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5 Continuous Functions of Several Real Vari-

ables

5.1 The Concept and Basic Properties of Continuity

Definition Let X and Y be subsets of Rm and Rn respectively. A function
ϕ:X → Y from X to Y is said to be continuous at a point p of X if and
only if, given any strictly positive real number ε, there exists some strictly
positive real number δ such that |ϕ(x)−ϕ(p)| < ε whenever x ∈ X satisfies
|x− p| < δ.

The function ϕ:X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.
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Proposition 5.1 Let X, Y and Z be subsets of Euclidean spaces, let ϕ:X →
Y be a function from X to Y and let ψ:Y → Z be a function from Y to Z.
Suppose that ϕ is continuous at some point p of X and that ψ is continuous
at ϕ(p). Then the composition function ψ ◦ ϕ:X → Z is continuous at p.

Proof Let q = ϕ(p), and let some positive real number ε be given. Then
there exists some positive real number η such that |ψ(y) − ψ(q)| < ε for
all y ∈ Y satisfying |y − q| < η. But then there exists some positive real
number δ such that |ϕ(x) − q| < η for all x ∈ X satisfying |x − p| < δ. It
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follows that |ψ(ϕ(x)) − ψ(ϕ(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus ψ ◦ ϕ is continuous at p, as required.

Proposition 5.2 Let X and Y be subsets of Euclidean spaces, and let
ϕ:X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be
an infinite sequence of points of X which converges to some point p of X.
Then the sequence ϕ(x1), ϕ(x2), ϕ(x3), . . . converges to ϕ(p).

Proof Let some positive real number ε be given. The function ϕ is contin-
uous at p, and therefore there exists some positive real number δ such that
|ϕ(x) − ϕ(p)| < ε for all x ∈ X satisfying |x − p| < δ. Also the infinite se-
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quence x1,x2,x3, . . . converges to the point p, and therefore there exists some
positive integer N such that |xj − p| < δ whenever j ≥ N . It follows that if
j ≥ N then |ϕ(xj) − ϕ(p)| < ε. Thus the sequence ϕ(x1), ϕ(x2), ϕ(x3), . . .
converges to ϕ(p), as required.

Let X and Y be subsets of Rm and Rn respectively, and let ϕ:X → Y be
a function from X to Y . Then

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function ϕ.
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Proposition 5.3 Let X and Y be subsets of Euclidean spaces, and let p ∈
X. A function ϕ:X → Y is continuous at the point p if and only if its
components are all continuous at p.

Proof Let Y be a subset of n-dimensional Euclidean space Rn. Note that
the ith component fi of ϕ is given by fi = πi ◦ ϕ, where πi:Rn → R is
the continuous function which maps (y1, y2, . . . , yn) ∈ Rn onto its ith com-
ponent yi. Now any composition of continuous functions is continuous, by
Proposition 5.1. Thus if ϕ is continuous at p, then so are the components of
ϕ.

Conversely suppose that the components of ϕ are continuous at p ∈ X.
Let some positive real number ε be given. Then there exist positive real
numbers δ1, δ2, . . . , δn such that |fi(x)− fi(p)| < ε/

√
n for x ∈ X satisfying

|x − p| < δi. Let δ be the minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies
|x− p| < δ then

|ϕ(x)− ϕ(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |ϕ(x) − ϕ(p)| < ε. Thus the function ϕ is continuous at p, as
required.

Lemma 5.4 Let functions s:R2 → R and m:R2 → R be defined so that
s(x, y) = x + y and m(x, y) = xy for all real numbers x and y. Then the
functions s and m are continuous.

Proof Let (u, v) ∈ R2. We first show that s:R2 → R is continuous at (u, v).
Let some positive real number ε be given. Let δ = 1

2
ε. If (x, y) is any point

of R2 whose distance from (u, v) is less than δ then |x−u| < δ and |y−v| < δ,
and hence

|s(x, y)− s(u, v)| = |x+ y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s:R2 → R is continuous at (u, v).
Next we show that m:R2 → R is continuous at (u, v). Let some positive

real number ε be given. Now

m(x, y)−m(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v.

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |m(x, y) − m(u, v)| <
δ2+(|u|+|v|)δ. Consequently if the positive real number δ is chosen to be the
minimum of 1 and ε/(1+ |u|+ |v|) then δ2 +(|u|+ |v|)δ ≤ (1+ |u|+ |v|)δ ≤ ε,
and thus |m(x, y)−m(u, v)| < ε for all points (x, y) of R2 whose distance from
(u, v) is less than δ. This shows that m:R2 → R is continuous at (u, v).
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Proposition 5.5 Let X be a subset of Rn, and let f :X → R and g:X → R
be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.

Proof Note that f+g = s◦ψ and f ·g = m◦ψ, where the functions ψ:X →
R2, s:R2 → R and m:R2 → R are defined so that ψ(x) = (f(x), g(x)),
s(u, v) = u + v and m(u, v) = uv for all x ∈ X and u, v ∈ R. It follows
from Proposition 5.3, Lemma 5.4 and Proposition 5.1 that f + g and f · g
are continuous, being compositions of continuous functions. Now f − g =
f + (−g), and both f and −g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined so that r(t) = 1/t for
all non-zero real numbers t. Now the reciprocal function r is continuous.
Thus the function 1/g is a composition of continuous functions and is thus
continuous. But then, using the fact that a product of continuous real-valued
functions is continuous, we deduce that f/g is continuous.

