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9 Second Order Partial Derivatives and the
Hessian Matrix

9.1 Second Order Partial Derivatives

Let X be an open subset of R" and let f: X — R be a real-valued function
on X. We consider the second order partial derivatives of the function f

defined by
o’f o [of

We shall show that if the partial derivatives
of  of o f o f

(9:1:'1- ’ 83:j ’ 8:1:1 al'j an 833j 8;1:1

all exist and are continuous then

of 0
('3;1:Z- 81']' N 81']' le

Now it would be incorrect to assert that if the second order partial derivatives
of a real-valued function f of real variables x1, s, ..., 2, all exist at some
point of the domain of the function then

0 f d 02 f
an .
8177; 6:16]— ij 0932
are equal for all values of 7 and j. First though we give a counterexample
which demonstrates that there exist functions f for which
0 f 0 f
8xi8x]~ 8%6% ’

Example Let f:R? — R be the function defined by

zy(a® —y?)
fay) = w2rpe 1
0 if (z,y) = (0,0).

For convenience of notation, let us write

folz,y) = afgg y)v
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fay) = 00

dy
P f(x,y)
Joy(x,y) = “ordy
D*f(x,y)
Jya(,Y) “oyor

If (z,y) # (0,0) then

(3z%y — v*)(2? + y?) — 22%y(2* — y?)

fe = (22 + y2)?2
C Baty 322y — P — P — 2ty + 20
o (a:2 +y2)2
xty + day® — o5

(22 + 42)?2
Similarly
—zyt — 423y + 2
(22 + y2)2
(This can be deduced from the formula for f, on noticing that f(z,y) changes

sign on interchanging the variables z and y.)
Differentiating again, when (z,y) # (0,0), we find that

fy:

fmy(xv y) = %

(—y* — 1222y + 5a*) (2? + %)  —dx(—zy* — 423y + 25)
- (22 + 2)3 (22 + 2)3
=Pyt —1220%% 4 5a® — o — 122%y" 4 Sa'y?
- (932 +y2)3

4oyt + 162ty — 425
(22 + y2)3

2% 4+ 9zty? — 9x2yt — o8

- (22 + 42)°

Now the expression just obtained for f,, when (x,y) # (0,0) changes
sign when the variables x and y are interchanged. The same is true of the
expression defining f(x,y). It follows that f,,. We conclude therefore that
if (x,y) # (0,0) then

28 + 9zty? — 922yt — o8
(I2 + y2)3

f:ry = fya: =

70



Now if (z,y) # (0,0) and if r = y/22 + y? then
ety + 42yt — 0 6

fol )] - <=6
It follows that
lim (x,y) = 0.
(w,y)—>(070)f ( y)
Similarly
lim x,y) =0.
(2,9)—(0,0) ful@,y)
However
lim 2y (T,
(2,9)—(0,0) fon(@,)
does not exist. Indeed
. ) A
ili}’(l)faty(xuo):alcli%fyw(x70) - }}_}I%E: 17
6
. Y T i _

Next we show that f,, f,, fuy, and fy, all exist at (0,0), and thus exist
everywhere on R?. Now f(x,0) = 0 for all z, hence f,(0,0) = 0. Also
f(0,y) =0 for all y, hence f,(0,0) = 0. Thus

fy(ZE,O) =T, f$(07y>:_y
for all z,y € R. We conclude that

d(f,(z,0))

(0.0 -

f42(0,0)

Thus

at (0,0).

Observe that in this example the functions f,, and f,, are continuous
throughout R? \ {(0,0)} and are equal to one another there. Although the
functions f,, and f,, are well-defined at (0,0), they are not continuous at

(0,0) and fz,(0,0) # f4z(0,0).
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Theorem 9.1 Let X be an open set in R? and let f: X — R be a real-valued
function on X. Suppose that the partial derivatives

of  of >*f

—, = and

or’ 0Oy 0xdy

exist and are continuous throughout X . Then the partial derivative

0 f
Oyox
exists and is continuous on X, and
0 f B 0*f
oxdy  Oydz’
Proof Let of o7
fx($7y):%a fy(zay):a_ya
o0 f 0 f
fxy($ay) - 83:8y and fyx<x>y> - ayax

and let (a,b) be a point of X. The set X is open in R? and therefore there
exists some positive real number L such that (a + h,b + k) € X for all
(h, k) € R? satisfying |h| < L and |k| < L.

