MAU23203—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2021 Section 6: Limits of Functions of Several Real Variables

Trinity College Dublin

6. Limits of Functions of Several Real Variables

6.1. Limit Points of Subsets of Euclidean Spaces

Definition

Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n , and let $\mathbf{p} \in \mathbb{R}^n$. The point \mathbf{p} is said to be a *limit point* of the set X if, given any positive real number δ , there exists some point \mathbf{x} of X for which $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

6.2. Basic Properties of Limits of Functions of Several Real Variables

Definition

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ be a function mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of the set X, and let **v** be a vector in \mathbb{R}^n . The point **v** is said to be the *limit* of $\varphi(\mathbf{x})$, as **x** tends to **p** in X, if and only if, given any strictly positive real number ε , there exists some strictly positive real number δ such that $|\varphi(\mathbf{x}) - \mathbf{v}| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ be a function mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of the set X, and let **v** be a vector in \mathbb{R}^n . If **v** is the limit of $\varphi(\mathbf{x})$ as **x** tends to **p** in X then we can denote this fact by writing $\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x}) = \mathbf{v}$.

Proposition 6.1

Let X be a subset of \mathbb{R}^m , let **p** be a limit point of X, and let **v** be a vector in \mathbb{R}^n . A function $\varphi \colon X \to \mathbb{R}^n$ has the property that

$$\lim_{\mathbf{x} \to \mathbf{p}} \varphi(\mathbf{x}) = \mathbf{v}$$

if and only if

$$\lim_{\mathbf{x}\to\mathbf{p}}f_i(\mathbf{x})=v_i$$

for i = 1, 2, ..., n, where $f_1, f_2, ..., f_n$ are the components of the function φ and $\mathbf{v} = (v_1, v_2, ..., v_n)$.

Suppose that $\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x}) = \mathbf{v}$. Let i be an integer between 1 and n, and let some positive real number ε be given. Then there exists some positive real number δ such that $|\varphi(\mathbf{x}) - \mathbf{v}| < \varepsilon$ whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It then follows from the definition of the Euclidean norm that

$$|f_i(\mathbf{x}) - \mathbf{v}_i| \leq |arphi(\mathbf{x}) - \mathbf{v}| < arepsilon$$

whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta$. Thus if $\lim_{\mathbf{x} \to \mathbf{p}} \varphi(\mathbf{x}) = \mathbf{v}$ then $\lim_{\mathbf{x} \to \mathbf{p}} f_i(\mathbf{x}) = v_i$ for i = 1, 2, ..., n. Conversely suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f_i(\mathbf{x})=v_i$$

for i = 1, 2, ..., n. Let some positive real number ε be given. Then there exist positive real numbers $\delta_1, \delta_2, ..., \delta_n$ such that $|f_i(\mathbf{x}) - v_i| < \varepsilon / \sqrt{n}$ for $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_i$. Let δ be the minimum of $\delta_1, \delta_2, ..., \delta_n$. If $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then

$$|\varphi(\mathbf{x}) - \mathbf{v}|^2 = \sum_{i=1}^n (f_i(\mathbf{x}) - v_i)^2 < \varepsilon^2,$$

and hence $|\varphi(\mathbf{x}) - \mathbf{v}| < \varepsilon$. Thus

$$\lim_{\mathbf{x}\to\mathbf{p}}\varphi(\mathbf{x})=\mathbf{v},$$

Proposition 6.2

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $\varphi: X \to \mathbb{R}^n$ and $\psi: X \to \mathbb{R}^n$ be functions mapping X into n-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of X, and let **v** and **w** be points of \mathbb{R}^n . Suppose that

$$\lim_{\mathsf{x} o \mathsf{p}} arphi(\mathsf{x}) = \mathsf{v}$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\mathbf{x})=\mathbf{w}.$$

Then

$$\lim_{\mathbf{x}\to\mathbf{p}}(\varphi(\mathbf{x})+\psi(\mathbf{x}))=\mathbf{v}+\mathbf{w}.$$

Let some strictly positive real number ε be given. Then there exist strictly positive real numbers δ_1 and δ_2 such that

$$|\varphi(\mathbf{x}) - \mathbf{v}| < \frac{1}{2}\varepsilon$$

whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$ and

$$|\psi(\mathbf{x}) - \mathbf{w}| < \frac{1}{2}\varepsilon$$

whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_2$.

