MAU23203—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2021 Video Presentation concerning the Multivariable Chain Rule

Trinity College Dublin

Definition

Let X be an open subset of \mathbb{R}^m let $\varphi \colon X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let $T \colon \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation from \mathbb{R}^m to \mathbb{R}^n , and let **p** be a point of X. The function φ is said to be *differentiable* at **p**, with *derivative* $T \colon \mathbb{R}^m \to \mathbb{R}^n$ if and only if

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}\left(\varphi(\mathbf{x})-\varphi(\mathbf{p})-\mathcal{T}(\mathbf{x}-\mathbf{p})\right)=\mathbf{0}.$$

Definition

Let X be an open subset of \mathbb{R}^m let $\varphi \colon X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let $T \colon \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation from \mathbb{R}^m to \mathbb{R}^n , and let **p** be a point of X. The function φ is said to be *differentiable* at **p**, with *derivative* $T \colon \mathbb{R}^m \to \mathbb{R}^n$ if and only if

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}\left(\varphi(\mathbf{x})-\varphi(\mathbf{p})-\mathcal{T}(\mathbf{x}-\mathbf{p})\right)=\mathbf{0}.$$

Henceforth we shall usually denote the derivative of a differentiable map $\varphi \colon X \to \mathbb{R}^n$ at a point **p** of its domain X by $(D\varphi)_p$.

Lemma A

Let X be an open set in \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation from $\mathbb{R}^m \to \mathbb{R}^n$ and let \mathbf{p} be a point belonging to the domain X of the function φ . Also let $\sigma: X \to \mathbb{R}^n$ be the function defined throughout the domain X of the function φ that is uniquely characterized by the properties that $\sigma(\mathbf{p}) = \mathbf{0}$ and

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + T(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}| \sigma(\mathbf{x})$$

for all points \mathbf{x} of the domain X of the function φ . Then the function $\varphi \colon X \to \mathbb{R}^n$ is differentiable at the point \mathbf{p} , with derivative $T \colon \mathbb{R}^m \to \mathbb{R}^n$, if and only if the associated function σ is continuous at the point \mathbf{p} .

Proof Note that

$$\sigma(\mathbf{x}) = \begin{cases} \frac{1}{|\mathbf{x} - \mathbf{p}|} \left(\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - \mathcal{T}(\mathbf{x} - \mathbf{p}) \right) & \text{if } \mathbf{x} \neq \mathbf{p}; \\ \mathbf{0} & \text{if } \mathbf{x} = \mathbf{p}. \end{cases}$$

The very definition of differentiability therefore ensures that the function φ is differentiable at the point **p**, with derivative *T*, if and only if

$$\lim_{\mathbf{x}\to\mathbf{p}}\sigma(\mathbf{x})=\mathbf{0}=\sigma(\mathbf{p}).$$

Moreover $\lim_{\mathbf{x}\to\mathbf{p}} \sigma(\mathbf{x}) = \sigma(\mathbf{p})$ if and only if the function σ is continuous at the point \mathbf{p} . The result follows.

Lemma B

Let X be an open subset of \mathbb{R}^m let $\varphi \colon X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let $T \colon \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation from \mathbb{R}^m to \mathbb{R}^n , and let \mathbf{p} be a point of X. Then the function φ is differentiable at \mathbf{p} , with derivative T, if and only if, given any positive real number ε , there exists some positive real number δ such that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - \mathcal{T}(\mathbf{x} - \mathbf{p})| \leq arepsilon |\mathbf{x} - \mathbf{p}|$$

at all points **x** of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$.

First suppose that the function $\varphi \colon X \to \mathbb{R}^n$ has the property that, given any positive real number ε_0 , there exists some positive real number δ such that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - \mathcal{T}(\mathbf{x} - \mathbf{p})| \leq arepsilon_0 |\mathbf{x} - \mathbf{p}|$$

at all points **x** of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$.

