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9 Second Order Partial Derivatives and the
Hessian Matrix

9.1 Second Order Partial Derivatives
Let X be an open subset of Rn and let f :X → R be a real-valued function
on X. We consider the second order partial derivatives of the function f
defined by

∂2f

∂xi ∂xj
= ∂

∂xi

(
∂f

∂xj

)
.

We shall show that if the partial derivatives

∂f

∂xi
,

∂f

∂xj
,

∂2f

∂xi ∂xj
and ∂2f

∂xj ∂xi

all exist and are continuous then

∂2f

∂xi ∂xj
= ∂2f

∂xj ∂xi
.

Now it would be incorrect to assert that if the second order partial derivatives
of a real-valued function f of real variables x1, x2, . . . , xn all exist at some
point of the domain of the function then

∂2f

∂xi ∂xj
and ∂2f

∂xj ∂xi
.

are equal for all values of i and j. First though we give a counterexample
which demonstrates that there exist functions f for which

∂2f

∂xi∂xj
6= ∂2f

∂xj∂xi
.

Example Let f :R2 → R be the function defined by

f(x, y) =


xy(x2 − y2)
x2 + y2 if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

For convenience of notation, let us write

fx(x, y) = ∂f(x, y)
∂x

,
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fy(x, y) = ∂f(x, y)
∂y

,

fxy(x, y) = ∂2f(x, y)
∂x∂y

,

fyx(x, y) = ∂2f(x, y)
∂y∂x

.

If (x, y) 6= (0, 0) then

fx = (3x2y − y3)(x2 + y2)− 2x2y(x2 − y2)
(x2 + y2)2

= 3x4y + 3x2y3 − x2y3 − y5 − 2x4y + 2x2y3

(x2 + y2)2

= x4y + 4x2y3 − y5

(x2 + y2)2 .

Similarly

fy = −xy
4 − 4x3y2 + x5

(x2 + y2)2 .

(This can be deduced from the formula for fx on noticing that f(x, y) changes
sign on interchanging the variables x and y.)

Differentiating again, when (x, y) 6= (0, 0), we find that

fxy(x, y) = ∂fy
∂x

= (−y4 − 12x2y2 + 5x4)(x2 + y2)
(x2 + y2)3 + −4x(−xy4 − 4x3y2 + x5)

(x2 + y2)3

= −x2y4 − 12x4y2 + 5x6 − y6 − 12x2y4 + 5x4y2

(x2 + y2)3

+ 4x2y4 + 16x4y2 − 4x6

(x2 + y2)3

= x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3 .

Now the expression just obtained for fxy when (x, y) 6= (0, 0) changes
sign when the variables x and y are interchanged. The same is true of the
expression defining f(x, y). It follows that fyx. We conclude therefore that
if (x, y) 6= (0, 0) then

fxy = fyx = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3 .

70



Now if (x, y) 6= (0, 0) and if r =
√
x2 + y2 then

|fx(x, y)| = |x
4y + 4x2y3 − y5|

r4 ≤ 6r5

r4 = 6r.

It follows that
lim

(x,y)→(0,0)
fx(x, y) = 0.

Similarly
lim

(x,y)→(0,0)
fy(x, y) = 0.

However
lim

(x,y)→(0,0)
fxy(x, y)

does not exist. Indeed

lim
x→0

fxy(x, 0) = lim
x→0

fyx(x, 0) = lim
x→0

x6

x6 = 1,

lim
y→0

fxy(0, y) = lim
y→0

fyx(0, y) = lim
y→0

−y6

y6 = −1.

Next we show that fx, fy, fxy and fyx all exist at (0, 0), and thus exist
everywhere on R2. Now f(x, 0) = 0 for all x, hence fx(0, 0) = 0. Also
f(0, y) = 0 for all y, hence fy(0, 0) = 0. Thus

fy(x, 0) = x, fx(0, y) = −y

for all x, y ∈ R. We conclude that

fxy(0, 0) = d(fy(x, 0))
dx

∣∣∣∣
x=0

= 1,

fyx(0, 0) = d(fx(0, y))
dy

∣∣∣∣
y=0

= −1,

Thus
∂2f

∂x∂y
6= ∂2f

∂y∂x

at (0, 0).
Observe that in this example the functions fxy and fyx are continuous

throughout R2 \ {(0, 0)} and are equal to one another there. Although the
functions fxy and fyx are well-defined at (0, 0), they are not continuous at
(0, 0) and fxy(0, 0) 6= fyx(0, 0).
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Theorem 9.1 Let X be an open set in R2 and let f :X → R be a real-valued
function on X. Suppose that the partial derivatives

∂f

∂x
,

∂f

∂y
and ∂2f

∂x∂y

exist and are continuous throughout X. Then the partial derivative

∂2f

∂y∂x

exists and is continuous on X, and

∂2f

∂x∂y
= ∂2f

∂y∂x
.

