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Definition

Let X be an open subset of Rm let ϕ : X → Rn be a function
mapping X into Rn, let T : Rm → Rn be a linear transformation
from Rm to Rn, and let p be a point of X . The function ϕ is said
to be differentiable at p, with derivative T : Rm → Rn if and only if

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) = 0.

Henceforth we shall usually denote the derivative of a differentiable
map ϕ : X → Rn at a point p of its domain X by (Dϕ)p.
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Lemma A

Let X be an open set in Rm, let ϕ : X → Rn be a function
mapping X into Rn, let T : Rm → Rn be a linear transformation
from Rm → Rn and let p be a point belonging to the domain X of
the function ϕ. Also let σ : X → Rn be the function defined
throughout the domain X of the function ϕ that is uniquely
characterized by the properties that σ(p) = 0 and

ϕ(x) = ϕ(p) + T (x− p) + |x− p|σ(x)

for all points x of the domain X of the function ϕ. Then the
function ϕ : X → Rn is differentiable at the point p, with
derivative T : Rm → Rn, if and only if the associated function σ is
continuous at the point p.



Proof
Note that

σ(x) =


1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) if x 6= p;

0 if x = p.

The very definition of differentiability therefore ensures that the
function ϕ is differentiable at the point p, with derivative T , if and
only if

lim
x→p

σ(x) = 0 = σ(p).

Moreover lim
x→p

σ(x) = σ(p) if and only if the function σ is

continuous at the point p. The result follows.



Lemma B

Let X be an open subset of Rm let ϕ : X → Rn be a function
mapping X into Rn, let T : Rm → Rn be a linear transformation
from Rm to Rn, and let p be a point of X . Then the function ϕ is
differentiable at p, with derivative T , if and only if, given any
positive real number ε, there exists some positive real number δ
such that

|ϕ(x)− ϕ(p)− T (x− p)| ≤ ε|x− p|

at all points x of X that satisfy |x− p| < δ.



Proof
First suppose that the function ϕ : X → Rn has the property that,
given any positive real number ε0, there exists some positive real
number δ such that

|ϕ(x)− ϕ(p)− T (x− p)| ≤ ε0|x− p|

at all points x of X that satisfy |x− p| < δ.

Let some positive
number ε be given, and let ε0 be chosen so that 0 < ε0 < ε. Then
there exists some positive real number δ such that the above
inequality holds at all points x of X that satisfy |x− p| < δ.
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But then
1

|x− p|
|ϕ(x)− ϕ(p)− T (x− p)| < ε

at all points x of X that satisfy 0 < |x− p| < δ,

and therefore

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) = 0.

Thus the function ϕ is differentiable at the point p.
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1

|x− p|
|ϕ(x)− ϕ(p)− T (x− p)| < ε

at all points x of X that satisfy 0 < |x− p| < δ.

Considering
separately the cases when x = p and when 0 < |x− p| < δ, it then
follows that
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at all points x of X that satisfy |x− p| < δ. The result follows.
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Let X be an open subset of Rm let ϕ : X → Rn be a function
mapping X into Rn, let S and T be linear transformations from
Rm to Rn, and let p be a point of X . We claim that if both

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− S(x− p)) = 0

and

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p)) = 0,

then S = T .



Indeed these two conditions taken together would ensure that

lim
x→p

1

|x− p|
((T − S)(x− p))

= lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− S(x− p))

− lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− T (x− p))

= 0.

Therefore, taking a fixed non-zero vector w in Rm, and setting
x = p + tw, we find that

lim
t→0

(
1

t|w|
(T − S)(tw)

)
= 0.

The linearity of T − S then ensures that (T − S)w = 0.
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We have now shown that (T − S)w = 0 for all non-zero vectors w
in Rm. It follows that S = T as claimed.

We conclude therefore that, if a vector-valued function
ϕ : X → Rm defined over an open set X in Rm is differentiable at
some point p of the domain X of the function ϕ, then the
derivative (Dϕ)p of the function ϕ at the point p is a linear
transformation that is uniquely determined by the function ϕ and
the point p at which the derivative is to be taken.



Definition

Let T : Rm → Rn be a linear transformation. The operator norm
‖T‖op of T is the smallest non-negative real number with the
property that |Tw| ≤ ‖T‖op |w| for all w ∈ Rm.