First suppose that the function $\varphi \colon X \to \mathbb{R}^n$ has the property that, given any positive real number ε_0 , there exists some positive real number δ such that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - \mathcal{T}(\mathbf{x} - \mathbf{p})| \leq arepsilon_0 |\mathbf{x} - \mathbf{p}|$$

at all points **x** of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$. Let some positive number ε be given, and let ε_0 be chosen so that $0 < \varepsilon_0 < \varepsilon$.

First suppose that the function $\varphi \colon X \to \mathbb{R}^n$ has the property that, given any positive real number ε_0 , there exists some positive real number δ such that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - \mathcal{T}(\mathbf{x} - \mathbf{p})| \leq arepsilon_0 |\mathbf{x} - \mathbf{p}|$$

at all points **x** of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$. Let some positive number ε be given, and let ε_0 be chosen so that $0 < \varepsilon_0 < \varepsilon$. Then there exists some positive real number δ such that the above inequality holds at all points **x** of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$.

But then
$$rac{1}{|{f x}-{f p}|}\,|arphi({f x})-arphi({f p})-{f T}({f x}-{f p})|$$

at all points **x** of X that satisfy $0 < |\mathbf{x} - \mathbf{p}| < \delta$,

But then

$$rac{1}{|{f x}-{f p}|} \left| arphi({f x}) - arphi({f p}) - {oldsymbol T}({f x}-{f p})
ight| < arepsilon$$

at all points **x** of X that satisfy $0 < |\mathbf{x} - \mathbf{p}| < \delta$, and therefore

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}\left(\varphi(\mathbf{x})-\varphi(\mathbf{p})-\mathcal{T}(\mathbf{x}-\mathbf{p})\right)=\mathbf{0}.$$

Thus the function φ is differentiable at the point **p**.

Conversely suppose that the function φ is differentiable at the point **p**. Let some positive real number ε be given. Then there exists some positive real number δ such that

$$rac{1}{|{f x}-{f p}|} \left| arphi({f x}) - arphi({f p}) - {f T}({f x}-{f p})
ight| < arepsilon$$

at all points **x** of X that satisfy $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Conversely suppose that the function φ is differentiable at the point **p**. Let some positive real number ε be given. Then there exists some positive real number δ such that

$$rac{1}{|\mathbf{x}-\mathbf{p}|} \left| arphi(\mathbf{x}) - arphi(\mathbf{p}) - \mathcal{T}(\mathbf{x}-\mathbf{p})
ight| < arepsilon$$

at all points **x** of X that satisfy $0 < |\mathbf{x} - \mathbf{p}| < \delta$. Considering separately the cases when $\mathbf{x} = \mathbf{p}$ and when $0 < |\mathbf{x} - \mathbf{p}| < \delta$, it then follows that

$$|\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - T(\mathbf{x} - \mathbf{p})| \le \varepsilon |\mathbf{x} - \mathbf{p}|$$

at all points **x** of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$. The result follows.

Let X be an open subset of \mathbb{R}^m let $\varphi \colon X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let S and T be linear transformations from \mathbb{R}^m to \mathbb{R}^n , and let **p** be a point of X. We claim that if both

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}\left(\varphi(\mathbf{x})-\varphi(\mathbf{p})-S(\mathbf{x}-\mathbf{p})\right)=\mathbf{0}$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}\left(\varphi(\mathbf{x})-\varphi(\mathbf{p})-\mathcal{T}(\mathbf{x}-\mathbf{p})\right)=\mathbf{0},$$

then S = T.