6. Limits of Functions of Several Real Variables (continued)

Let δ be the minimum of δ_1 and δ_2 . Then $\delta > 0$, and if $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then

$$|arphi(\mathbf{x}) - \mathbf{v}| < rac{1}{2}arepsilon$$

and

$$|\psi(\mathbf{x}) - \mathbf{w}| < rac{1}{2}arepsilon,$$

and therefore

$$\begin{aligned} |\varphi(\mathbf{x}) + \psi(\mathbf{x}) - (\mathbf{v} + \mathbf{w})| &\leq |\varphi(\mathbf{x}) - \mathbf{v}| + |\psi(\mathbf{x}) - \mathbf{w}| \\ &< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \end{aligned}$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}(\varphi(\mathbf{x})+\psi(\mathbf{x}))=\mathbf{v}+\mathbf{w},$$

Lemma 6.3

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, let **p** be a limit point of X, let **v** be a point of Y, let $\varphi \colon X \to Y$ be a function mapping the set X into the set Y, and let $\psi \colon Y \to \mathbb{R}^k$ be a function mapping the set Y into \mathbb{R}^k . Suppose that

 $\lim_{\mathbf{x} \to \mathbf{p}} \varphi(\mathbf{x}) = \mathbf{v}$

and that the function ψ is continuous at **v**. Then

 $\lim_{\mathbf{x}\to\mathbf{p}}\psi(\varphi(\mathbf{x}))=\psi(\mathbf{v}).$

Let some positive real number ε be given. Then there exists some positive real number η such that $|\psi(\mathbf{y}) - \psi(\mathbf{v})| < \varepsilon$ for all $\mathbf{y} \in \mathbf{Y}$ satisfying $|\mathbf{y} - \mathbf{v}| < \eta$, because the function g is continuous at \mathbf{v} . But then there exists some positive real number δ such that $|\varphi(\mathbf{x}) - \mathbf{v}| < \eta$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|\psi(\varphi(\mathbf{x})) - \psi(\mathbf{v})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|\psi(\varphi(\mathbf{x})) - \psi(\mathbf{v})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$, and thus

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\varphi(\mathbf{x}))=\psi(\mathbf{v}),$$

Proposition 6.4

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be real-valued functions on X, and let **p** be a limit point of the set X. Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $\lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$ both exist. Then so do $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) + g(\mathbf{x})), \lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) - g(\mathbf{x}))$ and $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})g(\mathbf{x}))$, and moreover

$$\begin{split} &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})+\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})-\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})\times\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}), \end{split}$$

If moreover
$$g(\mathbf{x}) \neq 0$$
 for all $\mathbf{x} \in X$ and $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$ then
$$\lim_{\mathbf{x} \to \mathbf{p}} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x})}{\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x})}.$$

Let $q = \lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $r = \lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$, and let $\psi \colon X \to \mathbb{R}^2$ be defined such that

$$\psi(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x}))$$

for all $\mathbf{x} \in X$. Then

$$\lim_{\mathbf{x}\to\mathbf{p}}\psi(\mathbf{x})=(q,r)$$

(see Proposition 6.1).

6. Limits of Functions of Several Real Variables (continued)

Let $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ be the functions from \mathbb{R}^2 to \mathbb{R} defined such that s(u, v) = u + v and m(u, v) = uv for all $u, v \in \mathbb{R}$. Then the functions s and m are continuous (see Lemma 5.4). Also $f + g = s \circ \psi$ and $f \cdot g = m \circ \psi$. It follows from this that

$$\begin{split} \lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}s(f(\mathbf{x}),g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}s(\psi(\mathbf{x}))\\ &= s\left(\lim_{\mathbf{x}\to\mathbf{p}}\psi(\mathbf{x})\right) = s(q,r) = q+r, \end{split}$$

(see Lemma 6.3), and

$$\lim_{\mathbf{x}\to\mathbf{p}}(-g(\mathbf{x}))=-r.$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x}))=q-r.$$

Similarly, when taking limits of products of functions,

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}} m(f(\mathbf{x}),g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}} m(\psi(\mathbf{x}))$$
$$= m\left(\lim_{\mathbf{x}\to\mathbf{p}}\psi(\mathbf{x})\right) = m(q,r) = qr$$

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and that $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$. Representing the function sending $\mathbf{x} \in X$ to $1/g(\mathbf{x})$ as the composition of the function g and the reciprocal function $e \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$, where e(t) = 1/t for all non-zero real numbers t, we find, as in the first proof, that the function sending each point \mathbf{x} of X to

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{1}{g(\mathbf{x})}\right)=\frac{1}{r}$$

It then follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})}=\frac{q}{r},$$

6.3. Relationships between Limits and Continuity

Proposition 6.5

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into \mathbb{R}^n , and let **p** be a point of the set X that is also a limit point of X. Then the function f is continuous at the point **p** if and only if $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = f(\mathbf{p})$.

Proof

The result follows directly on comparing the relevant definitions.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , and let **p** be a point of the set X. Suppose that the point **p** is not a limit point of the set X. Then there exists some strictly positive real number δ_0 such that $|\mathbf{x} - \mathbf{p}| \ge \delta_0$ for all $\mathbf{x} \in X$ satisfying $\mathbf{x} \neq \mathbf{p}$. The point **p** is then said to be an *isolated point* of X.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m . The definition of continuity then ensures that any function $\varphi \colon X \to \mathbb{R}^n$ mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n is continuous at any isolated point of its domain X.