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We state and prove a version of Taylor’s Theorem, applicable to functions
that are k times differentiable and whose derivatives of order up to and
including k£ are continuous functions, where the remainder term expressing
the difference between the sum of the first k& terms of the Taylor expansion
of the function and the function itself is expressed in the form of an integral.

Theorem A (Taylor’s Theorem with Integral Remainder) Let s and
h be real numbers, and let f be a function whose first k derivatives are con-
tinuous on an open interval containing s and s + h. Then
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Let m be an integer between 1 and k — 2. It follows from the rule for
Integration by Parts (Corollary 7.24) that

hm+1

/1(1 — )"t (s 1 th) dt
0

Tm+1(3, h) = m|

1



Thus

— _‘/0 (1—t)m% (fT™) (s +th)) dt
= (=07 (s 4 ],

g
_ﬁ/o S =)™ £ + oh) dr

m

(mh—_l)'/o (1 — )™ (s + th) dt

— (s, ) — %f(m)(s).

hm
_ M em)
N m!f (s) +

hm
Tm(S, h) - ﬁf(m)(s) + Tm+1(8’ h)

form=1,2,... k— 1. It follows by induction on k that
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as required.
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