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5. Continuous Functions of Several Real Variables

5. Continuous Functions of Several Real Variables

5.1. The Concept and Basic Properties of Continuity

Definition

Let X and Y be subsets of Rm and Rn respectively. A function
ϕ : X → Y from X to Y is said to be continuous at a point p of X
if and only if, given any strictly positive real number ε, there exists
some strictly positive real number δ such that |ϕ(x)− ϕ(p)| < ε
whenever x ∈ X satisfies |x− p| < δ.

The function ϕ : X → Y is said to be continuous on X if and only
if it is continuous at every point p of X .
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5. Continuous Functions of Several Real Variables (continued)

Proposition 5.1

Let X , Y and Z be subsets of Euclidean spaces, let ϕ : X → Y be
a function from X to Y and let ψ : Y → Z be a function from Y
to Z . Suppose that ϕ is continuous at some point p of X and that
ψ is continuous at ϕ(p). Then the composition function
ψ ◦ ϕ : X → Z is continuous at p.

Proof
Let q = ϕ(p), and let some positive real number ε be given. Then
there exists some positive real number η such that
|ψ(y)− ψ(q)| < ε for all y ∈ Y satisfying |y − q| < η. But then
there exists some positive real number δ such that |ϕ(x)− q| < η
for all x ∈ X satisfying |x− p| < δ. It follows that
|ψ(ϕ(x))− ψ(ϕ(p))| < ε for all x ∈ X satisfying |x− p| < δ, and
thus ψ ◦ ϕ is continuous at p, as required.
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Proposition 5.2

Let X and Y be subsets of Euclidean spaces, and let ϕ : X → Y be
a continuous function from X to Y . Let x1, x2, x3, . . . be an infinite
sequence of points of X which converges to some point p of X .
Then the sequence ϕ(x1), ϕ(x2), ϕ(x3), . . . converges to ϕ(p).

Proof
Let some positive real number ε be given. The function ϕ is
continuous at p, and therefore there exists some positive real
number δ such that |ϕ(x)− ϕ(p)| < ε for all x ∈ X satisfying
|x− p| < δ. Also the infinite sequence x1, x2, x3, . . . converges to
the point p, and therefore there exists some positive integer N
such that |xj − p| < δ whenever j ≥ N. It follows that if j ≥ N
then |ϕ(xj)− ϕ(p)| < ε. Thus the sequence
ϕ(x1), ϕ(x2), ϕ(x3), . . . converges to ϕ(p), as required.
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5. Continuous Functions of Several Real Variables (continued)

Let X and Y be subsets of Rm and Rn respectively, and let
ϕ : X → Y be a function from X to Y . Then

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X , where f1, f2, . . . , fn are functions from X to R,
referred to as the components of the function ϕ.



5. Continuous Functions of Several Real Variables (continued)

Proposition 5.3

Let X and Y be subsets of Euclidean spaces, and let p ∈ X . A
function ϕ : X → Y is continuous at the point p if and only if its
components are all continuous at p.

Proof
Let Y be a subset of n-dimensional Euclidean space Rn. Note that
the ith component fi of ϕ is given by fi = πi ◦ f , where
πi : Rn → R is the continuous function which maps
(y1, y2, . . . , yn) ∈ Rn onto its ith component yi . Now any
composition of continuous functions is continuous, by
Proposition 5.1. Thus if ϕ is continuous at p, then so are the
components of ϕ.
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Conversely suppose that the components of ϕ are continuous at
p ∈ X . Let some positive real number ε be given. Then there exist
positive real numbers δ1, δ2, . . . , δn such that
|fi (x)− fi (p)| < ε/

√
n for x ∈ X satisfying |x− p| < δi . Let δ be

the minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|ϕ(x)− ϕ(p)|2 =
n∑

i=1

|fi (x)− fi (p)|2 < ε2,

and hence |ϕ(x)− ϕ(p)| < ε. Thus the function ϕ is continuous at
p, as required.
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Lemma 5.4

Let functions s : R2 → R and m : R2 → R be defined so that
s(x , y) = x + y and m(x , y) = xy for all real numbers x and y .
Then the functions s and m are continuous.