Let

S(h,k) = fla+h,b+k)+ f(a,b) — f(a+ h,b) — f(a,b+ k)

for all real numbers h and k satisfying |h| < L and |k| < L. First consider h
to be fixed, where |h| < L, and let ¢: (b — L,b+ L) — R be defined so that
q(t) = fla+h,t) — f(a,t) for all real numbers ¢ satisfying b— L <t < b+ L.
Then S(h, k) = q(b+k)—q(b). It then follows from the Mean Value Theorem
(Theorem 7.5) that there exists some real number v lying between b and b+ k
for which ¢(b+ k) — q(b) = k¢'(v). But ¢'(v) = fy(a + h,v) — fy(a,v). It
follows that

S(h, k) = k(fy<a + h,v) — fy(a’ v)).
The Mean Value Theorem can now be applied to the function sending real
numbers s in the interval (e — L,a + L) to f,(s,v) to deduce the existence
of a real number u lying between a and a + h for which

S(h,k) = k(fy(a+h,v)— fy(a,v))

= hkf,(u,v)
2
_ o 2 .
20Y | (2 )=(u)
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Now let some positive real number ¢ be given. The function f,, is contin-
uous. Therefore there exists some real number ¢ satisfying 0 < § < L such
that | fuy(a+h,b+k) — fuy(a,b)| < e whenever |h| < 0 and |k| < 0. It follows
that

S(h, k)

2ALE <
7 fay(a,b)| < e

for all real numbers h and & satisfying 0 < |h| < § and 0 < |k| < . Now

. S(h,k) 1. fla+hb+k)— fla,b+k)
ey h
1 . f(a_l—hvb)_f(aab)
T A h

fe(a, b+ k) — fu(a,b)
k

It follows that
fx(aa b + k) - fx(aa b)
k

— fay(a,b)| <¢

whenever 0 < |k| < 0.

fola, b+ k) — fi(a,b) tends to fo,(a,b) as k

tends to zero, and therefore the second order partial derivative f,, exists at
the point (a,b) and

Thus the difference quotient

IERT fx(a>b+k)_fx(aab)
R

= fxy(aa b)>
as required. |}

Corollary 9.2 Let X be an open set in R™ and let f: X — R be a real-valued
function on X. Suppose that the partial derivatives

of and Of

exist and are continuous on X for all integers i and j between 1 and n. Then

o*f 0*f
5’@8% n 81’]&7}2

for all integers i and j between 1 and n.
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9.2 Local Maxima and Minima

Definition A function ¢: X — RP, defined over an open set X in R™ and
mapping that open set into R? for some positive integers n and p, is said to be
k times continuously differentiable if the partial derivatives of the components
of the functions ¢ of all orders less than or equal to k exist and are continuous
throughout the domain X of the function .

Let f: X — R be a twice continuously differentiable real-valued function
defined over some open subset X of R". (In other words, let f be a real-
valued function defined on an open set X in R™ whose first and second order
partial derivatives exist and are continuous throughout the domain X of the
function f.) Suppose that f has a local minimum at some point p of X,
where p = (p1,p2,...,pn). Now for each integer i between 1 and n the map

t— f(p1,. Pic1,t,Disc1y -+ Dn)

has a local minimum at ¢ = p;. It follows that the derivative of this map
vanishes there. Thus if f has a local minimum at p then

=0.
6377; x=p

In many situations the values of the second order partial derivatives of a
twice continuously differentiable function of several real variables at a sta-
tionary point determines the qualitative behaviour of the function around
that stationary point, in particular ensuring, in some situations, that the
stationary point is a local minimum or a local maximum.

Proposition 9.3 Let f be a twice continuously differentiable real-valued func-
tion defined over an open ball in R™ of radius 6 centred on some point p of
R™. Then, given any vector h in R™ satisfying |h| < §, there exists some real
number 0 satisfying 0 < 6 < 1 for which

Z M o (%] axk

p+oh

Proof Let h satisfy |h| < d, and let ¢(t) = f(p + th) for all real numbers ¢
in some appropriately chosen open interval in the real line that contains the
real numbers 0 and 1. The function ¢ is the composition function in which
the function f follows the function that sends real numbers ¢ in the domain
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of ¢ to the point p + th of R". It follows, on applying the Chain Rule for
differentiable functions of several real variables (Theorem 8.20) that

