Module MAU23203: Analysis in Several Real
Variables
Michaelmas Term 2022

Section H: Continuous Functions of Several
Real Variables

D. R. Wilkins
Copyright () Trinity College Dublin 202022

Contents

5 Continuous Functions of Several Real Variables 24
5.1 The Concept and Basic Properties of Continuity . . . . . . . . 24
5.2 Continuous Functions and Open Sets . . . . . . ... ... .. 28
5.3 The Multidimensional Extreme Value Theorem . .. .. . .. 30

5.4 Uniform Continuity for Functions of Several Real Variables . . 32



5 Continuous Functions of Several Real Vari-
ables

5.1 The Concept and Basic Properties of Continuity

Definition Let X and Y be subsets of R™ and R™ respectively. A function
p: X — Y from X to Y is said to be continuous at a point p of X if and
only if, given any strictly positive real number ¢, there exists some strictly
positive real number 0 such that |p(x) — ¢(p)| < € whenever x € X satisfies
|x —p| < 6.

The function ¢: X — Y is said to be continuous on X if and only if it is
continuous at every point p of X.

Proposition 5.1 Let X, Y and Z be subsets of Fuclidean spaces, let p: X —
Y be a function from X toY and let ¢:Y — Z be a function from'Y to Z.
Suppose that ¢ is continuous at some point p of X and that 1 is continuous
at (p). Then the composition function ¥ o p: X — Z is continuous at p.

Proof Let q = ¢(p), and let some positive real number ¢ be given. Then
there exists some positive real number 1 such that | (y) — ¥(q)| < € for
all y € Y satisfying |y — q| < n. But then there exists some positive real
number § such that |p(x) — q| < n for all x € X satisfying |x — p| < J. It
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follows that |¢(¢(x)) — ¥ (¢(p))| < € for all x € X satisfying |x — p| < J,
and thus ¢ o ¢ is continuous at p, as required. |

Proposition 5.2 Let X and Y be subsets of Fuclidean spaces, and let
p: X — Y be a continuous function from X to Y. Let x1,X9,X3,... be
an infinite sequence of points of X which converges to some point p of X.
Then the sequence (x1),o(X2), o(X3), ... converges to o(p).

Proof Let some positive real number € be given. The function ¢ is contin-
uous at p, and therefore there exists some positive real number ¢ such that
lo(x) — p(p)| < € for all x € X satisfying |x — p| < 6. Also the infinite se-

quence X1, X, X3, . . . converges to the point p, and therefore there exists some
positive integer N such that |x; — p| < § whenever j > N. It follows that if
Jj > N then |¢(x;) — ¢(p)| < e. Thus the sequence (x1), ¢(x2), p(X3), ...
converges to ¢(p), as required. ||

Let X and Y be subsets of R™ and R” respectively, and let ¢p: X — Y be
a function from X to Y. Then

p(x) = (1(x), fa(x), ..., fu(x))

for all x € X, where fi, fo,..., f, are functions from X to R, referred to as
the components of the function ¢.
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Proposition 5.3 Let X and Y be subsets of Euclidean spaces, and let p €
X. A function ¢o: X — Y 1is continuous at the point p if and only if its
components are all continuous at p.

Proof Let Y be a subset of n-dimensional Euclidean space R™. Note that
the 7th component f; of ¢ is given by f; = 7 o ¢, where m;: R* — R is
the continuous function which maps (y1,9s,...,y,) € R" onto its ith com-
ponent y;. Now any composition of continuous functions is continuous, by
Proposition 5.1. Thus if ¢ is continuous at p, then so are the components of
®.

