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Definition

Let X be an open subset of R™ let p: X — R" be a function
mapping X into R”, let T: R™ — R” be a linear transformation
from R™ to R”, and let p be a point of X. The function ¢ is said
to be differentiable at p, with derivative T: R™ — R" if and only if

. 1
lim
x=p [x — p|

(p(x) = ¢(p) — T(x —p)) = 0.




Definition

Let X be an open subset of R™ let p: X — R" be a function
mapping X into R”, let T: R™ — R” be a linear transformation
from R™ to R", and let p be a point of X. The function ¢ is said
to be differentiable at p, with derivative T: R™ — R" if and only if

fim —— ((x) — p(p) — T(x— p)) = 0.

x=p |x —p|

v

Henceforth we shall usually denote the derivative of a differentiable
map ¢: X — R" at a point p of its domain X by (D¢y)p.



Let X be an open set in R™, let p: X — R" be a function
mapping X into R", let T: R™ — R" be a linear transformation
from R™ — R"” and let p be a point belonging to the domain X of
the function ¢. Also let 0: X — R" be the function defined
throughout the domain X of the function o that is uniquely
characterized by the properties that o(p) = 0 and

¢(x) = p(p) + T(x — p) + [x — p| o(x)

for all points x of the domain X of the function ¢. Then the
function p: X — R" is differentiable at the point p, with
derivative T: R™ — R", if and only if the associated function o is
continuous at the point p.




Proof
Note that

| i (¢(x) = ¢(p) = T(x—p)) ifx#p;
o(x) = x —p|

0 if x =p.

The very definition of differentiability therefore ensures that the
function ¢ is differentiable at the point p, with derivative T, if and
only if

Jim a(x) = 0 = o (p).

Moreover Ii_r;n o(x) = o(p) if and only if the function ¢ is
x—p

continuous at the point p. The result follows. |



Lemma B

Let X be an open subset of R™ let p: X — R" be a function
mapping X into R", let T: R™ — R" be a linear transformation
from R™ to R", and let p be a point of X. Then the function ¢ is
differentiable at p, with derivative T, if and only if, given any
positive real number €, there exists some positive real number §
such that

lo(x) —¢(p) — T(x—p)| < elx—p|

at all points x of X that satisfy |x — p| < 0.




Proof

First suppose that the function ¢: X — R" has the property that,
given any positive real number g, there exists some positive real
number § such that

lp(x) — @(p) — T(x —p)| < eolx — p|

at all points x of X that satisfy [x — p| < 4.
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at all points x of X that satisfy |[x — p| < 6. Let some positive
number € be given, and let g be chosen so that 0 < g¢ < €.



Proof

First suppose that the function ¢: X — R" has the property that,
given any positive real number g, there exists some positive real
number § such that

lp(x) — @(p) — T(x —p)| < eolx — p|

at all points x of X that satisfy |[x — p| < 6. Let some positive
number € be given, and let £g be chosen so that 0 < g9 < e. Then
there exists some positive real number § such that the above
inequality holds at all points x of X that satisfy [x — p| < .



But then
1

x = pl
at all points x of X that satisfy 0 < |x — p| < J,

p(x) —¢(p) = T(x—p)| <¢



But then
1

x = pl
at all points x of X that satisfy 0 < |x — p| < J, and therefore

p(x) —¢(p) = T(x—p)| <¢

fim 2 (6l0) = (p) ~ T(x =) = 0.

Thus the function ¢ is differentiable at the point p.



Conversely suppose that the function ¢ is differentiable at the
point p. Let some positive real number £ be given. Then there
exists some positive real number § such that
1
x — p

lp(x) —p(p) — T(x—p)| <&

at all points x of X that satisfy 0 < [x — p| < 6.



Conversely suppose that the function ¢ is differentiable at the
point p. Let some positive real number £ be given. Then there
exists some positive real number § such that
1
x — p

lp(x) —p(p) — T(x—p)| <&

at all points x of X that satisfy 0 < [x — p| < §. Considering
separately the cases when x = p and when 0 < [x — p| < 4, it then
follows that

(%) = #(p) = T(x = p)| < ex — p|

at all points x of X that satisfy [x — p| < d. The result follows. |}



Let X be an open subset of R™ let o: X — R" be a function
mapping X into R”, let S and T be linear transformations from
R™ to R", and let p be a point of X. We claim that if both

Jim, x—pl (¢(x) = ¢(p) = S(x—p)) =0
and
i = p) (PX) — @) = T(x=p)) =0,

then S=T.