=Y h(df)(p + th)
and n
"(t) = Z h;hi(9;0:f)(p + th),
4k=1
where Of( )
1’1,$2,...,$n
(0 ) (w1, 20, ..., 1p) =
J 1 2 al'j
and 82f( )
. L1, L2y, Tp
(a]ak‘f)(xlvaa"'7$7Z) - &Bja{l?k ’
Now

q(1) = q(0) +¢'(0) + £¢"(0)

for some real number 6 satisfying 0 < 6 < 1 (see Proposition 7.10). Conse-
quently

flp+h) = f(p)+ th (O f)(p Z h;h(9;0cf)(p + 6h)

jkl

_ 9
= f(p)+;hk on Z hyte 55— 8% axk

Y
p+6h
as required. |

Let f be a twice continuously differentiable real-valued function defined
over an open ball of radius ¢ about some given point p of R™. It follows from
Proposition 9.3 that if

0
L2
85(,’]' p
for j = 1,2,...,n, and if |h| < § then there exists some real number 6

satisfying 0 < # < 1 for which

Jp+h)= Zzh”axaxj

=1 j=1

x=p+6h
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Let f be a real-valued function defined over an open set in R™ whose
second order partial derivative are defined at a point p of its domain. Let us
denote by (H; ;(p)) the Hessian matriz at the point p, defined by

0% f

axiﬁxj x=p

Hi,j(l))

Suppose now that the function f is twice continuously differentiable on its
domain. Then H; ;(p) = H;,(p) for all integers i and j between 1 and n, by
Corollary 9.2, and thus the Hessian matrix is symmetric.

We now recall some facts concerning symmetric matrices.

Let (¢;;) be a symmetric n x n matrix.

The matrix (c; ;) is said to be positive semi-definite if Z Z cijhih; >0
i=1 j=1

for all (hy, ha, ..., h,) € R™.
The matrix (¢; ;) is said to be positive definite if Z Z c;jhih; > 0 for

i=1 j=1
all non-zero (hy, ha, ..., h,) € R™.

The matrix (¢; ;) is said to be negative semi-definite if Z Z ¢ijhih; <0
i=1 j=1

for all (hq, ho, ..., h,) € R™.
The matrix (¢; ;) is said to be negative definite if Z Zciyjhihj < 0 for

i=1 j=1
all non-zero (hq, ha, ..., h,) € R™

The matrix (c;;) is said to be indefinite if it is neither positive semi-
definite nor negative semi-definite.

Lemma 9.4 Let (¢; ;) be a positive definite symmetric n x n matriz. Then
there exists some positive real number € that is small enough to ensure that
any symmetric n X n matriz (b; ;) whose components all satisfy the inequality
|bi; — ¢ij| < e is positive definite.

Proof Let S"! be the unit (n — 1)-sphere in R™ defined by
St ={(hy,hg, ..., hy) ER™ :h2 + h3+---+ R =1},
Observe that a symmetric n x n matrix (b; ;) is positive definite if and only
if
Z Z b@jhﬂlj >0
i=1 j=1
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for all (hq, ha, ..., h,) € S" 1. Now the matrix (¢; ;) is positive definite, by

assumption. Therefore
n n
Z Z Ciﬂ'hihj >0

i=1 j=1

for all (hl, hQ, e ,hn) S Snil.
But S"7! is a closed bounded set in R", it therefore follows from The-
orem 5.10 that there exists some (ky, ko, ..., k,) € S" ! with the property

that L -
Z Z Ci7jhihj Z Z Z Ci7jkikij

i=1 j=1 i=1 j=1

for all (hy, ho, ..., h,) € S*7 1. Let

A - i i Ci,jkikj~

i=1 j=1

Then A > 0 and

n n

Z Z C@jhih_j > A

i=1 j=1

for all (hy,ho,...,h,) € S™1. Set e = A/n?.
If (b; ;) is a symmetric n x n matrix all of whose coefficients satisfy the
inequality |b; ; — ¢; ;| < € then

anzn:a)m‘ — ¢ j)hih;| <en® = A,

i=1 j=1

for all (hy, ho,...,h,) € S"1 hence

Xn: zn: bijhih; > z": zn:cmhihj —A>0

i=1 j=1 i=1 j=1

for all (hy, ha, ..., h,) € S 1. Thus the matrix (b; ;) is positive definite, as
required. |