Conversely suppose that the components of ¢ are continuous at p € X.
Let some positive real number ¢ be given. Then there exist positive real
numbers 01, s, . .., 0, such that |f;(x) — fi(p)| < /v/n for x € X satisfying
|x — p| < J;. Let ¢ be the minimum of 0q,0ds,...,0,. If x € X satisfies
|x — p| < 6 then

lp(x) — @(p)|* = Z |fi(x) — fi(p)]? < &,

and hence |p(x) — ¢(p)| < €. Thus the function ¢ is continuous at p, as
required. i

Lemma 5.4 Let functions s:R?> — R and m:R?> — R be defined so that
s(z,y) = x +y and m(z,y) = xy for all real numbers x and y. Then the
functions s and m are continuous.

Proof Let (u,v) € R?. We first show that s: R* — R is continuous at (u,v).
Let some positive real number € be given. Let § = %5. If (x,y) is any point
of R? whose distance from (u, v) is less than § then |z —u| < § and |[y—v| < 4,
and hence

|s(z,y) —s(u,v)| =z +y—u—v|<|r—ul+|y—v] <20 =e.

This shows that s: R? — R is continuous at (u, v).
Next we show that m:R? — R is continuous at (u,v). Let some positive
real number ¢ be given. Now

m(z,y) —m(u,v) =xy —uwv = (x —u)(y —v) + uly —v) + (z — u)v.

for all points (z,y) of R?. Thus if the distance from (z,y) to (u,v) is less
than § then |z —u| < § and |y — v| < 6, and hence |m(z,y) — m(u,v)| <
62+ (Ju]+]v])d. Consequently if the positive real number ¢ is chosen to be the
minimum of 1 and &/(1+ |u|+ |v]) then 6%+ (Ju|+ |[v])d < (1+ |u|+|v])d < ¢,
and thus |m(z,y) —m(u, v)| < € for all points (z, y) of R? whose distance from
(u,v) is less than §. This shows that m: R? — R is continuous at (u,v). |}
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Proposition 5.5 Let X be a subset of R", and let f: X - R and g: X — R
be continuous functions from X to R. Then the functions f + g, f — g and
f - g are continuous. If in addition g(x) # 0 for all x € X then the quotient
function f/g is continuous.

Proof Note that f+g = so¢ and f-g = mot, where the functions ¢: X —
R? s:R? — R and m:R? — R are defined so that ¥ (x) = (f(x),9(x)),
s(u,v) = u+ v and m(u,v) = uv for all x € X and u,v € R. It follows
from Proposition 5.3, Lemma 5.4 and Proposition 5.1 that f + g and f-g¢g
are continuous, being compositions of continuous functions. Now f — ¢ =
f+(—g), and both f and —g are continuous. Therefore f — g is continuous.

Now suppose that g(x) # 0 for all x € X. Note that 1/g = r o g, where
r:R\ {0} — R is the reciprocal function, defined so that r(t) = 1/t for
all non-zero real numbers t. Now the reciprocal function r is continuous.
Thus the function 1/g is a composition of continuous functions and is thus
continuous. But then, using the fact that a product of continuous real-valued
functions is continuous, we deduce that f/g is continuous. |

Example Consider the function ¢:R?*\ {(0,0)} — R? defined so that

( ) T -y
P\, Yy) = )
’ $2+y2 1}2—|—y2

for all real numbers z and y that are not both zero. The continuity of the
components of this function ¢ follows from straightforward applications of
Proposition 5.5. It then follows from Proposition 5.3 that the function ¢ is
continuous on R?\ {(0,0)}.

Lemma 5.6 Let X be a subset of R™, let p: X — R™ be a continuous func-
tion mapping X into R", and let |p|: X — R be the real-valued function on

X defined such that |p|(x) = |p(x)| for all x € X. Then the real-valued
function |p| is continuous on X.