Indeed these two conditions taken together would ensure that

1
Jim o (T = S)x=p))
= Jim P i N (¢(x) = ¢(p) — S(x — p))
= Jim ey (P00 — ep) = T(x — p))



Indeed these two conditions taken together would ensure that

1
Jim o (T = S)x=p))
- l@p |x i p‘ (‘P(x) - (P(p) — S(X — p))
= Jim ] (PO — () = T(x — p))
= 0.

Therefore, taking a fixed non-zero vector w in R™, and setting
x = p + tw, we find that

lim (1 (T — S)(tw)) = 0.

t—0 t]w|

The linearity of T — S then ensures that (T — S)w = 0.



We have now shown that (T — S)w = 0 for all non-zero vectors w
in R™. It follows that S = T as claimed.

We conclude therefore that, if a vector-valued function

p: X = R™ defined over an open set X in R™ is differentiable at
some point p of the domain X of the function ¢, then the
derivative (Dy)p of the function ¢ at the point p is a linear
transformation that is uniquely determined by the function ¢ and
the point p at which the derivative is to be taken.



Definition

Let T: R™ — R" be a linear transformation. The operator norm
| T|lop of T is the smallest non-negative real number with the
property that | Tw| < || T||op |w| for all w € R™.




Definition

Let T: R™ — R" be a linear transformation. The operator norm
| T|lop of T is the smallest non-negative real number with the
property that | Tw| < || T||op |w| for all w € R™.

The operator norm || T||op of a linear transformation 7: R™ — R”
may be characterized as the maximum value attained by | Tw| as
w ranges over all vectors in R™ that satisfy |w| = 1.



Proposition C

Let X be an open set in R™, let p: X — R" be a function
mapping X into R", let p be a point of X at which the function ¢
is differentiable, and let M be a real number satisfying

M > [|[(Dp)pllop, where ||[(Dy)pllop denotes the operator norm of
the derivative (Dy)p of ¢ at p. Then there exists some positive
real number § such that

lp(x) — @(p)| < M|x — p|

for all points x of X satisfying |x — p| < 0.




Proof
Let e = M — ||(Dy¢)pllop. Then e > 0.
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for all w € R™.



Proof
Let e = M — [[(D¢)pllop- Then € > 0. Now

[(De)pw| < [[(Dp)pllop W

for all w € R™. Also the differentiability of the function ¢ at the
point p ensures that there exists some positive real number § that
is small enough to ensure that

(%) = #(p) = (Dp)p(x = P)[ < & [x —p|

for all x € X satisfying |x — p| < 0 (see Lemma B).



It then follows from the Triangle Inequality satisfied by the
Euclidean distance function that

|p(x) = ¢(p)|

) —
< [(De)p(x = p)| + [p(x) — o(p) — (Dg)p(x — p)|
< [(Dg)p(x —p)| +elx — p|

for all x € X satisfying |x — p| < .



But the definition of the operator norm ensures that

[(Dg)p(x = )| < [[(D)pllop [x — Pl

for all x € X.



But the definition of the operator norm ensures that

[(Dg)p(x = )| < [[(D)pllop [x — Pl

for all x € X. Moreover the value of the positive real number ¢ has
been chosen so as to ensure that ||(Dy)pllop +& = M.



But the definition of the operator norm ensures that

[(Dg)p(x = )| < [[(D)pllop [x — Pl

for all x € X. Moreover the value of the positive real number ¢ has
been chosen so as to ensure that ||[(Dg)pllop + € = M. It follows
that

[(De)p(x — p)| +&lx — p|
([[(Dp)pllop +€)|x — p| = M |x — p|

lp(x) = p(p)] <
<

for all x € X satisfying |x — p| < d, as required. |}



Proposition D (Chain Rule)

Let X and Y be open sets in R™ and R" respectively, let

0: X = R" and ¢: Y — Rk be functions mapping X and Y into
R" and R¥ respectively, where p(X) C Y, and let p be a point of
X. Suppose that ¢ is differentiable at p and that v is
differentiable at p(p). Then the composition 1 o p: X — R¥ js
differentiable at p, and

D(%p 0 ©)p = (D) (p) © (Dp)p-

Thus the derivative of the composition 1) o ¢ of the functions at
the point p is the composition of the derivatives of the functions
and 1 at p and p(p) respectively.




