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6. Limits of Functions of Several Real Variables

6. Limits of Functions of Several Real Variables

6.1. Limit Points of Subsets of Euclidean Spaces

Definition

Let X be a subset of n-dimensional Euclidean space Rn, and let
p ∈ Rn. The point p is said to be a limit point of the set X if,
given any positive real number δ, there exists some point x of X
for which 0 < |x− p| < δ.
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6.2. Basic Properties of Limits of Functions of Several Real Variables

Definition

Let X be a subset of m-dimensional Euclidean space Rm, let
ϕ : X → Rn be a function mapping the set X into n-dimensional
Euclidean space Rn, let p be a limit point of the set X , and let v
be a vector in Rn. The point v is said to be the limit of ϕ(x), as x
tends to p in X , if and only if, given any strictly positive real
number ε, there exists some strictly positive real number δ such
that |ϕ(x)− v| < ε whenever x ∈ X satisfies 0 < |x− p| < δ.
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Let X be a subset of m-dimensional Euclidean space Rm, let
ϕ : X → Rn be a function mapping the set X into n-dimensional
Euclidean space Rn, let p be a limit point of the set X , and let v
be a vector in Rn. If v is the limit of ϕ(x) as x tends to p in X
then we can denote this fact by writing lim

x→p
ϕ(x) = v.
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Proposition 6.1

Let X be a subset of Rm, let p be a limit point of X , and let v be
a vector in Rn. A function ϕ : X → Rn has the property that

lim
x→p

ϕ(x) = v

if and only if
lim
x→p

fi (x) = vi

for i = 1, 2, . . . , n, where f1, f2, . . . , fn are the components of the
function ϕ and v = (v1, v2, . . . , vn).
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Proof
Suppose that lim

x→p
ϕ(x) = v. Let i be an integer between 1 and n,

and let some positive real number ε be given. Then there exists
some positive real number δ such that |ϕ(x)− v| < ε whenever
0 < |x− p| < δ. It then follows from the definition of the
Euclidean norm that

|fi (x)− vi | ≤ |ϕ(x)− v| < ε

whenever 0 < |x− p| < δ. Thus if lim
x→p

ϕ(x) = v then

lim
x→p

fi (x) = vi for i = 1, 2, . . . , n.



6. Limits of Functions of Several Real Variables (continued)

Conversely suppose that

lim
x→p

fi (x) = vi

for i = 1, 2, . . . , n. Let some positive real number ε be given. Then
there exist positive real numbers δ1, δ2, . . . , δn such that
|fi (x)− vi | < ε/

√
n for x ∈ X satisfying 0 < |x− p| < δi . Let δ be

the minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies 0 < |x− p| < δ
then

|ϕ(x)− v|2 =
n∑

i=1

(fi (x)− vi )
2 < ε2,

and hence |ϕ(x)− v| < ε. Thus

lim
x→p

ϕ(x) = v,

as required.
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Proposition 6.2

Let X be a subset of m-dimensional Euclidean space Rm, let
ϕ : X → Rn and ψ : X → Rn be functions mapping X into
n-dimensional Euclidean space Rn, let p be a limit point of X , and
let v and w be points of Rn. Suppose that

lim
x→p

ϕ(x) = v

and
lim
x→p

ψ(x) = w.

Then
lim
x→p

(ϕ(x) + ψ(x)) = v + w.
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Proof
Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that

|ϕ(x)− v| < 1
2ε

whenever x ∈ X satisfies 0 < |x− p| < δ1 and

|ψ(x)−w| < 1
2ε

whenever x ∈ X satisfies 0 < |x− p| < δ2.
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Let δ be the minimum of δ1 and δ2. Then δ > 0, and if x ∈ X
satisfies 0 < |x− p| < δ then

|ϕ(x)− v| < 1
2ε

and
|ψ(x)−w| < 1

2ε,

and therefore

|ϕ(x) + ψ(x)− (v + w)| ≤ |ϕ(x)− v|+ |ψ(x)−w|
< 1

2ε+ 1
2ε = ε.