Proof Let x and p be points of X. Then

lo(x)| = [(p(x) = ¢(P)) + ¢(P)| < |p(x) — w(p)| + v(P)]

and
le(P) = [(p(P) — (%)) + p(x)] < [p(x) — w(P)| + |p(x)],
and therefore
lp(x)] = leP)l]| < [p(x) = p(p)]-
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The result now follows on applying the definition of continuity, using the
above inequality. Indeed let p be a point of X, and let some positive real
number € be given. Then there exists a positive real number ¢ small enough
to ensure that |p(x) — p(p)| < € for all x € X satisfying |[x — p| < §. But
then

lp(x)] = ||| < [p(x) —p(P)| <e

for all x € X satisfying |x — p| < 0, and thus the function |¢| is continuous,
as required. |}

5.2 Continuous Functions and Open Sets

Let X and Y be subsets of R™ and R", and let ¢: X — Y be a function
from X to Y. We recall that the function ¢ is continuous at a point p of X
if and only if, given any positive real number ¢, there exists some positive
real number ¢ such that |p(x) — ¢(p)| < ¢ for all points x of X satisfying
|x — p| < §. Thus the function ¢: X — Y is continuous at p if and only if,
given any positive real number ¢, there exists some positive real number §
such that the function ¢ maps the open ball Bx(p,d) in X of radius ¢ centred
on the point p into the open ball By(q,¢) in Y of radius € centered on the
point q, where q = ¢(p).

Given any function ¢: X — Y, we denote by ¢~ 1(V) the preimage of a
subset V of Y under the map ¢, defined so that ¢ (V) = {x € X : p(x) €
V.

Proposition 5.7 Let X and Y be subsets of R™ and R™, and let p: X — Y
be a function from X to Y. The function ¢ is continuous if and only if
@ 1 (V) is open in X for every open subset V of Y.

Proof Suppose that ¢: X — Y is continuous. Let V' be an open set in Y.
We must show that ¢~!(V) is open in X. Let p be a point of p~!(V), and
let @ = ¢(p). Then q € V. But V is open, hence there exists some positive
real number £ with the property that By(q,e) C V. But ¢ is continuous
at p. Therefore there exists some positive real number ¢ such that ¢ maps
Bx(p,d) into By(q,¢e). Thus p(x) € V for all x € Bx(p,J), showing that
Bx(p,d) C ¢ *(V). This shows that ¢ '(V) is open in X for every open
set Vin Y.

Conversely suppose that ¢: X — Y is a function with the property that
o1 (V) is open in X for every open set V in Y. Let p € X, and let q = ¢(p).
We must show that ¢ is continuous at p. Let some positive real number € be
given. Then By (q, €) is an open set in Y, by Lemma 4.1, hence ¢! (By(q, €))
is an open set in X which contains p. It follows that there exists some positive
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real number § such that Bx(p,d) C ¢! (By(q,¢)). Thus, given any positive
real number ¢, there exists some positive real number § such that ¢ maps
Bx(p,9) into By(q, ). We conclude that ¢ is continuous at the point p, as
required. ||

Let X be a subset of R", let f: X — R be continuous, and let ¢ be some
real number. Then the sets

{xeX: f(x)>c}

and
{xeX: f(x)<c}

are open in X, and, given real numbers a and b satisfying a < b, the set
{xe X :a< f(x)<b}

is open in X.

Again let X be a subset of R", let f: X — R be continuous, and let ¢
be some real number. Now a subset of X is closed in X if and only if its
complement is open in X. Consequently the sets

{xeX: f(x)<c}

and
{(xeX: f(x)>c},

being the complements in X of sets that are open in X, must themselves be
closed in X. It follows that that set

fxeX:f(x)=c},

being the intersection of two subsets X that are closed in X, must itself be
closed in X.

5.3 The Multidimensional Extreme Value Theorem

Lemma 5.8 Let X be a non-empty closed bounded set in R™, and let f: X —
R be a continuous real-valued function defined on X. Suppose that the set of

values of the function f on X is bounded below. Then there exists a point u
of X such that f(u) < f(x) for allx € X.
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Proof Let
L=inf{f(x):x€ X}.

Then there exists an infinite sequence X1, X, X3, ... in X such that
1
f(Xj) <L+ ;

for all positive integers j. It follows from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 3.5) that this sequence has a subsequence
Xk » Xy s Xk, - - - Which converges to some point u of R™.