Example Consider the function ϕ:R2 \ {(0, 0)} → R2 defined so that

ϕ(x, y) =

(
x

x2 + y2
,
−y

x2 + y2

)
for all real numbers x and y that are not both zero. The continuity of the
components of this function ϕ follows from straightforward applications of
Proposition 5.5. It then follows from Proposition 5.3 that the function ϕ is
continuous on R2 \ {(0, 0)}.

Lemma 5.6 Let X be a subset of Rm, let ϕ:X → Rn be a continuous func-
tion mapping X into Rn, and let |ϕ|:X → R be the real-valued function on
X defined such that |ϕ|(x) = |ϕ(x)| for all x ∈ X. Then the real-valued
function |ϕ| is continuous on X.

Proof Let x and p be points of X. Then

|ϕ(x)| = |(ϕ(x)− ϕ(p)) + ϕ(p)| ≤ |ϕ(x)− ϕ(p)|+ |ϕ(p)|

and
|ϕ(p)| = |(ϕ(p)− ϕ(x)) + ϕ(x)| ≤ |ϕ(x)− ϕ(p)|+ |ϕ(x)|,

and therefore ∣∣∣|ϕ(x)| − |ϕ(p)|
∣∣∣ ≤ |ϕ(x)− ϕ(p)|.
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The result now follows on applying the definition of continuity, using the
above inequality. Indeed let p be a point of X, and let some positive real
number ε be given. Then there exists a positive real number δ small enough
to ensure that |ϕ(x) − ϕ(p)| < ε for all x ∈ X satisfying |x − p| < δ. But
then ∣∣∣|ϕ(x)| − |ϕ(p)|

∣∣∣ ≤ |ϕ(x)− ϕ(p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |ϕ| is continuous,
as required.

5.2 Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let ϕ:X → Y be a function
from X to Y . We recall that the function ϕ is continuous at a point p of X
if and only if, given any positive real number ε, there exists some positive
real number δ such that |ϕ(x) − ϕ(p)| < ε for all points x of X satisfying
|x − p| < δ. Thus the function ϕ:X → Y is continuous at p if and only if,
given any positive real number ε, there exists some positive real number δ
such that the function ϕ maps the open ball BX(p, δ) in X of radius δ centred
on the point p into the open ball BY (q, ε) in Y of radius ε centered on the
point q, where q = ϕ(p).

Given any function ϕ:X → Y , we denote by ϕ−1(V ) the preimage of a
subset V of Y under the map ϕ, defined so that ϕ−1(V ) = {x ∈ X : ϕ(x) ∈
V }.

Proposition 5.7 Let X and Y be subsets of Rm and Rn, and let ϕ:X → Y
be a function from X to Y . The function ϕ is continuous if and only if
ϕ−1(V ) is open in X for every open subset V of Y .

Proof Suppose that ϕ:X → Y is continuous. Let V be an open set in Y .
We must show that ϕ−1(V ) is open in X. Let p be a point of ϕ−1(V ), and
let q = ϕ(p). Then q ∈ V . But V is open, hence there exists some positive
real number ε with the property that BY (q, ε) ⊂ V . But ϕ is continuous
at p. Therefore there exists some positive real number δ such that ϕ maps
BX(p, δ) into BY (q, ε). Thus ϕ(x) ∈ V for all x ∈ BX(p, δ), showing that
BX(p, δ) ⊂ ϕ−1(V ). This shows that ϕ−1(V ) is open in X for every open
set V in Y .

Conversely suppose that ϕ:X → Y is a function with the property that
ϕ−1(V ) is open in X for every open set V in Y . Let p ∈ X, and let q = ϕ(p).
We must show that ϕ is continuous at p. Let some positive real number ε be
given. ThenBY (q, ε) is an open set in Y , by Lemma 4.1, hence ϕ−1 (BY (q, ε))
is an open set inX which contains p. It follows that there exists some positive
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real number δ such that BX(p, δ) ⊂ ϕ−1 (BY (q, ε)). Thus, given any positive
real number ε, there exists some positive real number δ such that ϕ maps
BX(p, δ) into BY (q, ε). We conclude that ϕ is continuous at the point p, as
required.

Let X be a subset of Rn, let f :X → R be continuous, and let c be some
real number. Then the sets

{x ∈ X : f(x) > c}

and
{x ∈ X : f(x) < c}

are open in X, and, given real numbers a and b satisfying a < b, the set

{x ∈ X : a < f(x) < b}

is open in X.
Again let X be a subset of Rn, let f :X → R be continuous, and let c

be some real number. Now a subset of X is closed in X if and only if its
complement is open in X. Consequently the sets

{x ∈ X : f(x) ≤ c}

and
{x ∈ X : f(x) ≥ c},

being the complements in X of sets that are open in X, must themselves be
closed in X. It follows that that set

{x ∈ X : f(x) = c},

being the intersection of two subsets X that are closed in X, must itself be
closed in X.