It follows that
lim
x→p

(ϕ(x) + ψ(x)) = v + w,

as required.
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Lemma 6.3

Let X and Y be subsets of Rm and Rn respectively, let p be a limit
point of X , let v be a point of Y , let ϕ : X → Y be a function
mapping the set X into the set Y , and let ψ : Y → Rk be a
function mapping the set Y into Rk . Suppose that

lim
x→p

ϕ(x) = v

and that the function ψ is continuous at v. Then

lim
x→p

ψ(ϕ(x)) = ψ(v).
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Proof
Let some positive real number ε be given. Then there exists some
positive real number η such that |ψ(y)− ψ(v)| < ε for all y ∈ Y
satisfying |y − v| < η, because the function g is continuous at v.
But then there exists some positive real number δ such that
|ϕ(x)− v| < η for all x ∈ X satisfying 0 < |x− p| < δ. It follows
that |ψ(ϕ(x))− ψ(v)| < ε for all x ∈ X satisfying 0 < |x− p| < δ,
and thus

lim
x→p

ψ(ϕ(x)) = ψ(v),

as required.
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Proposition 6.4

Let X be a subset of Rm, let f : X → R and g : X → R be
real-valued functions on X , and let p be a limit point of the set X .
Suppose that lim

x→p
f (x) and lim

x→p
g(x) both exist. Then so do

lim
x→p

(f (x) + g(x)), lim
x→p

(f (x)− g(x)) and lim
x→p

(f (x)g(x)), and

moreover

lim
x→p

(f (x) + g(x)) = lim
x→p

f (x) + lim
x→p

g(x),

lim
x→p

(f (x)− g(x)) = lim
x→p

f (x)− lim
x→p

g(x),

lim
x→p

(f (x)g(x)) = lim
x→p

f (x)× lim
x→p

g(x),
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If moreover g(x) 6= 0 for all x ∈ X and lim
x→p

g(x) 6= 0 then

lim
x→p

f (x)

g(x)
=

lim
x→p

f (x)

lim
x→p

g(x)
.
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Proof
Let q = lim

x→p
f (x) and r = lim

x→p
g(x), and let ψ : X → R2 be defined

such that
ψ(x) = (f (x), g(x))

for all x ∈ X . Then
lim
x→p

ψ(x) = (q, r)

(see Proposition 6.1).
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Let s : R2 → R and m : R2 → R be the functions from R2 to R
defined such that s(u, v) = u + v and m(u, v) = uv for all
u, v ∈ R. Then the functions s and m are continuous (see
Lemma 5.4). Also f + g = s ◦ ψ and f · g = m ◦ ψ. It follows from
this that

lim
x→p

(f (x) + g(x)) = lim
x→p

s(f (x), g(x)) = lim
x→p

s(ψ(x))

= s

(
lim
x→p

ψ(x)

)
= s(q, r) = q + r ,

(see Lemma 6.3), and

lim
x→p

(−g(x)) = −r .

It follows that
lim
x→p

(f (x)− g(x)) = q − r .
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Similarly, when taking limits of products of functions,

lim
x→p

(f (x)g(x)) = lim
x→p

m(f (x), g(x)) = lim
x→p

m(ψ(x))

= m

(
lim
x→p

ψ(x)

)
= m(q, r) = qr
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Now suppose that g(x) 6= 0 for all x ∈ X and that lim
x→p

g(x) 6= 0.

Representing the function sending x ∈ X to 1/g(x) as the
composition of the function g and the reciprocal function
e : R \ {0} → R, where e(t) = 1/t for all non-zero real numbers t,
we find, as in the first proof, that the function sending each point
x of X to

lim
x→p

(
1

g(x)

)
=

1

r
.

It then follows that

lim
x→p

f (x)

g(x)
=

q

r
,

as required.
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6.3. Relationships between Limits and Continuity

Proposition 6.5

Let X be a subset of Rm, let f : X → Rn be a function mapping
the set X into Rn, and let p be a point of the set X that is also a
limit point of X . Then the function f is continuous at the point p
if and only if lim

x→p
f (x) = f (p).

Proof
The result follows directly on comparing the relevant
definitions.
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Let X be a subset of m-dimensional Euclidean space Rm, and let p
be a point of the set X . Suppose that the point p is not a limit
point of the set X . Then there exists some strictly positive real
number δ0 such that |x− p| ≥ δ0 for all x ∈ X satisfying x 6= p.
The point p is then said to be an isolated point of X .
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Let X be a subset of m-dimensional Euclidean space Rm. The
definition of continuity then ensures that any function ϕ : X → Rn

mapping the set X into n-dimensional Euclidean space Rn is
continuous at any isolated point of its domain X .
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