Indeed these two conditions taken together would ensure that

$$\lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left((\mathcal{T}-S)(\mathbf{x}-\mathbf{p}) \right)$$

=
$$\lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - S(\mathbf{x}-\mathbf{p}) \right)$$

$$- \lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - \mathcal{T}(\mathbf{x}-\mathbf{p}) \right)$$

= $\mathbf{0}.$

Indeed these two conditions taken together would ensure that

$$\lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left((\mathcal{T}-S)(\mathbf{x}-\mathbf{p}) \right)$$

=
$$\lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - S(\mathbf{x}-\mathbf{p}) \right)$$

$$-\lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - \mathcal{T}(\mathbf{x}-\mathbf{p}) \right)$$

= $\mathbf{0}.$

Therefore, taking a fixed non-zero vector \mathbf{w} in \mathbb{R}^m , and setting $\mathbf{x} = \mathbf{p} + t\mathbf{w}$, we find that

$$\lim_{t\to 0}\left(\frac{1}{t|\mathbf{w}|}(T-S)(t\mathbf{w})\right)=\mathbf{0}.$$

The linearity of T - S then ensures that $(T - S)\mathbf{w} = \mathbf{0}$.

We have now shown that $(T - S)\mathbf{w} = \mathbf{0}$ for all non-zero vectors \mathbf{w} in \mathbb{R}^m . It follows that S = T as claimed.

We conclude therefore that, if a vector-valued function $\varphi \colon X \to \mathbb{R}^m$ defined over an open set X in \mathbb{R}^m is differentiable at some point **p** of the domain X of the function φ , then the derivative $(D\varphi)_{\mathbf{p}}$ of the function φ at the point **p** is a linear transformation that is uniquely determined by the function φ and the point **p** at which the derivative is to be taken.

Definition

Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. The operator norm $||T||_{\text{op}}$ of T is the smallest non-negative real number with the property that $|T\mathbf{w}| \le ||T||_{\text{op}} |\mathbf{w}|$ for all $\mathbf{w} \in \mathbb{R}^m$.

Definition

Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. The operator norm $\|T\|_{\text{op}}$ of T is the smallest non-negative real number with the property that $|T\mathbf{w}| \le \|T\|_{\text{op}} |\mathbf{w}|$ for all $\mathbf{w} \in \mathbb{R}^m$.

The operator norm $||T||_{\text{op}}$ of a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ may be characterized as the maximum value attained by $|T\mathbf{w}|$ as \mathbf{w} ranges over all vectors in \mathbb{R}^m that satisfy $|\mathbf{w}| = 1$.

Proposition C

Let X be an open set in \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let **p** be a point of X at which the function φ is differentiable, and let M be a real number satisfying $M > \|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}}$, where $\|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}}$ denotes the operator norm of the derivative $(D\varphi)_{\mathbf{p}}$ of φ at **p**. Then there exists some positive real number δ such that

 $|arphi(\mathbf{x}) - arphi(\mathbf{p})| \leq M \, |\mathbf{x} - \mathbf{p}|$

for all points **x** of X satisfying $|\mathbf{x} - \mathbf{p}| < \delta$.

Proof Let $\varepsilon = M - \|(D\varphi)_{\mathbf{p}}\|_{\text{op}}$. Then $\varepsilon > 0$.

Proof Let $\varepsilon = M - \|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}}$. Then $\varepsilon > 0$. Now $|(D\varphi)_{\mathbf{p}}\mathbf{w}| \le \|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}}\|\mathbf{w}|$

for all $\mathbf{w} \in \mathbb{R}^m$.

Proof Let $\varepsilon = M - \|(D\varphi)_{\mathbf{p}}\|_{\text{op.}}$ Then $\varepsilon > 0$. Now $|(D\varphi)_{\mathbf{p}}\mathbf{w}| \le \|(D\varphi)_{\mathbf{p}}\|_{\text{op}} \|\mathbf{w}\|$

for all $\mathbf{w} \in \mathbb{R}^m$. Also the differentiability of the function φ at the point \mathbf{p} ensures that there exists some positive real number δ that is small enough to ensure that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - (Darphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| \leq arepsilon \left|\mathbf{x} - \mathbf{p}
ight|$$

for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$ (see Lemma B).