Proof

The differentiability of the functions ¢ and ¢ at p and ¢(p)
respectively ensures that there exist positive real numbers M, N,
01 and 7 such that the following conditions hold: x € X and
lp(x) — o(p)| < M|x — p| for all x € R™ satisfying |x — p| < d1;
y € Y and [¢(y) — ¥(¢(p))| < Ny — ¢(p)] for all y € R”
satisfying [y — ¢(p)| < n1; [(D9),(pyw| < N |w| for all w € R”.
(This follows on applying Proposition C.)



Let some positive real number € be given. It follows from the
differentiability of ¢ at ¢(p) that there exists some real
number 77, where 0 < 12 < 71, such that

[4(y) = ¥(e(p)) = (D)o (y — ()] < 575 !y o(p)|

for all y € Y satisfying |y — ¢(p)| < m2. (This follows from a direct
application of Lemma B.)



Let some positive real number € be given. It follows from the
differentiability of ¢ at ¢(p) that there exists some real
number 77, where 0 < 12 < 71, such that

[U(y) — ¥(e(p)) — (D)) (y — ¢(p))] < 2M!y o(p)|

for all y € Y satisfying |y — ¢(p)| < m2. (This follows from a direct
application of Lemma B.) Let some real number &, be chosen so
that 0 < dp < §1 and Mdr < .



Let some positive real number € be given. It follows from the
differentiability of ¢ at ¢(p) that there exists some real
number 77, where 0 < 12 < 71, such that

[U(y) — ¥(e(p)) — (D)) (y — ¢(p))] < 2M!y o(p)|

for all y € Y satisfying |y — ¢(p)| < m2. (This follows from a direct
application of Lemma B.) Let some real number &, be chosen so
that 0 < 02 < 1 and Mdp < mp. If x € R™ satisfies [x — p| < d2
then x € X and |p(x) — p(p)| < M|x — p| < n2.



Let some positive real number € be given. It follows from the
differentiability of ¢ at ¢(p) that there exists some real
number 77, where 0 < 12 < 71, such that

[4(y) = ¥(e(p)) = (D)o (y — ()] < 575 !y o(p)|

for all y € Y satisfying |y — ¢(p)| < m2. (This follows from a direct
application of Lemma B.) Let some real number &, be chosen so
that 0 < 02 < 1 and Mdp < mp. If x € R™ satisfies [x — p| < d2
then x € X and |¢o(x) — p(p)| < M|x — p| < n2. Consequently if
|x — p| < d then

[U(2(x)) — ¥(2(p)) — (DY) (e ((x) — ©(p))|
< 5ot — ()|

< Llex—pl



Now it follows from the differentiability of ¢ at p that there exists
some real number § satisfying the inequalities 0 < § < 5 that is
small enough to ensure that

£(x) = ¢ (p) = (DP)p(x — P)| < 5 Ix — Pl

for all x € R™ satisfying |x — p| < .
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Now it follows from the differentiability of ¢ at p that there exists
some real number § satisfying the inequalities 0 < § < 5 that is
small enough to ensure that

£(x) = ¢ (p) = (DP)p(x — P)| < 5 Ix — Pl

for all x € R™ satisfying [x — p| < &. Now |(D9),(pyw| < N |w| for
all w € R". It follows that

(DY) o) ((X) = () — (D) (p) (Dip)p(x — P)|
N\so() o(p) — (Dp)p(x — p)|

<
< lek-p

for all x € R™ satisfying |x — p| < ¢.



The inequalities obtained above ensure that x € X and

|((x)) — ¥(e ( )) (D)) (D)o (x — P)|
< [P(e(x) = 1 (#(p)) — (D¥)g(p)((x) — 2(p))]
+\(Dw o(0) (%) = 2(P)) — (DY) () (D)o (x — P)|

< elx—p|

at all points x of R™ that satisfy [x — p| < 4.