Proof
Let (u, v) ∈ R2. We first show that s : R2 → R is continuous at
(u, v). Let some positive real number ε be given. Let δ = 1

2ε. If
(x , y) is any point of R2 whose distance from (u, v) is less than δ
then |x − u| < δ and |y − v | < δ, and hence

|s(x , y)− s(u, v)| = |x + y − u − v | ≤ |x − u|+ |y − v | < 2δ = ε.

This shows that s : R2 → R is continuous at (u, v).
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Next we show that m : R2 → R is continuous at (u, v). Let some
positive real number ε be given. Now

m(x , y)−m(u, v) = xy−uv = (x−u)(y−v)+u(y−v)+(x−u)v .

for all points (x , y) of R2. Thus if the distance from (x , y) to
(u, v) is less than δ then |x − u| < δ and |y − v | < δ, and hence
|m(x , y)−m(u, v)| < δ2 + (|u|+ |v |)δ. Consequently if the
positive real number δ is chosen to be the minimum of 1 and
ε/(1 + |u|+ |v |) then δ2 + (|u|+ |v |)δ ≤ (1 + |u|+ |v |)δ ≤ ε, and
thus |m(x , y)−m(u, v)| < ε for all points (x , y) of R2 whose
distance from (u, v) is less than δ. This shows that m : R2 → R is
continuous at (u, v).



5. Continuous Functions of Several Real Variables (continued)

Proposition 5.5

Let X be a subset of Rn, and let f : X → R and g : X → R be
continuous functions from X to R. Then the functions f + g ,
f − g and f · g are continuous. If in addition g(x) 6= 0 for all
x ∈ X then the quotient function f /g is continuous.

Proof
Note that f + g = s ◦ ψ and f · g = m ◦ ψ, where the functions
ψ : X → R2, s : R2 → R and m : R2 → R are defined so that
ψ(x) = (f (x), g(x)), s(u, v) = u + v and m(u, v) = uv for all
x ∈ X and u, v ∈ R. It follows from Proposition 5.3, Lemma 5.4
and Proposition 5.1 that f + g and f · g are continuous, being
compositions of continuous functions. Now f − g = f + (−g), and
both f and −g are continuous. Therefore f − g is continuous.
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Now suppose that g(x) 6= 0 for all x ∈ X . Note that 1/g = r ◦ g ,
where r : R \ {0} → R is the reciprocal function, defined so that
r(t) = 1/t for all non-zero real numbers t. Now the reciprocal
function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using
the fact that a product of continuous real-valued functions is
continuous, we deduce that f /g is continuous.



5. Continuous Functions of Several Real Variables (continued)

Example
Consider the function ϕ : R2 \ {(0, 0)} → R2 defined so that

ϕ(x , y) =

(
x

x2 + y2
,
−y

x2 + y2

)
for all real numbers x and y that are not both zero. The continuity
of the components of this function ϕ follows from straightforward
applications of Proposition 5.5. It then follows from
Proposition 5.3 that the function ϕ is continuous on R2 \ {(0, 0)}.
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Lemma 5.6

Let X be a subset of Rm, let ϕ : X → Rn be a continuous function
mapping X into Rn, and let |ϕ| : X → R be the real-valued
function on X defined such that |ϕ|(x) = |ϕ(x)| for all x ∈ X .
Then the real-valued function |ϕ| is continuous on X .

Proof
Let x and p be points of X . Then

|ϕ(x)| = |(ϕ(x)− ϕ(p)) + ϕ(p)| ≤ |ϕ(x)− ϕ(p)|+ |ϕ(p)|

and

|ϕ(p)| = |(ϕ(p)− ϕ(x)) + ϕ(x)| ≤ |ϕ(x)− ϕ(p)|+ |ϕ(x)|,

and therefore ∣∣∣|ϕ(x)| − |ϕ(p)|
∣∣∣ ≤ |ϕ(x)− ϕ(p)|.
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The result now follows on applying the definition of continuity,
using the above inequality. Indeed let p be a point of X , and let
some positive real number ε be given. Then there exists a positive
real number δ small enough to ensure that |ϕ(x)− ϕ(p)| < ε for
all x ∈ X satisfying |x− p| < δ. But then∣∣∣|ϕ(x)| − |ϕ(p)|