It then follows from the Triangle Inequality satisfied by the Euclidean distance function that

$$\begin{aligned} |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \\ &\leq |(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| + |\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - (D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| \\ &\leq |(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| + \varepsilon |\mathbf{x} - \mathbf{p}| \end{aligned}$$

for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$.

But the definition of the operator norm ensures that

$$\|(Darphi)_{\mathbf{p}}(\mathbf{x}-\mathbf{p})\| \leq \|(Darphi)_{\mathbf{p}}\|_{\mathrm{op}} \, |\mathbf{x}-\mathbf{p}|$$

for all $\mathbf{x} \in X$.

But the definition of the operator norm ensures that

$$|(Darphi)_{\mathbf{p}}(\mathbf{x}-\mathbf{p})| \leq ||(Darphi)_{\mathbf{p}}||_{\mathrm{op}} \, |\mathbf{x}-\mathbf{p}|$$

for all $\mathbf{x} \in X$. Moreover the value of the positive real number ε has been chosen so as to ensure that $\|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}} + \varepsilon = M$.

But the definition of the operator norm ensures that

$$|(Darphi)_{\mathbf{p}}(\mathbf{x}-\mathbf{p})| \leq \|(Darphi)_{\mathbf{p}}\|_{\mathrm{op}} \, |\mathbf{x}-\mathbf{p}|$$

for all $\mathbf{x} \in X$. Moreover the value of the positive real number ε has been chosen so as to ensure that $\|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}} + \varepsilon = M$. It follows that

$$\begin{aligned} |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| &\leq |(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| + \varepsilon |\mathbf{x} - \mathbf{p}| \\ &\leq (\|(D\varphi)_{\mathbf{p}}\|_{\mathrm{op}} + \varepsilon)|\mathbf{x} - \mathbf{p}| = M |\mathbf{x} - \mathbf{p}| \end{aligned}$$

for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, as required.

Proposition D (Chain Rule)

Let X and Y be open sets in \mathbb{R}^m and \mathbb{R}^n respectively, let $\varphi: X \to \mathbb{R}^n$ and $\psi: Y \to \mathbb{R}^k$ be functions mapping X and Y into \mathbb{R}^n and \mathbb{R}^k respectively, where $\varphi(X) \subset Y$, and let **p** be a point of X. Suppose that φ is differentiable at **p** and that ψ is differentiable at $\varphi(\mathbf{p})$. Then the composition $\psi \circ \varphi: X \to \mathbb{R}^k$ is differentiable at **p**, and

$$D(\psi\circarphi)_{\mathbf{p}}=(D\psi)_{arphi(\mathbf{p})}\circ(Darphi)_{\mathbf{p}}.$$

Thus the derivative of the composition $\psi \circ \varphi$ of the functions at the point **p** is the composition of the derivatives of the functions φ and ψ at **p** and φ (**p**) respectively.

The differentiability of the functions φ and ψ at \mathbf{p} and $\varphi(\mathbf{p})$ respectively ensures that there exist positive real numbers M, N, δ_1 and η_1 such that the following conditions hold: $\mathbf{x} \in X$ and $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \le M |\mathbf{x} - \mathbf{p}|$ for all $\mathbf{x} \in \mathbb{R}^m$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta_1$; $\mathbf{y} \in Y$ and $|\psi(\mathbf{y}) - \psi(\varphi(\mathbf{p}))| \le N |\mathbf{y} - \varphi(\mathbf{p})|$ for all $\mathbf{y} \in \mathbb{R}^n$ satisfying $|\mathbf{y} - \varphi(\mathbf{p})| < \eta_1$; $|(D\psi)_{\varphi(\mathbf{p})}\mathbf{w}| \le N |\mathbf{w}|$ for all $\mathbf{w} \in \mathbb{R}^n$. (This follows on applying Proposition C.)