The operator norm ‖T‖op of a linear transformation T : Rm → Rn

may be characterized as the maximum value attained by |Tw| as
w ranges over all vectors in Rm that satisfy |w| = 1.
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Proposition C

Let X be an open set in Rm, let ϕ : X → Rn be a function
mapping X into Rn, let p be a point of X at which the function ϕ
is differentiable, and let M be a real number satisfying
M > ‖(Dϕ)p‖op, where ‖(Dϕ)p‖op denotes the operator norm of
the derivative (Dϕ)p of ϕ at p. Then there exists some positive
real number δ such that

|ϕ(x)− ϕ(p)| ≤ M |x− p|

for all points x of X satisfying |x− p| < δ.



Proof
Let ε = M − ‖(Dϕ)p‖op. Then ε > 0.

Now

|(Dϕ)pw| ≤ ‖(Dϕ)p‖op |w|

for all w ∈ Rm. Also the differentiability of the function ϕ at the
point p ensures that there exists some positive real number δ that
is small enough to ensure that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε |x− p|

for all x ∈ X satisfying |x− p| < δ (see Lemma B).
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It then follows from the Triangle Inequality satisfied by the
Euclidean distance function that

|ϕ(x)− ϕ(p)|
≤ |(Dϕ)p(x− p)|+ |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|
≤ |(Dϕ)p(x− p)|+ ε|x− p|

for all x ∈ X satisfying |x− p| < δ.



But the definition of the operator norm ensures that

|(Dϕ)p(x− p)| ≤ ‖(Dϕ)p‖op |x− p|

for all x ∈ X .

Moreover the value of the positive real number ε has
been chosen so as to ensure that ‖(Dϕ)p‖op + ε = M. It follows
that

|ϕ(x)− ϕ(p)| ≤ |(Dϕ)p(x− p)|+ ε|x− p|
≤ (‖(Dϕ)p‖op + ε)|x− p| = M |x− p|

for all x ∈ X satisfying |x− p| < δ, as required.
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Proposition D (Chain Rule)

Let X and Y be open sets in Rm and Rn respectively, let
ϕ : X → Rn and ψ : Y → Rk be functions mapping X and Y into
Rn and Rk respectively, where ϕ(X ) ⊂ Y , and let p be a point of
X . Suppose that ϕ is differentiable at p and that ψ is
differentiable at ϕ(p). Then the composition ψ ◦ ϕ : X → Rk is
differentiable at p, and

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p.

Thus the derivative of the composition ψ ◦ ϕ of the functions at
the point p is the composition of the derivatives of the functions ϕ
and ψ at p and ϕ(p) respectively.



Proof
The differentiability of the functions ϕ and ψ at p and ϕ(p)
respectively ensures that there exist positive real numbers M, N,
δ1 and η1 such that the following conditions hold: x ∈ X and
|ϕ(x)− ϕ(p)| ≤ M|x− p| for all x ∈ Rm satisfying |x− p| < δ1;
y ∈ Y and |ψ(y)− ψ(ϕ(p))| ≤ N |y − ϕ(p)| for all y ∈ Rn

satisfying |y − ϕ(p)| < η1; |(Dψ)ϕ(p)w| ≤ N |w| for all w ∈ Rn.
(This follows on applying Proposition C.)



Let some positive real number ε be given. It follows from the
differentiability of ψ at ϕ(p) that there exists some real
number η2, where 0 < η2 ≤ η1, such that∣∣ψ(y)− ψ(ϕ(p))− (Dψ)ϕ(p)(y − ϕ(p))

∣∣ ≤ ε

2M
|y − ϕ(p)|

for all y ∈ Y satisfying |y−ϕ(p)| < η2. (This follows from a direct
application of Lemma B.)

