V : v(x , y , z) = w(x , y , z) = 0}
= {(x , y , z) ∈ V : y = f (x) and z = g(x)}.
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Note that the condition imposed on the first order partial
derivatives of the function v and w in the statement of
Corollary 10.10, requiring the value of

∂v

∂y

∂w

∂z
− ∂v

∂z

∂w

∂y

to be non-zero at the point (p, q, r) is a necessary and sufficient
condition for ensuring that the matrix

∂v

∂y

∂v

∂z
∂w

∂y

∂w

∂z


of functions is an invertible matrix when those functions are
evaluated at the point (p, q, r).
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