$$ig|\psi(\mathbf{y})-\psi(arphi(\mathbf{p}))-(D\psi)_{arphi(\mathbf{p})}(\mathbf{y}-arphi(\mathbf{p}))ig|\leq rac{arepsilon}{2M}|\mathbf{y}-arphi(\mathbf{p})|$$

for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \varphi(\mathbf{p})| < \eta_2$. (This follows from a direct application of Lemma B.)

$$ig|\psi(\mathbf{y})-\psi(arphi(\mathbf{p}))-(D\psi)_{arphi(\mathbf{p})}(\mathbf{y}-arphi(\mathbf{p}))ig|\leq rac{arepsilon}{2M}ert \mathbf{y}-arphi(\mathbf{p})ert$$

for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \varphi(\mathbf{p})| < \eta_2$. (This follows from a direct application of Lemma B.) Let some real number δ_2 be chosen so that $0 < \delta_2 \le \delta_1$ and $M\delta_2 \le \eta_2$.

$$ig|\psi(\mathbf{y})-\psi(arphi(\mathbf{p}))-(D\psi)_{arphi(\mathbf{p})}(\mathbf{y}-arphi(\mathbf{p}))ig|\leq rac{arepsilon}{2M}ert \mathbf{y}-arphi(\mathbf{p})ert$$

for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \varphi(\mathbf{p})| < \eta_2$. (This follows from a direct application of Lemma B.) Let some real number δ_2 be chosen so that $0 < \delta_2 \le \delta_1$ and $M\delta_2 \le \eta_2$. If $\mathbf{x} \in \mathbb{R}^m$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta_2$ then $\mathbf{x} \in X$ and $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \le M|\mathbf{x} - \mathbf{p}| < \eta_2$.

$$ig|\psi(\mathbf{y})-\psi(arphi(\mathbf{p}))-(D\psi)_{arphi(\mathbf{p})}(\mathbf{y}-arphi(\mathbf{p}))ig|\leq rac{arepsilon}{2M}ert \mathbf{y}-arphi(\mathbf{p})ert$$

for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \varphi(\mathbf{p})| < \eta_2$. (This follows from a direct application of Lemma B.) Let some real number δ_2 be chosen so that $0 < \delta_2 \le \delta_1$ and $M\delta_2 \le \eta_2$. If $\mathbf{x} \in \mathbb{R}^m$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta_2$ then $\mathbf{x} \in X$ and $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \le M|\mathbf{x} - \mathbf{p}| < \eta_2$. Consequently if $|\mathbf{x} - \mathbf{p}| < \delta$ then

$$\begin{split} \left| \psi(\varphi(\mathbf{x})) - \psi(\varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})}(\varphi(\mathbf{x}) - \varphi(\mathbf{p})) \right| \\ &\leq \frac{\varepsilon}{2M} |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \\ &\leq \frac{1}{2} \varepsilon |\mathbf{x} - \mathbf{p}|. \end{split}$$

Now it follows from the differentiability of φ at **p** that there exists some real number δ satisfying the inequalities $0 < \delta \leq \delta_2$ that is small enough to ensure that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - (Darphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| \leq rac{arepsilon}{2N} |\mathbf{x} - \mathbf{p}|$$

for all $\mathbf{x} \in \mathbb{R}^m$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$.

Now it follows from the differentiability of φ at **p** that there exists some real number δ satisfying the inequalities $0 < \delta \leq \delta_2$ that is small enough to ensure that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - (Darphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| \leq rac{arepsilon}{2N} |\mathbf{x} - \mathbf{p}|$$

for all $\mathbf{x} \in \mathbb{R}^m$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Now $|(D\psi)_{\varphi(\mathbf{p})}\mathbf{w}| \le N |\mathbf{w}|$ for all $\mathbf{w} \in \mathbb{R}^n$.