The inequalities obtained above ensure that x € X and

|[(0(x)) — ¥(e(p)) — (DY) y(p) (Dp)p(x — )|
< Jo(e(x)) = (e(p) — (DY) ey (e(x) — ©(p))]
(

+ (DY) o) ((X) = 2(P)) = (DY) o(p) (Dip)p(x — P)|
< elx—p|

at all points x of R that satisfy |[x — p| < J. It follows from this
that the composition function 1 o ¢ is differentiable at p, and that

(D10 9))p = (D) y(p) © (Dp)p, as required. |}



An Alternative Proof of the Chain Rule

Let g = ¢(p), and let 0: X — R” and 7: Y — Rk be the
uniquely-determined functions defined throughout the domains X
and Y of the functions ¢ and v respectively so that o(p) =0,

7(q) =0,
p(x) = ¢(p) + (Dp)p(x — p) + [x — pl o (x)
for all points x of the domain X of the function ¢, and

¥(y) =¥(a) + (DY)q(y —a) + ly — a[ 7(y)

for all points y of the domain Y of the function .
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for all points y of the domain Y of the function . The
differentiability of the functions ¢ and ¢ at the points p and q
then ensures that the functions o and 7 are continuous at the
points p and q respectively, where q = p(p) (see Lemma A).



An Alternative Proof of the Chain Rule

Let g = ¢(p), and let 0: X — R” and 7: Y — Rk be the
uniquely-determined functions defined throughout the domains X
and Y of the functions ¢ and v respectively so that o(p) =0,
7(q) =0,

p(x) = ¢(p) + (Dp)p(x = p) + [x = plo(x)

for all points x of the domain X of the function ¢, and

¥(y) =¥(a) + (DY)q(y —a) + ly — a[ 7(y)

for all points y of the domain Y of the function . The
differentiability of the functions ¢ and ¢ at the points p and q
then ensures that the functions o and 7 are continuous at the
points p and q respectively, where q = p(p) (see Lemma A).
Moreover the composition function 7 o ¢ is continuous at the
point p, because the functions ¢ and 7 are continuous at the
points p and (p) respectively.



The linearity of (D1)q: R” — R¥ then ensures that

P(p(x)) = ¥(a)+ (DY)g(p(x) — a)) + [p(x) — al 7(¢(x))
= Y(p(p)) + (DY)q(p(x) — ¢(p)))
+ lp(x) = ()| 7(0(x))
= Y(e(p)) + (DY)q(Dp)p(x — p)
+ [x = p[(DY)q(a(x)) + |(x) — ¢(p)| T(s(x))
Y(p(p)) + (D)a(Dp)p(x — p) + [x — plx(x)

for all x € X, where x: X — RK is the uniquely-determined
function on the domain X of the function ¢ defined so that
x(p) =0 and

1(x) = (D)(o(x)) + PRI )

x — p|

for all points x of the set X that are distinct from the point p.



Thus, in order to complete the proof of the differentiability of the
composition function 1 o ¢ at the point p, it suffices to show that
that the function x is continuous at the point p (see Lemma A),
and moreover the continuity of the function  at the point p can
be established by verifying that )!i_r}np x(p) = 0.



Now lim o(x) = 0. The continuity of the linear transformation
x—p

(D1)q therefore ensures that

im(D)a(0() = (Dw)a Jim o(x) ) = (DV)e(0) =0,

X—p X—p



Also there exist positive real numbers M and &g such that

lo(x) — @(p)| < M|x — p| whenever |x — p| < Jg (see

Proposition C). Then, given any positive real number ¢, there
exists some real number ¢ satisfying 0 < § < dp which is small
enough to ensure that |7(¢(x))| < €/M whenever |x — p| < 6,
because 7((p)) = 7(q) = 0 and the composition function 7o ¢ is
continuous at the point p.



Also there exist positive real numbers M and &g such that

lo(x) — @(p)| < M|x — p| whenever |x — p| < Jg (see

Proposition C). Then, given any positive real number ¢, there
exists some real number ¢ satisfying 0 < § < dp which is small
enough to ensure that |7(¢(x))| < €/M whenever |x — p| < 6,
because 7((p)) = 7(q) = 0 and the composition function 7o ¢ is
continuous at the point p. It follows that

() =P | (s
4T;jH47|W(»

whenever |x — p| < §. Consequently

im (=2 o) =0

=P\ [x—p



We can now conclude that

lp(x) — (p)|

Ix — p|

lim x(x) = lim(Dv)q(co(x)) + lim <

X—p X—p X—p

= 0=x(p),

(o))

and consequently the composition function 1 o ¢ is differentiable

at the point p, with derivative (D)), ) © (D¢)p, as required. [



