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2 Schwarz’s Inequality and some Related In-

equalities

2.1 Basic Properties of Vectors and Norms

We come now to a discussion of inequalities satisfied by vectors in the vector
space Rn of dimension n whose elements are ordered n-tuples of real numbers.
The most basic inequality we consider here is Schwarz’s Inequality. This
inequality is then applied in the proof of the Triangle Inequality. It is further
applied in the proof of some inequalities involving linear transformations
between finite-dimensional vector spaces.

The set Rn of ordered n-tuples of real numbers represents n-dimensional
Euclidean space (with respect to the standard Cartesian coordinate system).

Let x and y be elements of Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let c be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

cx = (cx1, cx2, . . . , cxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Proposition 2.1 (Schwarz’s Inequality) Let x and y be elements of Rn.
Then |x · y| ≤ |x||y|.

Proof We note that |tx + y|2 ≥ 0 for all real numbers t. But

|tx + y|2 = (tx + y).(tx + y) = t2|x|2 + 2tx · y + |y|2.

Therefore t2|x|2+2tx·y+|y|2 ≥ 0 for all real numbers t. Thus at2+bt+c ≥ 0
for all real numbers t, where a = |x|2, b = 2x · y and c = |y|2.

Now at2 + bt + c is a quadratic polynomial in the real variable t whose
values must be non-negative for all real values of t. A necessary and sufficient
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condition for this to be the case is that the inequality b2 ≤ 4ac be satisfied.
Thus, substituting in the values for a, b and c previously given, we find that

(x · y)2 ≤ |x|2 |y|2.

Schwarz’s inequality now follows on taking the positive square roots of both
sides.

Proposition 2.2 (Triangle Inequality) Let x and y be elements of Rn. Then
|x + y| ≤ |x|+ |y|.

Proof Using Schwarz’s Inequality, we see that

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The result follows directly.

It follows immediately from the Triangle Inequality (Proposition 2.2) that

|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality expresses the
geometric fact that the length of any one side of a triangle in a Euclidean
space is less than or equal to the sum of the lengths of the other two sides of
that triangle.

2.2 The Hilbert-Schmidt Norm of a Linear Transfor-
mation

Recall that the length (or norm) of an element x ∈ Rn is defined such that

|x|2 = x2
1 + x2

2 + · · ·+ x2
n.

Definition Let T :Rm → Rn be a linear transformation from Rm to Rn,
and let (Ti,j) be the n × m matrix representing this linear transformation
with respect to the standard bases of Rm and Rn. The Hilbert-Schmidt norm
‖T‖HS of the linear transformation is then defined so that

‖T‖HS =

√√√√ n∑
i=1

m∑
j=1

T 2
i,j.
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Note that the Hilbert-Schmidt norm is just the Euclidean norm on the real
vector space of dimension mn whose elements are n×m matrices representing
linear transformations from Rm to Rn with respect to the standard bases of
these vector spaces. Therefore it has the standard properties of the Euclidean
norm. In particular it follows from the Triangle Inequality (Lemma 2.2) that

‖T + U‖HS ≤ ‖T‖HS + ‖U‖HS and ‖cT‖HS = |c| ‖T‖HS

for all linear transformations T and U from Rm to Rn and for all real num-
bers c.

Proposition 2.3 Let T :Rm → Rn be a linear transformation from Rm to
Rn. Then

|Tx| ≤ ‖T‖HS|x|

for all x ∈ Rm, where ‖T‖HS is the Hilbert-Schmidt norm of the linear trans-
formation T .

Proof Let v = Tx, and let v = (v1, v2, . . . , vn). Then

vi = Ti,1x1 + Ti,2x2 + · · ·+ Ti,mxm

for all integers i between 1 and n. It follows from Schwarz’s Inequality
(Lemma 2.1) that

v2i ≤

(
m∑
j=1

T 2
i,j

)(
m∑
j=1

x2
j

)
=

(
m∑
j=1

T 2
i,j

)
|x|2.

Hence

|v|2 =
n∑

i=1

v2i ≤

(
n∑

i=1

m∑
j=1

T 2
i,j

)
|x|2 = ‖T‖2HS|x|2.

Thus |Tx| ≤ ‖T‖HS|x|, as required.

The following corollary follows immediately from Proposition 2.3.

Corollary 2.4 Let T :Rm → Rn be a linear transformation from Rm to Rn.
Then there exists a positive real number K, dependent on the choice of linear
transformation T but independent of x, with the property that

|Tx| ≤ K|x|

for all x ∈ Rm.
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In certain proofs in real analysis involving linear transformations, it is
sufficient for the purposes of the proof that there should exist some positive
constant K for which the inequality in the statement of Corollary 2.4 is satis-
fied. Nevertheless, if a more precise estimate of the value of such a constant K
were required, then Proposition 2.3 would provide more information.

Lemma 2.5 Let T :Rm → Rn be a linear transformation from Rm to Rn

and let S:Rn → Rp be a linear transformation from Rn to Rp. Then the
Hilbert-Schmidt norm of the composition of the linear transformations T and
S satisfies the inequality ‖ST‖HS ≤ ‖S‖HS ‖T‖HS.

Proof The composition ST of the linear transformations is represented by
the product of the corresponding matrices. Thus the component (ST )k,j in
the kth row and the jth column of the p×m matrix representing the linear
transformation ST satisfies

(ST )k,j =
n∑

i=1

Sk,iTi,j.

where Sk,i and Ti,j denote the components in the relevant rows and columns
of the matrices representing the linear transformations S and T respectively.
It follows from Schwarz’s Inequality (Lemma 2.1) that

(ST )2k,j ≤

(
n∑

i=1

S2
k,i

)(
n∑

i=1

T 2
i,j

)
.

Summing over k, we find that

p∑
k=1

(ST )2k,j ≤

(
p∑

k=1

n∑
i=1

S2
k,i

)(
n∑

i=1

T 2
i,j

)
= ‖S‖2HS

(
n∑

i=1

T 2
i,j

)
.

Then summing over j, we find that

‖ST‖2HS =

p∑
k=1

m∑
j=1

(ST )2k,j ≤ ‖S‖2HS

(
n∑

i=1

m∑
j=1

T 2
i,j

)
≤ ‖S‖2HS‖T‖2HS.

On taking square roots, we find that ‖ST‖HS ≤ ‖S‖HS ‖T‖HS, as re-
quired.

8