Proof Let
fx(x, y) = ∂f

∂x
, fy(x, y) = ∂f

∂y
,

fxy(x, y) = ∂2f

∂x∂y
and fyx(x, y) = ∂2f

∂y∂x

and let (a, b) be a point of X. The set X is open in R2 and therefore there
exists some positive real number L such that (a + h, b + k) ∈ X for all
(h, k) ∈ R2 satisfying |h| < L and |k| < L.

Let

S(h, k) = f(a+ h, b+ k) + f(a, b)− f(a+ h, b)− f(a, b+ k)

for all real numbers h and k satisfying |h| < L and |k| < L. First consider h
to be fixed, where |h| < L, and let q: (b − L, b + L) → R be defined so that
q(t) = f(a+h, t)− f(a, t) for all real numbers t satisfying b−L < t < b+L.
Then S(h, k) = q(b+k)−q(b). It then follows from the Mean Value Theorem
(Theorem 7.5) that there exists some real number v lying between b and b+k
for which q(b + k) − q(b) = kq′(v). But q′(v) = fy(a + h, v) − fy(a, v). It
follows that

S(h, k) = k(fy(a+ h, v)− fy(a, v)).
The Mean Value Theorem can now be applied to the function sending real
numbers s in the interval (a − L, a + L) to fy(s, v) to deduce the existence
of a real number u lying between a and a+ h for which

S(h, k) = k(fy(a+ h, v)− fy(a, v))
= hkfxy(u, v)

= hk
∂2f

∂x∂y

∣∣∣∣
(x,y)=(u,v)

.
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Now let some positive real number ε be given. The function fxy is contin-
uous. Therefore there exists some real number δ satisfying 0 < δ < L such
that |fxy(a+h, b+k)−fxy(a, b)| ≤ ε whenever |h| < δ and |k| < δ. It follows
that ∣∣∣∣S(h, k)

hk
− fxy(a, b)

∣∣∣∣ ≤ ε

for all real numbers h and k satisfying 0 < |h| < δ and 0 < |k| < δ. Now

lim
h→0

S(h, k)
hk

= 1
k

lim
h→0

f(a+ h, b+ k)− f(a, b+ k)
h

− 1
k

lim
h→0

f(a+ h, b)− f(a, b)
h

= fx(a, b+ k)− fx(a, b)
k

.

It follows that ∣∣∣∣fx(a, b+ k)− fx(a, b)
k

− fxy(a, b)
∣∣∣∣ ≤ ε

whenever 0 < |k| < δ.

Thus the difference quotient fx(a, b+ k)− fx(a, b)
k

tends to fxy(a, b) as k
tends to zero, and therefore the second order partial derivative fyx exists at
the point (a, b) and

fyx(a, b) = lim
k→0

fx(a, b+ k)− fx(a, b)
k

= fxy(a, b),

as required.

Corollary 9.2 Let X be an open set in Rn and let f :X → R be a real-valued
function on X. Suppose that the partial derivatives

∂f

∂xi
and ∂2f

∂xi∂xj

exist and are continuous on X for all integers i and j between 1 and n. Then

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi

for all integers i and j between 1 and n.
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9.2 Local Maxima and Minima
Definition A function ϕ:X → Rp, defined over an open set X in Rn and
mapping that open set into Rp for some positive integers n and p, is said to be
k times continuously differentiable if the partial derivatives of the components
of the functions ϕ of all orders less than or equal to k exist and are continuous
throughout the domain X of the function ϕ.

Let f :X → R be a twice continuously differentiable real-valued function
defined over some open subset X of Rn. (In other words, let f be a real-
valued function defined on an open set X in Rn whose first and second order
partial derivatives exist and are continuous throughout the domain X of the
function f .) Suppose that f has a local minimum at some point p of X,
where p = (p1, p2, . . . , pn). Now for each integer i between 1 and n the map

t 7→ f(p1, . . . , pi−1, t, pi+1, . . . , pn)

has a local minimum at t = pi. It follows that the derivative of this map
vanishes there. Thus if f has a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0.

In many situations the values of the second order partial derivatives of a
twice continuously differentiable function of several real variables at a sta-
tionary point determines the qualitative behaviour of the function around
that stationary point, in particular ensuring, in some situations, that the
stationary point is a local minimum or a local maximum.

Proposition 9.3 Let f be a twice continuously differentiable real-valued func-
tion defined over an open ball in Rn of radius δ centred on some point p of
Rn. Then, given any vector h in Rn satisfying |h| < δ, there exists some real
number θ satisfying 0 < θ < 1 for which

f(p + h) = f(p) +
n∑
k=1

hk
∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

.

