MAU23203: Analysis in Several Real Variables Michaelmas Term 2021

Disquisition XII: An Example Concerning Second Order Partial Derivatives

David R. Wilkins

© Trinity College Dublin 2020–2021

Let $f: X \to \mathbb{R}$ be a real-valued function on X. defined over an open subset X of \mathbb{R}^n . We consider the second order partial derivatives of the function f defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right).$$

An important theorem establishes that if the first and second order partial derivatives

$$\frac{\partial f}{\partial x_i}$$
, $\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$

all exist and are continuous then

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

In this disquisition, a counterexample is presented exhibiting a function f with the property that

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \neq \frac{\partial^2 f}{\partial x_j \partial x_i}$$

at a particular point of the domain of the function at which the second order partial derivatives of the function fail to be continuous.

Example Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0); \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

For convenience of notation, let us write

$$f_x(x,y) = \frac{\partial f(x,y)}{\partial x},$$

$$f_y(x,y) = \frac{\partial f(x,y)}{\partial y},$$

$$f_{xy}(x,y) = \frac{\partial^2 f(x,y)}{\partial x \partial y},$$

$$f_{yx}(x,y) = \frac{\partial^2 f(x,y)}{\partial y \partial x}.$$

If $(x,y) \neq (0,0)$ then

$$f_x = \frac{\partial}{\partial x} \left(\frac{xy(x^2 - y^2)}{x^2 + y^2} \right)$$

$$= \frac{(3x^2y - y^3)(x^2 + y^2) - 2x^2y(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$= \frac{3x^4y + 3x^2y^3 - x^2y^3 - y^5 - 2x^4y + 2x^2y^3}{(x^2 + y^2)^2}$$

$$= \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}.$$

Thus

$$f_x = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}.$$

Similarly

$$f_y = \frac{-xy^4 - 4x^3y^2 + x^5}{(x^2 + y^2)^2}.$$

(This can be deduced from the formula for f_x on noticing that f(x, y) changes sign on interchanging the variables x and y.)

Differentiating again, when $(x, y) \neq (0, 0)$, we find that

$$f_{xy}(x,y) = \frac{\partial f_y}{\partial x} = \frac{\partial}{\partial x} \left(\frac{-xy^4 - 4x^3y^2 + x^5}{(x^2 + y^2)^2} \right)$$

$$= \frac{(-y^4 - 12x^2y^2 + 5x^4)(x^2 + y^2)}{(x^2 + y^2)^3} + \frac{-4x(-xy^4 - 4x^3y^2 + x^5)}{(x^2 + y^2)^3}$$

$$= \frac{-x^2y^4 - 12x^4y^2 + 5x^6 - y^6 - 12x^2y^4 + 5x^4y^2}{(x^2 + y^2)^3}$$

$$+ \frac{4x^2y^4 + 16x^4y^2 - 4x^6}{(x^2 + y^2)^3}$$
$$= \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}.$$

Now the expression just obtained for f_{xy} when $(x,y) \neq (0,0)$ changes sign when the variables x and y are interchanged. The same is true of the expression defining f(x,y). It follows that f_{yx} . We conclude therefore that if $(x,y) \neq (0,0)$ then

$$f_{xy} = f_{yx} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}.$$

Now if $(x, y) \neq (0, 0)$ and if $r = \sqrt{x^2 + y^2}$ then

$$|f_x(x,y)| = \left| \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \right|$$
$$= \frac{|x^4y + 4x^2y^3 - y^5|}{r^4} \le \frac{6r^5}{r^4} = 6r.$$

It follows that

$$\lim_{(x,y)\to(0,0)} f_x(x,y) = 0.$$

Similarly

$$\lim_{(x,y)\to(0,0)} f_y(x,y) = 0.$$

However

$$\lim_{(x,y)\to(0,0)} f_{xy}(x,y)$$

does not exist. Now we have shown that

$$f_{xy} = f_{yx} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}.$$

when $(x,y) \neq (0,0)$. Consequently

$$\lim_{x \to 0} f_{xy}(x,0) = \lim_{x \to 0} f_{yx}(x,0) = \lim_{x \to 0} \frac{x^6}{x^6} = 1,$$

$$\lim_{y \to 0} f_{xy}(0,y) = \lim_{y \to 0} f_{yx}(0,y) = \lim_{y \to 0} \frac{-y^6}{y^6} = -1.$$

Next we show that f_x , f_y , f_{xy} and f_{yx} all exist at (0,0), and thus exist everywhere on \mathbb{R}^2 . Now the factor xy occurs in the numerator of the expression

defining the value of f(x,y) when $(x,y) \neq (0,0)$. Consequently f(x,0) = 0 for all real numbers x and f(0,y) = 0 for all real numbers y, and therefore $f_x(0,0) = 0$ and $f_y(0,0) = 0$. Also we previously found that

$$f_x = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$
 and $f_y = \frac{-xy^4 - 4x^3y^2 + x^5}{(x^2 + y^2)^2}$.

when x and y are not both equal to zero. Substituting y = 0 in the formula for f_y , and x = 0 for the formula for f_x , we find that

$$f_y(x,0) = x,$$
 $f_x(0,y) = -y$

for all $x, y \in \mathbb{R}$. We conclude that

$$f_{xy}(0,0) = \frac{d(f_y(x,0))}{dx}\Big|_{x=0} = 1,$$

 $f_{yx}(0,0) = \frac{d(f_x(0,y))}{dy}\Big|_{y=0} = -1,$

Thus

$$\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$$

at (0,0).

Observe that in this example the functions f_{xy} and f_{yx} are continuous throughout $\mathbb{R}^2 \setminus \{(0,0)\}$ and are equal to one another there. Although the functions f_{xy} and f_{yx} are well-defined at (0,0), they are not continuous at (0,0) and $f_{xy}(0,0) \neq f_{yx}(0,0)$.