Now it follows from the differentiability of φ at **p** that there exists some real number δ satisfying the inequalities $0 < \delta \leq \delta_2$ that is small enough to ensure that

$$|arphi(\mathbf{x}) - arphi(\mathbf{p}) - (Darphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| \leq rac{arepsilon}{2N}|\mathbf{x} - \mathbf{p}|$$

for all $\mathbf{x} \in \mathbb{R}^m$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Now $|(D\psi)_{\varphi(\mathbf{p})}\mathbf{w}| \le N |\mathbf{w}|$ for all $\mathbf{w} \in \mathbb{R}^n$. It follows that

$$\begin{split} \left| (D\psi)_{\varphi(\mathbf{p})}(\varphi(\mathbf{x}) - \varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})}(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) \right| \\ & \leq N |\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - (D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p})| \\ & \leq \frac{1}{2} \varepsilon |\mathbf{x} - \mathbf{p}| \end{split}$$

for all $\mathbf{x} \in \mathbb{R}^m$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$.

The inequalities obtained above ensure that $\mathbf{x} \in X$ and

$$\begin{aligned} \left| \psi(\varphi(\mathbf{x})) - \psi(\varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})} (D\varphi)_{\mathbf{p}} (\mathbf{x} - \mathbf{p}) \right| \\ &\leq \left| \psi(\varphi(\mathbf{x})) - \psi(\varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})} (\varphi(\mathbf{x}) - \varphi(\mathbf{p})) \right| \\ &+ \left| (D\psi)_{\varphi(\mathbf{p})} (\varphi(\mathbf{x}) - \varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})} (D\varphi)_{\mathbf{p}} (\mathbf{x} - \mathbf{p}) \right| \\ &\leq \varepsilon |\mathbf{x} - \mathbf{p}| \end{aligned}$$

at all points **x** of \mathbb{R}^m that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$.

The inequalities obtained above ensure that $\mathbf{x} \in X$ and

$$\begin{aligned} \left| \psi(\varphi(\mathbf{x})) - \psi(\varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})} (D\varphi)_{\mathbf{p}} (\mathbf{x} - \mathbf{p}) \right| \\ &\leq \left| \psi(\varphi(\mathbf{x})) - \psi(\varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})} (\varphi(\mathbf{x}) - \varphi(\mathbf{p})) \right| \\ &+ \left| (D\psi)_{\varphi(\mathbf{p})} (\varphi(\mathbf{x}) - \varphi(\mathbf{p})) - (D\psi)_{\varphi(\mathbf{p})} (D\varphi)_{\mathbf{p}} (\mathbf{x} - \mathbf{p}) \right| \\ &\leq \varepsilon |\mathbf{x} - \mathbf{p}| \end{aligned}$$

at all points **x** of \mathbb{R}^m that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$. It follows from this that the composition function $\psi \circ \varphi$ is differentiable at **p**, and that $(D(\psi \circ \varphi))_{\mathbf{p}} = (D\psi)_{\varphi(\mathbf{p})} \circ (D\varphi)_{\mathbf{p}}$, as required.

An Alternative Proof of the Chain Rule

Let $\mathbf{q} = \varphi(\mathbf{p})$, and let $\sigma \colon X \to \mathbb{R}^n$ and $\tau \colon Y \to \mathbb{R}^k$ be the uniquely-determined functions defined throughout the domains X and Y of the functions φ and ψ respectively so that $\sigma(\mathbf{p}) = \mathbf{0}$, $\tau(\mathbf{q}) = \mathbf{0}$,

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + (D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}| \sigma(\mathbf{x})$$

for all points **x** of the domain X of the function φ , and

$$\psi(\mathbf{y}) = \psi(\mathbf{q}) + (D\psi)_{\mathbf{q}}(\mathbf{y} - \mathbf{q}) + |\mathbf{y} - \mathbf{q}| \tau(\mathbf{y})$$

for all points **y** of the domain Y of the function ψ .