Proof Let h satisfy |h| < δ, and let q(t) = f(p + th) for all real numbers t
in some appropriately chosen open interval in the real line that contains the
real numbers 0 and 1. The function q is the composition function in which
the function f follows the function that sends real numbers t in the domain
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of q to the point p + th of Rn. It follows, on applying the Chain Rule for
differentiable functions of several real variables (Theorem 8.20) that

q′(t) =
n∑
k=1

hk(∂kf)(p + th)

and

q′′(t) =
n∑

j,k=1

hjhk(∂j∂kf)(p + th),

where
(∂jf)(x1, x2, . . . , xn) = ∂f(x1, x2, . . . , xn)

∂xj

and
(∂j∂kf)(x1, x2, . . . , xn) = ∂2f(x1, x2, . . . , xn)

∂xj ∂xk
.

Now
q(1) = q(0) + q′(0) + 1

2q
′′(θ)

for some real number θ satisfying 0 < θ < 1 (see Proposition 7.10). Conse-
quently

f(p + h) = f(p) +
n∑
k=1

hk(∂kf)(p) + 1
2

n∑
j,k=1

hjhk(∂j∂kf)(p + θh)

= f(p) +
n∑
k=1

hk
∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

,

as required.

Let f be a twice continuously differentiable real-valued function defined
over an open ball of radius δ about some given point p of Rn. It follows from
Proposition 9.3 that if

∂f

∂xj

∣∣∣∣
p

= 0

for j = 1, 2, . . . , n, and if |h| < δ then there exists some real number θ
satisfying 0 < θ < 1 for which

f(p + h) = f(p) + 1
2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

.
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Let f be a real-valued function defined over an open set in Rn whose
second order partial derivative are defined at a point p of its domain. Let us
denote by (Hi,j(p)) the Hessian matrix at the point p, defined by

Hi,j(p) = ∂2f

∂xi∂xj

∣∣∣∣
x=p

.

Suppose now that the function f is twice continuously differentiable on its
domain. Then Hi,j(p) = Hj,i(p) for all integers i and j between 1 and n, by
Corollary 9.2, and thus the Hessian matrix is symmetric.

We now recall some facts concerning symmetric matrices.
Let (ci,j) be a symmetric n× n matrix.

The matrix (ci,j) is said to be positive semi-definite if
n∑
i=1

n∑
j=1

ci,jhihj ≥ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be positive definite if
n∑
i=1

n∑
j=1

ci,jhihj > 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be negative semi-definite if
n∑
i=1

n∑
j=1

ci,jhihj ≤ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be negative definite if
n∑
i=1

n∑
j=1

ci,jhihj < 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.
The matrix (ci,j) is said to be indefinite if it is neither positive semi-

definite nor negative semi-definite.

Lemma 9.4 Let (ci,j) be a positive definite symmetric n × n matrix. Then
there exists some positive real number ε that is small enough to ensure that
any symmetric n×n matrix (bi,j) whose components all satisfy the inequality
|bi,j − ci,j| < ε is positive definite.

Proof Let Sn−1 be the unit (n− 1)-sphere in Rn defined by

Sn−1 = {(h1, h2, . . . , hn) ∈ Rn : h2
1 + h2

2 + · · ·+ h2
n = 1}.

Observe that a symmetric n× n matrix (bi,j) is positive definite if and only
if

n∑
i=1

n∑
j=1

bi,jhihj > 0
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for all (h1, h2, . . . , hn) ∈ Sn−1. Now the matrix (ci,j) is positive definite, by
assumption. Therefore

n∑
i=1

n∑
j=1

ci,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1.
But Sn−1 is a closed bounded set in Rn, it therefore follows from The-

orem 5.10 that there exists some (k1, k2, . . . , kn) ∈ Sn−1 with the property
that

n∑
i=1

n∑
j=1

ci,jhihj ≥
n∑
i=1

n∑
j=1

ci,jkikj

for all (h1, h2, . . . , hn) ∈ Sn−1. Let

A =
n∑
i=1

n∑
j=1

ci,jkikj.

Then A > 0 and
n∑
i=1

n∑
j=1

ci,jhihj ≥ A

for all (h1, h2, . . . , hn) ∈ Sn−1. Set ε = A/n2.
If (bi,j) is a symmetric n × n matrix all of whose coefficients satisfy the

inequality |bi,j − ci,j| < ε then∣∣∣∣∣
n∑
i=1

n∑
j=1

(bi,j − ci,j)hihj

∣∣∣∣∣ < εn2 = A,

for all (h1, h2, . . . , hn) ∈ Sn−1, hence

n∑
i=1

n∑
j=1

bi,jhihj >
n∑
i=1

n∑
j=1

ci,jhihj − A ≥ 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus the matrix (bi,j) is positive definite, as
required.