Let some real number δ2 be chosen so
that 0 < δ2 ≤ δ1 and Mδ2 ≤ η2. If x ∈ Rm satisfies |x− p| < δ2
then x ∈ X and |ϕ(x)− ϕ(p)| ≤ M|x− p| < η2. Consequently if
|x− p| < δ then∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(ϕ(x)− ϕ(p))

∣∣
≤ ε

2M
|ϕ(x)− ϕ(p)|

≤ 1
2 ε|x− p|.
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for all y ∈ Y satisfying |y−ϕ(p)| < η2. (This follows from a direct
application of Lemma B.) Let some real number δ2 be chosen so
that 0 < δ2 ≤ δ1 and Mδ2 ≤ η2.
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2M
|ϕ(x)− ϕ(p)|
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application of Lemma B.) Let some real number δ2 be chosen so
that 0 < δ2 ≤ δ1 and Mδ2 ≤ η2. If x ∈ Rm satisfies |x− p| < δ2
then x ∈ X and |ϕ(x)− ϕ(p)| ≤ M|x− p| < η2.

Consequently if
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2M
|ϕ(x)− ϕ(p)|

≤ 1
2 ε|x− p|.



Now it follows from the differentiability of ϕ at p that there exists
some real number δ satisfying the inequalities 0 < δ ≤ δ2 that is
small enough to ensure that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε

2N
|x− p|

for all x ∈ Rm satisfying |x− p| < δ.

Now |(Dψ)ϕ(p)w| ≤ N |w| for
all w ∈ Rn. It follows that∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
≤ N |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|
≤ 1

2ε|x− p|

for all x ∈ Rm satisfying |x− p| < δ.



Now it follows from the differentiability of ϕ at p that there exists
some real number δ satisfying the inequalities 0 < δ ≤ δ2 that is
small enough to ensure that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε

2N
|x− p|

for all x ∈ Rm satisfying |x− p| < δ. Now |(Dψ)ϕ(p)w| ≤ N |w| for
all w ∈ Rn.

It follows that∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)
∣∣

≤ N |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|
≤ 1

2ε|x− p|

for all x ∈ Rm satisfying |x− p| < δ.



Now it follows from the differentiability of ϕ at p that there exists
some real number δ satisfying the inequalities 0 < δ ≤ δ2 that is
small enough to ensure that

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε

2N
|x− p|

for all x ∈ Rm satisfying |x− p| < δ. Now |(Dψ)ϕ(p)w| ≤ N |w| for
all w ∈ Rn. It follows that∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
≤ N |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|
≤ 1

2ε|x− p|

for all x ∈ Rm satisfying |x− p| < δ.



The inequalities obtained above ensure that x ∈ X and∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)
∣∣

≤
∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(ϕ(x)− ϕ(p))

∣∣
+
∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
≤ ε|x− p|

at all points x of Rm that satisfy |x− p| < δ.

It follows from this
that the composition function ψ ◦ ϕ is differentiable at p, and that
(D(ψ ◦ ϕ))p = (Dψ)ϕ(p) ◦ (Dϕ)p, as required.



The inequalities obtained above ensure that x ∈ X and∣∣ψ(ϕ(x))− ψ(ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)
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∣∣
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∣∣(Dψ)ϕ(p)(ϕ(x)− ϕ(p))− (Dψ)ϕ(p)(Dϕ)p(x− p)

∣∣
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at all points x of Rm that satisfy |x− p| < δ. It follows from this
that the composition function ψ ◦ ϕ is differentiable at p, and that
(D(ψ ◦ ϕ))p = (Dψ)ϕ(p) ◦ (Dϕ)p, as required.



An Alternative Proof of the Chain Rule
Let q = ϕ(p), and let σ : X → Rn and τ : Y → Rk be the
uniquely-determined functions defined throughout the domains X
and Y of the functions ϕ and ψ respectively so that σ(p) = 0,
τ(q) = 0,

ϕ(x) = ϕ(p) + (Dϕ)p(x− p) + |x− p|σ(x)

for all points x of the domain X of the function ϕ, and

ψ(y) = ψ(q) + (Dψ)q(y − q) + |y − q| τ(y)

for all points y of the domain Y of the function ψ.