5.3 The Multidimensional Extreme Value Theorem

Lemma 5.8 Let X be a non-empty closed bounded set in Rm, and let f :X →
R be a continuous real-valued function defined on X. Suppose that the set of
values of the function f on X is bounded below. Then there exists a point u
of X such that f(u) ≤ f(x) for all x ∈ X.
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Proof Let
L = inf{f(x) : x ∈ X}.

Then there exists an infinite sequence x1,x2,x3, . . . in X such that

f(xj) < L+
1

j

for all positive integers j. It follows from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 3.5) that this sequence has a subsequence
xk1 ,xk2 ,xk3 , . . . which converges to some point u of Rm.

Now the point u belongs to X because X is closed (see Lemma 4.7). Also

L ≤ f(xkj) < L+
1

kj

for all positive integers j. It follows that lim
j→+∞

f(xkj) = L. Consequently

f(u) = f

(
lim

j→+∞
xkj

)
= lim

j→+∞
f(xkj) = L

(see Proposition 5.2). It follows therefore that f(x) ≥ f(u) for all x ∈ X,
Thus the function f attains a minimum value at the point u of X, which is
what we were required to prove.

Lemma 5.9 Let X be a non-empty closed bounded set in Rm, and let ϕ:X →
Rn be a continuous function mapping X into Rn. Then there exists a positive
real number M with the property that |ϕ(x)| ≤M for all x ∈ X.

Proof Let g:X → R be defined such that

g(x) =
1

1 + |ϕ(x)|

for all x ∈ X. Now the real-valued function mapping each x ∈ X to |ϕ(x)| is
continuous (see Lemma 5.6) and quotients of continuous real-valued functions
are continuous where they are defined (see Lemma 5.5). It follows that
the function g:X → R is continuous. Moreover the values of this function
are bounded below by zero. Consequently there exists some point w of X
with the property that g(x) ≥ g(w) for all x ∈ X (see Lemma 5.8). Let
M = |ϕ(w)|. Then |ϕ(x)| ≤M for all x ∈ X. The result follows.

Theorem 5.10 (The Multidimensional Extreme Value Theorem)
Let X be a non-empty closed bounded set in Rm, and let f :X → R be a
continuous real-valued function defined on X. Then there exist points u and
v of X such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X.
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Proof It follows from Lemma 5.9 that there exists positive real number M
with the property that −M ≤ f(x) ≤ M for all x ∈ X. Thus the set of
values of the function f is bounded above and below on X. Consequently
there exist points u and v where the functions f and −f respectively attain
their minimum values on the set X (see Lemma 5.8). The result follows.

5.4 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of Rm. A function ϕ:X → Rn from X to Rn

is said to be uniformly continuous if, given any positive real number ε, there
exists some positive real number δ (whose value does not depend on either
y or z) such that |ϕ(y) − ϕ(z)| < ε for all points y and z of X satisfying
|y − z| < δ.

Theorem 5.11 Let X be a non-empty closed bounded set in Rm. Then any
continuous function ϕ:X → Rn is uniformly continuous.

Proof Let some positive real number ε be given. Suppose that there did not
exist any positive real number δ small enough to ensure that |ϕ(y)−ϕ(z)| <
ε for all points y and z of the set X satisfying |y − z| < δ. Then, for
each positive integer j, there would exist points uj and vj in X such that
|uj − vj| < 1/j and |ϕ(uj) − ϕ(vj)| ≥ ε. But the sequence u1,u2,u3, . . .
would be bounded, since X is bounded, and thus would possess a subsequence
uk1 ,uk2 ,uk3 , . . . converging to some point p (Theorem 3.5). Moreover p ∈ X,
because X is closed in Rn. The sequence vk1 ,vk2 ,vk3 , . . . would also converge
to p, because

lim
j→+∞

|vkj − ukj | = 0.

But then the sequences

ϕ(uk1), ϕ(uk2), ϕ(uk3), . . .

and
ϕ(vk1), ϕ(vk2), ϕ(vk3), . . .

would both converge to ϕ(p), because ϕ is continuous (see Proposition 5.2).
Therefore

lim
j→+∞

∣∣ϕ(ukj)− ϕ(vkj)
∣∣ = 0.

But, assuming that no positive real number δ could be found satisfying
the stated requirements, the points uj and vj had been chosen for all positive
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integers j so that |uj − vj| < 1/j and |ϕ(uj) − ϕ(vj)| ≥ ε. Consequently
ϕ(ukj) and ϕ(vkj) could not both converge to ϕ(p) as j increases to infinity.
Thus the assumption that no positive real number δ would have the required
property would lead to a contradiction. We conclude therefore that, in order
to avoid arriving at this contradiction, there must exist some positive real
number δ such that |ϕ(y) − ϕ(z)| < ε for all points y and z of the set X
satisfying |y − z| < δ, as required.
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