An Alternative Proof of the Chain Rule

Let $\mathbf{q} = \varphi(\mathbf{p})$, and let $\sigma \colon X \to \mathbb{R}^n$ and $\tau \colon Y \to \mathbb{R}^k$ be the uniquely-determined functions defined throughout the domains X and Y of the functions φ and ψ respectively so that $\sigma(\mathbf{p}) = \mathbf{0}$, $\tau(\mathbf{q}) = \mathbf{0}$,

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + (D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}| \sigma(\mathbf{x})$$

for all points **x** of the domain X of the function φ , and

$$\psi(\mathbf{y}) = \psi(\mathbf{q}) + (D\psi)_{\mathbf{q}}(\mathbf{y} - \mathbf{q}) + |\mathbf{y} - \mathbf{q}| \tau(\mathbf{y})$$

for all points **y** of the domain Y of the function ψ . The differentiability of the functions φ and ψ at the points **p** and **q** then ensures that the functions σ and τ are continuous at the points **p** and **q** respectively, where **q** = φ (**p**) (see Lemma A).

An Alternative Proof of the Chain Rule

Let $\mathbf{q} = \varphi(\mathbf{p})$, and let $\sigma \colon X \to \mathbb{R}^n$ and $\tau \colon Y \to \mathbb{R}^k$ be the uniquely-determined functions defined throughout the domains X and Y of the functions φ and ψ respectively so that $\sigma(\mathbf{p}) = \mathbf{0}$, $\tau(\mathbf{q}) = \mathbf{0}$,

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + (D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}| \sigma(\mathbf{x})$$

for all points **x** of the domain X of the function φ , and

$$\psi(\mathbf{y}) = \psi(\mathbf{q}) + (D\psi)_{\mathbf{q}}(\mathbf{y} - \mathbf{q}) + |\mathbf{y} - \mathbf{q}| \tau(\mathbf{y})$$

for all points **y** of the domain Y of the function ψ . The differentiability of the functions φ and ψ at the points **p** and **q** then ensures that the functions σ and τ are continuous at the points **p** and **q** respectively, where $\mathbf{q} = \varphi(\mathbf{p})$ (see Lemma A). Moreover the composition function $\tau \circ \varphi$ is continuous at the point **p**, because the functions φ and τ are continuous at the points **p** and $\varphi(\mathbf{p})$ respectively.

The linearity of $(D\psi)_{\mathbf{q}} \colon \mathbb{R}^n \to \mathbb{R}^k$ then ensures that

$$\begin{split} \psi(\varphi(\mathbf{x})) &= \psi(\mathbf{q}) + (D\psi)_{\mathbf{q}}(\varphi(\mathbf{x}) - \mathbf{q})) + |\varphi(\mathbf{x}) - \mathbf{q}| \tau(\varphi(\mathbf{x})) \\ &= \psi(\varphi(\mathbf{p})) + (D\psi)_{\mathbf{q}}(\varphi(\mathbf{x}) - \varphi(\mathbf{p}))) \\ &+ |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \tau(\varphi(\mathbf{x})) \\ &= \psi(\varphi(\mathbf{p})) + (D\psi)_{\mathbf{q}}(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) \\ &+ |\mathbf{x} - \mathbf{p}|(D\psi)_{\mathbf{q}}(\sigma(\mathbf{x})) + |\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \tau(\varphi(\mathbf{x})) \\ &= \psi(\varphi(\mathbf{p})) + (D\psi)_{\mathbf{q}}(D\varphi)_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + |\mathbf{x} - \mathbf{p}|\chi(\mathbf{x}) \end{split}$$

for all $\mathbf{x} \in X$, where $\chi \colon X \to \mathbb{R}^k$ is the uniquely-determined function on the domain X of the function φ defined so that $\chi(\mathbf{p}) = 0$ and

$$\chi(\mathbf{x}) = (D\psi)_{\mathbf{q}}(\sigma(\mathbf{x})) + \frac{|\varphi(\mathbf{x}) - \varphi(\mathbf{p})|}{|\mathbf{x} - \mathbf{p}|} \tau(\varphi(\mathbf{x}))$$

for all points \mathbf{x} of the set X that are distinct from the point \mathbf{p} .