Using the fact that a symmetric n X n matrix (¢; ;) is negative definite
if and only if the matrix (—c¢;;) is positive definite, we see that if (¢; ;) is
a negative definite matrix then there exists some ¢ > 0 with the following
property: if all of the components of a symmetric n X n matrix (b; ;) satisfy
the inequality |b;; — ¢; j| < € then the matrix (b; ;) is negative definite.
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Let f: X — R be a twice continuously differentiable real-valued function
defined over some open set X in R”, and let p be a point of the open set X.
We have already observed that if the function f has a local maximum or a
local minimum at p then

=0 i =1,2,...,n).
0|, (=12...n)

We now study the behaviour of the function f around a point p at which
the first order partial derivatives vanish. We consider the Hessian matrix
(H;;(p)) defined by

0 f

H,i(p) = .
Z7J(p) 833101'] ep

Lemma 9.5 Let f: X — R be a twice continuously differentiable real-valued
function defined over an open set X in R™, and let p be a point of the open
set X at which

=0 i =1,2,...,n).
0% | (=12....n)

If f has a local minimum at the point p then the Hessian matriz (H; ;(p)) at
p is positive semi-definite.

Proof The first order partial derivatives of f are zero at p. It follows that,
given any vector h € R which is sufficiently close to 0, there exists some 6
satisfying 0 < # < 1 (where 6 depends on h) such that

Fp+h) = F(p)+ 5 D05 hulyHiy(p + 0h),

i=1 j=1

where
0% f
8302- 61’]'

H; ;(p +6h) =

x=p+6h

(see Proposition 9.3).
It follows from this result that

t—0 t2 -

i=1 j=1

The result follows. |
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Let f: X — R be a twice continuously differentiable real-valued function
defined over some open set in R", and let p be a point of the domain of f
at which the first order partial derivatives of f are zero. The above lemma
shows that if the function f has a local minimum at p then the Hessian
matrix of f is positive semi-definite at p. However the fact that the Hessian
matrix of f is positive semi-definite at p is not sufficient to ensure that f is
has a local minimum at p, as the following example shows.

Example Consider the function f:R? — R defined by f(z,y) = 2% — 3>,
The first order partial derivatives of f are zero at (0,0). The Hessian matrix

of f at (0,0) is the matrix
2 0
00/

This matrix is positive semi-definite. However (0, 0) is not a local minimum

of f because f(0,y) < f(0,0) for all y > 0.

The following theorem shows that if the Hessian matrix of the function
f is positive definite at a point at which the first order partial derivatives of
f vanish then f has a local minimum at that point.

Theorem 9.6 Let f: X — R be a twice continuously differentiable real-
valued function defined over some open set X in R™, and let p be a point

of X at which

=0 i =1,2,...,n).
0|, (=12...n)

Suppose that the Hessian matriz (H; j(p)) of the function f at the point p is
positive definite. Then f has a local minimum at p.

Proof The first order partial derivatives of f take the value zero at p. It
follows that, given any vector h in R™ which is sufficiently close to 0, there
exists some 6 satisfying 0 < # < 1 (where ¢ depends on h) such that

Fp+h) = F(p)+ 5 D05 hulyHiy(p + 0h),

i=1 j=1
where )
o°f

02102 |5 4 on

H; ;(p +6h) =

(see Proposition 9.3). Suppose that the Hessian matrix (H; ;(p)) is positive
definite. Then there exists some positive real number ¢ small enough to
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ensure that if |H; ;(x) — H; ;(p)| < € for all 4 and j then (H, ;(x)) is positive
definite (see Lemma 9.4).

But it follows from the continuity of the second order partial derivatives
of f that there exists some positive real number ¢ small enough to ensure
that x € X and |H, ;(x) — H; j(p)| < ¢ for all integers ¢ and j between 1 and
n whenever |x — p| < d. Thus if 0 < |h| < 0 then (H; ;(p + 6h)) is positive
definite for all 8 € (0,1) so that f(p+h) > f(p). Thus p is a local minimum
of the function f. |}

A symmetric n X n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if A\; and A, are
the eigenvalues of a symmetric 2 x 2 matrix C', then

A+ Ay = trace C, AMAg = det C.

Thus a symmetric 2 x 2 matrix C' is positive definite if and only if its trace
and determinant are both positive.

Example Consider the function f:R? — R defined by
f(z,y) = 42* + 3y* — 20y — 2° — 2%y — o°.

Now

of (z,y)

Ox
The Hessian matrix of f at (0,0) is

(%)

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 9.6 that the
function f has a local minimum at (0, 0).

=0 and —8f(:r;,y)

= 0.
(2,y)=(0,0) dy

(2,y)=(0,0)
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