The
differentiability of the functions ϕ and ψ at the points p and q
then ensures that the functions σ and τ are continuous at the
points p and q respectively, where q = ϕ(p) (see Lemma A).
Moreover the composition function τ ◦ ϕ is continuous at the
point p, because the functions ϕ and τ are continuous at the
points p and ϕ(p) respectively.
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An Alternative Proof of the Chain Rule
Let q = ϕ(p), and let σ : X → Rn and τ : Y → Rk be the
uniquely-determined functions defined throughout the domains X
and Y of the functions ϕ and ψ respectively so that σ(p) = 0,
τ(q) = 0,

ϕ(x) = ϕ(p) + (Dϕ)p(x− p) + |x− p|σ(x)

for all points x of the domain X of the function ϕ, and

ψ(y) = ψ(q) + (Dψ)q(y − q) + |y − q| τ(y)

for all points y of the domain Y of the function ψ. The
differentiability of the functions ϕ and ψ at the points p and q
then ensures that the functions σ and τ are continuous at the
points p and q respectively, where q = ϕ(p) (see Lemma A).
Moreover the composition function τ ◦ ϕ is continuous at the
point p, because the functions ϕ and τ are continuous at the
points p and ϕ(p) respectively.



The linearity of (Dψ)q : Rn → Rk then ensures that

ψ(ϕ(x)) = ψ(q) + (Dψ)q(ϕ(x)− q)) + |ϕ(x)− q| τ(ϕ(x))

= ψ(ϕ(p)) + (Dψ)q(ϕ(x)− ϕ(p)))

+ |ϕ(x)− ϕ(p)| τ(ϕ(x))

= ψ(ϕ(p)) + (Dψ)q(Dϕ)p(x− p)

+ |x− p|(Dψ)q(σ(x)) + |ϕ(x)− ϕ(p)| τ(ϕ(x))

= ψ(ϕ(p)) + (Dψ)q(Dϕ)p(x− p) + |x− p|χ(x)

for all x ∈ X , where χ : X → Rk is the uniquely-determined
function on the domain X of the function ϕ defined so that
χ(p) = 0 and

χ(x) = (Dψ)q(σ(x)) +
|ϕ(x)− ϕ(p)|
|x− p|

τ(ϕ(x))

for all points x of the set X that are distinct from the point p.



Thus, in order to complete the proof of the differentiability of the
composition function ψ ◦ ϕ at the point p, it suffices to show that
that the function χ is continuous at the point p (see Lemma A),
and moreover the continuity of the function χ at the point p can
be established by verifying that lim

x→p
χ(p) = 0.



Now lim
x→p

σ(x) = 0. The continuity of the linear transformation

(Dψ)q therefore ensures that

lim
x→p

(Dψ)q(σ(x)) = (Dψ)q

(
lim
x→p

σ(x)

)
= (Dψ)q(0) = 0.



Also there exist positive real numbers M and δ0 such that
|ϕ(x)− ϕ(p)| ≤ M|x− p| whenever |x− p| < δ0 (see
Proposition C). Then, given any positive real number ε, there
exists some real number δ satisfying 0 < δ < δ0 which is small
enough to ensure that |τ(ϕ(x))| < ε/M whenever |x− p| < δ,
because τ(ϕ(p)) = τ(q) = 0 and the composition function τ ◦ ϕ is
continuous at the point p.

It follows that

|ϕ(x)− ϕ(p)|
|x− p|

|τ(ϕ(x))| < ε

whenever |x− p| < δ. Consequently

lim
x→p

(
|ϕ(x)− ϕ(p)|
|x− p|

|τ(ϕ(x))|
)

= 0.



Also there exist positive real numbers M and δ0 such that
|ϕ(x)− ϕ(p)| ≤ M|x− p| whenever |x− p| < δ0 (see
Proposition C). Then, given any positive real number ε, there
exists some real number δ satisfying 0 < δ < δ0 which is small
enough to ensure that |τ(ϕ(x))| < ε/M whenever |x− p| < δ,
because τ(ϕ(p)) = τ(q) = 0 and the composition function τ ◦ ϕ is
continuous at the point p. It follows that

|ϕ(x)− ϕ(p)|
|x− p|

|τ(ϕ(x))| < ε

whenever |x− p| < δ. Consequently

lim
x→p

(
|ϕ(x)− ϕ(p)|
|x− p|

|τ(ϕ(x))|
)

= 0.



We can now conclude that

lim
x→p

χ(x) = lim
x→p

(Dψ)q(σ(x)) + lim
x→p

(
|ϕ(x)− ϕ(p)|
|x− p|

τ(ϕ(x))

)
= 0 = χ(p),

and consequently the composition function ψ ◦ ϕ is differentiable
at the point p, with derivative (Dψ)ϕ(p) ◦ (Dϕ)p, as required.