Thus, in order to complete the proof of the differentiability of the composition function $\psi \circ \varphi$ at the point **p**, it suffices to show that that the function χ is continuous at the point **p** (see Lemma A), and moreover the continuity of the function χ at the point **p** can be established by verifying that $\lim_{\mathbf{x}\to\mathbf{p}}\chi(\mathbf{p}) = \mathbf{0}$.

Now $\lim_{\mathbf{x}\to\mathbf{p}}\sigma(\mathbf{x})=\mathbf{0}.$ The continuity of the linear transformation $(D\psi)_{\mathbf{q}}$ therefore ensures that

$$\lim_{\mathbf{x}\to\mathbf{p}}(D\psi)_{\mathbf{q}}(\sigma(\mathbf{x})) = (D\psi)_{\mathbf{q}}\left(\lim_{\mathbf{x}\to\mathbf{p}}\sigma(\mathbf{x})\right) = (D\psi)_{\mathbf{q}}(\mathbf{0}) = \mathbf{0}.$$

Also there exist positive real numbers M and δ_0 such that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \leq M |\mathbf{x} - \mathbf{p}|$ whenever $|\mathbf{x} - \mathbf{p}| < \delta_0$ (see Proposition C). Then, given any positive real number ε , there exists some real number δ satisfying $0 < \delta < \delta_0$ which is small enough to ensure that $|\tau(\varphi(\mathbf{x}))| < \varepsilon/M$ whenever $|\mathbf{x} - \mathbf{p}| < \delta$, because $\tau(\varphi(\mathbf{p})) = \tau(\mathbf{q}) = \mathbf{0}$ and the composition function $\tau \circ \varphi$ is continuous at the point \mathbf{p} .

Also there exist positive real numbers M and δ_0 such that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| \leq M |\mathbf{x} - \mathbf{p}|$ whenever $|\mathbf{x} - \mathbf{p}| < \delta_0$ (see Proposition C). Then, given any positive real number ε , there exists some real number δ satisfying $0 < \delta < \delta_0$ which is small enough to ensure that $|\tau(\varphi(\mathbf{x}))| < \varepsilon/M$ whenever $|\mathbf{x} - \mathbf{p}| < \delta$, because $\tau(\varphi(\mathbf{p})) = \tau(\mathbf{q}) = \mathbf{0}$ and the composition function $\tau \circ \varphi$ is continuous at the point \mathbf{p} . It follows that

$$rac{|arphi(\mathbf{x})-arphi(\mathbf{p})|}{|\mathbf{x}-\mathbf{p}|} \left| au(arphi(\mathbf{x}))
ight|$$

whenever $|\mathbf{x} - \mathbf{p}| < \delta$. Consequently

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{|\varphi(\mathbf{x})-\varphi(\mathbf{p})|}{|\mathbf{x}-\mathbf{p}|} \left|\tau(\varphi(\mathbf{x}))\right|\right) = \mathbf{0}.$$

We can now conclude that

$$\lim_{\mathbf{x}\to\mathbf{p}}\chi(\mathbf{x}) = \lim_{\mathbf{x}\to\mathbf{p}}(D\psi)_{\mathbf{q}}(\sigma(\mathbf{x})) + \lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{|\varphi(\mathbf{x})-\varphi(\mathbf{p})|}{|\mathbf{x}-\mathbf{p}|}\tau(\varphi(\mathbf{x}))\right)$$
$$= \mathbf{0} = \chi(\mathbf{p}),$$

and consequently the composition function $\psi \circ \varphi$ is differentiable at the point **p**, with derivative $(D\psi)_{\varphi(\mathbf{p})} \circ (D\varphi)_{\mathbf{p}}$, as required.