Now the point u belongs to X because X is closed (see Lemma 4.7). Also

1
LSf(Xk]) <L+ —
k;

for all positive integers j. It follows that lim f(x;,) = L. Consequently

Jj—+oo

fla)=f (J.ES_HOO ij) - jkglooﬂx’“) =L
(see Proposition 5.2). It follows therefore that f(x) > f(u) for all x € X,
Thus the function f attains a minimum value at the point u of X, which is
what we were required to prove. |j

Lemma 5.9 Let X be a non-empty closed bounded set in R™, and let p: X —
R™ be a continuous function mapping X into R™. Then there exists a positive
real number M with the property that |p(x)| < M for allx € X.

Proof Let g: X — R be defined such that

() = T
9(x) =

1+ [o(x)|
for all x € X. Now the real-valued function mapping each x € X to |p(x)]| is
continuous (see Lemma 5.6) and quotients of continuous real-valued functions
are continuous where they are defined (see Lemma 5.5). It follows that
the function g: X — R is continuous. Moreover the values of this function
are bounded below by zero. Consequently there exists some point w of X
with the property that g(x) > g(w) for all x € X (see Lemma 5.8). Let
M = |p(w)|. Then |p(x)| < M for all x € X. The result follows. |}

Theorem 5.10 (The Multidimensional Extreme Value Theorem)
Let X be a non-empty closed bounded set in R™, and let f: X — R be a
continuous real-valued function defined on X. Then there exist points u and

v of X such that f(u) < f(x) < f(v) for allx € X.
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Proof It follows from Lemma 5.9 that there exists positive real number M
with the property that —M < f(x) < M for all x € X. Thus the set of
values of the function f is bounded above and below on X. Consequently
there exist points u and v where the functions f and — f respectively attain
their minimum values on the set X (see Lemma 5.8). The result follows. |}

5.4 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of R™. A function ¢: X — R” from X to R"
is said to be uniformly continuous if, given any positive real number ¢, there
exists some positive real number § (whose value does not depend on either
y or z) such that |p(y) — ¢(z)| < € for all points y and z of X satisfying
ly —z| < 6.

Theorem 5.11 Let X be a non-empty closed bounded set in R™. Then any
continuous function p: X — R™ is uniformly continuous.

Proof Let some positive real number € be given. Suppose that there did not
exist any positive real number ¢ small enough to ensure that |¢(y) —¢(z)| <
e for all points y and z of the set X satisfying |y — z| < J. Then, for
each positive integer j, there would exist points u; and v; in X such that
lu; — v;| < 1/ and |¢(u;) — ¢(v;)| > . But the sequence uy,uy, us,. ..
would be bounded, since X is bounded, and thus would possess a subsequence
Ug, , Ug,, Ugs, - - . converging to some point p (Theorem 3.5). Moreover p € X,
because X is closed in R™. The sequence vi,, Vi,, Vi,, - .. would also converge
to p, because
lim |Vk]. - ukj| = 0.

Jj—+oo

But then the sequences

gp(ulﬂ)v 50(qu)7 Qp(ukg), o

and

P(Viy), o(Viey), (Vi) - -
would both converge to ¢(p), because ¢ is continuous (see Proposition 5.2).
Therefore

lim () — (vi,)| = 0.

Jj—+oo
But, assuming that no positive real number § could be found satisfying
the stated requirements, the points u; and v; had been chosen for all positive
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integers j so that |u; — v;| < 1/j and |p(u;) — ¢(v;)| > €. Consequently
¢(ug,) and @(vg,) could not both converge to ¢(p) as j increases to infinity.
Thus the assumption that no positive real number § would have the required
property would lead to a contradiction. We conclude therefore that, in order
to avoid arriving at this contradiction, there must exist some positive real
number ¢ such that |p(y) — ¢(z)| < e for all points y and z of the set X
satisfying |y — z| < J, as required. ||
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