∣∣∣ ≤ |ϕ(x)− ϕ(p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |ϕ| is
continuous, as required.
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5.2. Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let ϕ : X → Y be a
function from X to Y . We recall that the function ϕ is continuous
at a point p of X if and only if, given any positive real number ε,
there exists some positive real number δ such that
|ϕ(x)− ϕ(p)| < ε for all points x of X satisfying |x− p| < δ. Thus
the function ϕ : X → Y is continuous at p if and only if, given any
positive real number ε, there exists some positive real number δ
such that the function ϕ maps the open ball BX (p, δ) in X of
radius δ centred on the point p into the open ball BY (q, ε) in Y of
radius ε centered on the point q, where q = ϕ(p).
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Given any function ϕ : X → Y , we denote by ϕ−1(V ) the preimage
of a subset V of Y under the map ϕ, defined so that
ϕ−1(V ) = {x ∈ X : ϕ(x) ∈ V }.
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Proposition 5.7

Let X and Y be subsets of Rm and Rn, and let ϕ : X → Y be a
function from X to Y . The function ϕ is continuous if and only if
ϕ−1(V ) is open in X for every open subset V of Y .
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Proof
Suppose that ϕ : X → Y is continuous. Let V be an open set
in Y . We must show that ϕ−1(V ) is open in X . Let p be a point
of ϕ−1(V ), and let q = ϕ(p). Then q ∈ V . But V is open, hence
there exists some positive real number ε with the property that
BY (q, ε) ⊂ V . But ϕ is continuous at p. Therefore there exists
some positive real number δ such that ϕ maps BX (p, δ) into
BY (q, ε). Thus ϕ(x) ∈ V for all x ∈ BX (p, δ), showing that
BX (p, δ) ⊂ ϕ−1(V ). This shows that ϕ−1(V ) is open in X for
every open set V in Y .
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5. Continuous Functions of Several Real Variables (continued)

Conversely suppose that ϕ : X → Y is a function with the property
that ϕ−1(V ) is open in X for every open set V in Y . Let p ∈ X ,
and let q = ϕ(p). We must show that ϕ is continuous at p. Let
some positive real number ε be given. Then BY (q, ε) is an open
set in Y , by Lemma 4.1, hence ϕ−1 (BY (q, ε)) is an open set in X
which contains p. It follows that there exists some positive real
number δ such that BX (p, δ) ⊂ ϕ−1 (BY (q, ε)). Thus, given any
positive real number ε, there exists some positive real number δ
such that ϕ maps BX (p, δ) into BY (q, ε). We conclude that ϕ is
continuous at the point p, as required.
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5. Continuous Functions of Several Real Variables (continued)

Let X be a subset of Rn, let f : X → R be continuous, and let c
be some real number. Then the sets

{x ∈ X : f (x) > c}

and
{x ∈ X : f (x) < c}

are open in X , and, given real numbers a and b satisfying a < b,
the set

{x ∈ X : a < f (x) < b}

is open in X .
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Again let X be a subset of Rn, let f : X → R be continuous, and
let c be some real number. Now a subset of X is closed in X if
and only if its complement is open in X . Consequently the sets

{x ∈ X : f (x) ≤ c}

and
{x ∈ X : f (x) ≥ c},

being the complements in X of sets that are open in X , must
themselves be closed in X . It follows that that set

{x ∈ X : f (x) = c},

being the intersection of two subsets X that are closed in X , must
itself be closed in X .



5. Continuous Functions of Several Real Variables (continued)

5.3. The Multidimensional Extreme Value Theorem

Lemma 5.8

Let X be a closed bounded set in Rm, and let f : X → R be a
continuous real-valued function defined on X . Suppose that the
set of values of the function f on X is bounded below. Then there
exists a point u of X such that f (u) ≤ f (x) for all x ∈ X .
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Proof
Let

m = inf{f (x) : x ∈ X}.

Then there exists an infinite sequence x1, x2, x3, . . . in X such that

f (xj) < m +
1

j

for all positive integers j . It follows from the multidimensional
Bolzano-Weierstrass Theorem (Theorem 3.5) that this sequence
has a subsequence xk1 , xk2 , xk3 , . . . which converges to some point
u of Rm.
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Now the point u belongs to X because X is closed (see
Lemma 4.7). Also

m ≤ f (xkj ) < m +
1

kj

for all positive integers j . It follows that lim
j→+∞

f (xkj ) = m.