Using the fact that a symmetric n × n matrix (ci,j) is negative definite
if and only if the matrix (−ci,j) is positive definite, we see that if (ci,j) is
a negative definite matrix then there exists some ε > 0 with the following
property: if all of the components of a symmetric n× n matrix (bi,j) satisfy
the inequality |bi,j − ci,j| < ε then the matrix (bi,j) is negative definite.
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Let f :X → R be a twice continuously differentiable real-valued function
defined over some open set X in Rn, and let p be a point of the open set X.
We have already observed that if the function f has a local maximum or a
local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

We now study the behaviour of the function f around a point p at which
the first order partial derivatives vanish. We consider the Hessian matrix
(Hi,j(p)) defined by

Hi,j(p) = ∂2f

∂xi∂xj

∣∣∣∣
x=p

.

Lemma 9.5 Let f :X → R be a twice continuously differentiable real-valued
function defined over an open set X in Rn, and let p be a point of the open
set X at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

If f has a local minimum at the point p then the Hessian matrix (Hi,j(p)) at
p is positive semi-definite.

Proof The first order partial derivatives of f are zero at p. It follows that,
given any vector h ∈ Rn which is sufficiently close to 0, there exists some θ
satisfying 0 < θ < 1 (where θ depends on h) such that

f(p + h) = f(p) + 1
2

n∑
i=1

n∑
j=1

hihjHi,j(p + θh),

where
Hi,j(p + θh) = ∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Proposition 9.3).
It follows from this result that

n∑
i=1

n∑
j=1

hihjHi,j(p) = lim
t→0

2(f(p + th)− f(p))
t2

≥ 0.

The result follows.
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Let f :X → R be a twice continuously differentiable real-valued function
defined over some open set in Rn, and let p be a point of the domain of f
at which the first order partial derivatives of f are zero. The above lemma
shows that if the function f has a local minimum at p then the Hessian
matrix of f is positive semi-definite at p. However the fact that the Hessian
matrix of f is positive semi-definite at p is not sufficient to ensure that f is
has a local minimum at p, as the following example shows.

Example Consider the function f :R2 → R defined by f(x, y) = x2 − y3.
The first order partial derivatives of f are zero at (0, 0). The Hessian matrix
of f at (0, 0) is the matrix (

2 0
0 0

)
.

This matrix is positive semi-definite. However (0, 0) is not a local minimum
of f because f(0, y) < f(0, 0) for all y > 0.

The following theorem shows that if the Hessian matrix of the function
f is positive definite at a point at which the first order partial derivatives of
f vanish then f has a local minimum at that point.

Theorem 9.6 Let f :X → R be a twice continuously differentiable real-
valued function defined over some open set X in Rn, and let p be a point
of X at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

Suppose that the Hessian matrix (Hi,j(p)) of the function f at the point p is
positive definite. Then f has a local minimum at p.

Proof The first order partial derivatives of f take the value zero at p. It
follows that, given any vector h in Rn which is sufficiently close to 0, there
exists some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f(p + h) = f(p) + 1
2

n∑
i=1

n∑
j=1

hihjHi,j(p + θh),

where
Hi,j(p + θh) = ∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Proposition 9.3). Suppose that the Hessian matrix (Hi,j(p)) is positive
definite. Then there exists some positive real number ε small enough to
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ensure that if |Hi,j(x)−Hi,j(p)| < ε for all i and j then (Hi,j(x)) is positive
definite (see Lemma 9.4).

But it follows from the continuity of the second order partial derivatives
of f that there exists some positive real number δ small enough to ensure
that x ∈ X and |Hi,j(x)−Hi,j(p)| < ε for all integers i and j between 1 and
n whenever |x − p| < δ. Thus if 0 < |h| < δ then (Hi,j(p + θh)) is positive
definite for all θ ∈ (0, 1) so that f(p+h) > f(p). Thus p is a local minimum
of the function f .

A symmetric n × n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if λ1 and λ2 are
the eigenvalues of a symmetric 2× 2 matrix C, then

λ1 + λ2 = traceC, λ1λ2 = detC.

Thus a symmetric 2× 2 matrix C is positive definite if and only if its trace
and determinant are both positive.

Example Consider the function f :R2 → R defined by

f(x, y) = 4x2 + 3y2 − 2xy − x3 − x2y − y3.

Now
∂f(x, y)
∂x

∣∣∣∣
(x,y)=(0,0)

= 0 and ∂f(x, y)
∂y

∣∣∣∣
(x,y)=(0,0)

= 0.

The Hessian matrix of f at (0, 0) is(
8 −2
−2 6

)
.

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 9.6 that the
function f has a local minimum at (0, 0).
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