Consequently

f (u) = f

(
lim

j→+∞
xkj

)
= lim

j→+∞
f (xkj ) = m

(see Proposition 5.2). It follows therefore that f (x) ≥ f (u) for all
x ∈ X , Thus the function f attains a minimum value at the
point u of X , which is what we were required to prove.
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Lemma 5.9

Let X be a closed bounded set in Rm, and let ϕ : X → Rn be a
continuous function mapping X into Rn. Then there exists a
positive real number M with the property that |ϕ(x)| ≤ M for all
x ∈ X .
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Proof
Let g : X → R be defined such that

g(x) =
1

1 + |ϕ(x)|

for all x ∈ X . Now the real-valued function mapping each x ∈ X to
|ϕ(x)| is continuous (see Lemma 5.6) and quotients of continuous
real-valued functions are continuous where they are defined (see
Lemma 5.5). It follows that the function g : X → R is continuous.
Moreover the values of this function are bounded below by zero.
Consequently there exists some point w of X with the property
that g(x) ≥ g(w) for all x ∈ X (see Lemma 5.8). Let M = |ϕ(w)|.
Then |ϕ(x)| ≤ M for all x ∈ X . The result follows.
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Theorem 5.10 (The Multidimensional Extreme Value
Theorem)

Let X be a closed bounded set in Rm, and let f : X → R be a
continuous real-valued function defined on X . Then there exist
points u and v of X such that f (u) ≤ f (x) ≤ f (v) for all x ∈ X .
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Proof
It follows from Lemma 5.9 that there exists positive real
number M with the property that −M ≤ f (x) ≤ M for all x ∈ X .
Thus the set of values of the function f is bounded above and
below on X . Consequently there exist points u and v where the
functions f and −f respectively attain their minimum values on
the set X (see Lemma 5.8). The result follows.
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5.4. Uniform Continuity for Functions of Several Real Variables

Definition

Let X be a subset of Rm. A function ϕ : X → Rn from X to Rn is
said to be uniformly continuous if, given any positive real
number ε, there exists some positive real number δ (whose value
does not depend on either y or z) such that |ϕ(y)− ϕ(z)| < ε for
all points y and z of X satisfying |y − z| < δ.
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Theorem 5.11

Let X be a subset of Rm that is both closed and bounded. Then
any continuous function ϕ : X → Rn is uniformly continuous.
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Proof
Let some positive real number ε be given. Suppose that there did
not exist any positive real number δ small enough to ensure that
|ϕ(y)− ϕ(z)| < ε for all points y and z of the set X satisfying
|y − z| < δ. Then, for each positive integer j , there would exist
points uj and vj in X such that |uj − vj | < 1/j and
|ϕ(uj)− ϕ(vj)| ≥ ε. But the sequence u1,u2,u3, . . . would be
bounded, since X is bounded, and thus would possess a
subsequence uk1 ,uk2 ,uk3 , . . . converging to some point p
(Theorem 3.5). Moreover p ∈ X , because X is closed in Rn. The
sequence vk1 , vk2 , vk3 , . . . would also converge to p, because

lim
j→+∞

|vkj − ukj | = 0.



5. Continuous Functions of Several Real Variables (continued)

But then the sequences

ϕ(uk1), ϕ(uk2), ϕ(uk3), . . .

and
ϕ(vk1), ϕ(vk2), ϕ(vk3), . . .

would both converge to ϕ(p), because ϕ is continuous (see
Proposition 5.2). Therefore

lim
j→+∞

∣∣ϕ(ukj )− ϕ(vkj )
∣∣ = 0.
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But, assuming that no positive real number δ could be found
satisfying the stated requirements, the points uj and vj had been
chosen for all positive integers j so that |uj − vj | < 1/j and
|ϕ(uj)− ϕ(vj)| ≥ ε. Consequently ϕ(ukj ) and ϕ(vkj ) could not
both converge to ϕ(p) as j increases to infinity. Thus the
assumption that no positive real number δ would have the required
property would lead to a contradiction. We conclude therefore
that, in order to avoid arriving at this contradiction, there must
exist some positive real number δ such that |ϕ(y)− ϕ(z)| < ε for
all points y and z of the set X satisfying |y − z| < δ, as
required.
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