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4 Open and Closed Sets in Euclidean Spaces

4.1 Open Sets in Euclidean Spaces

Definition Given a point p of Rn and a positive real number η, the open
ball B(p, η) in Rn of radius η centred on the point p consists of all points of
Rn whose Euclidean distance from the point p is less than η.

We see therefore that

B(p, η) = {x ∈ Rn : |x− p| < η}

for all points p of Rn and positive real numbers η.
The open ball B(p, η) of radius η centred on a point p of Rn is bounded

by the sphere of radius η centred on p. This sphere is the set

{x ∈ Rn : |x− p| = η}.

Definition A subset V of Rn is said to be an open set (in Rn) if, given any
point of V , there exists an open ball of positive radius, centred on that point,
which is wholly contained within the set V .

By convention the empty set ∅ is also considered to be an open set (on
the grounds that there does not exist any point of the empty set that is not
the centre of some open ball contained in the empty set).

Thus a subset V of Rn is an open set in Rn if and only if, given any
point p of V , there exists some strictly positive real number δ such that
B(p, δ) ⊂ V , where

B(p, δ) = {x ∈ Rn : |x− p| < δ}.

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
ThenH is an open set in R3. Indeed let p be a point ofH. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}

and
{(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.
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Example Let

V = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 9}.

Then the subset V of R3 is the open ball of radius 3 in R3 centred on the
origin. This open ball is an open set. Indeed let q be a point of V . Then
|q| < 3. Let δ = 3 − |q|. Then δ > 0. Moreover if x is a point of R3 that
satisfies |x− q| < δ then

|x| = |q + (x− q)| ≤ |q|+ |x− q| < |q|+ δ = 3,

and therefore x ∈ V . This proves that V is an open set.

More generally, an open ball of any positive radius centred on any point
of a Euclidean space Rn of any dimension n is an open set in that Euclidean
space. A more general result is proved below (see Lemma 4.1).

4.2 Open Sets in Subsets of Euclidean Spaces

Definition Let X be a subset of n-dimensional Euclidean space Rn. Given
a point p of X and a positive real number η, the open ball BX(p, η) in X
of radius η centred on the point p consists of all points of the set X whose
Euclidean distance from the point p is less than η.

We see therefore that

BX(p, η) = {x ∈ X : |x− p| < η}

for all points p of X and positive real numbers η.

Definition Let X be a subset of n-dimensional Euclidean space Rn. A
subset V of X is said to be open in X if, given any point of V , there exists
an open ball in X of positive radius, centred on that point, which is wholly
contained within the set V .

By convention the empty set ∅ is also considered to be open in the given
set X (on the grounds that there does not exist any point of the empty set
that is not the centre of some open ball contained in the empty set).

Thus given any subset X of Rn, and given any subset V of X, the set V
is said to be open in X if and only if, given any point p of V , there exists
some strictly positive real number δ such that BX(p, δ) ⊂ V , where

BX(p, δ) = {x ∈ X : |x− p| < δ}.
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Example Let V be an open set in Rn. Then for any subset X of Rn, the
intersection V ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.

Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any positive real number δ , the open ball (in R3) of radius δ
centred on (0, 0, 1) contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus
the open ball of radius δ centred on the point (0, 0, 1) is not a subset of N .

Lemma 4.1 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number η, the open ball BX(p, η) in X of radius η centred
on p is open in X.

Proof Let q be an element ofBX(p, η). We must show that there exists some
positive real number δ such that BX(q, δ) ⊂ BX(p, η). Let δ = η − |q− p|.
Then δ > 0, since |q− p| < η. Moreover if x ∈ BX(q, δ) then

|x− p| ≤ |x− q|+ |q− p| < δ + |q− p| = η,

by the Triangle Inequality, and hence x ∈ BX(p, η). Thus BX(q, δ) ⊂
BX(p, η). This shows that BX(p, η) is an open set, as required.

Lemma 4.2 Let X be a subset of Rn, and let p be a point of X. Then, for
any non-negative real number η, the set {x ∈ X : |x−p| > η} is an open set
in X.

Proof Let q be a point of X satisfying |q− p| > η, and let x be any point
of X satisfying |x− q| < δ, where δ = |q− p| − η. Then

|q− p| ≤ |q− x|+ |x− p|,

by the Triangle Inequality. It follows that

|x− p| ≥ |q− p| − |x− q| > |q− p| − δ = η.

Thus BX(q, δ) is contained in the given set. The result follows.
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4.3 Convergence of Sequences and Open Sets

Lemma 4.3 An infinite sequence x1,x2,x3, . . . of points in Rn converges to
a point p if and only if, given any open set V which contains p, there exists
some positive integer N such that xj ∈ V for all positive integers j satisfying
j ≥ N .

Proof Suppose that the infinite sequence x1,x2,x3, . . . of points in Rn has
the property that, given any open set V which contains p, there exists some
positive integer N such that xj ∈ V whenever j ≥ N . Let some positive real
number ε be given. The open ball B(p, ε) of radius ε centred on the point p
is an open set by Lemma 4.1. Therefore there exists some positive integer N
such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj −p| < ε whenever j ≥ N .
This shows that the infinite sequence converges to the point p.

Conversely, suppose that the infinite sequence x1,x2,x3, . . . of points of
Rn converges to the point p. Let V be an open set to which that point p
belongs. Then there exists some positive real number ε such that the open
ball B(p, ε) of radius ε centred on p is a subset of V . All points x of Rn

that satisfy |x−p| < ε then belong to the open set V . But there exists some
positive integer N with the property that |xj − p| < ε whenever j ≥ N ,
since the sequence converges to p. Therefore xj ∈ V whenever j ≥ N , as
required.

The Topology of Euclidean Spaces

Proposition 4.4 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let C be any collection of open sets in X, and let W denote the union of
all the open sets belonging to C. We must show that W is itself open in X.
Let p ∈ W . Then p ∈ V for some set V belonging to the collection C. It
follows that there exists some positive real number δ such that BX(p, δ) ⊂ V .
But V ⊂ W , and thus BX(p, δ) ⊂ W . This shows that W is open in X.
This proves (ii).
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Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let p ∈ V . Now p ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(p, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(p, δ) ⊂ BX(p, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(p, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 centred on
the origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 centred on the origin
with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

centred
on the points (n, 0, 0) for all integers n.

Example For each positive integer k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k centred on the origin, and is
therefore an open set in R3. However the intersection of the sets Vk for all
positive integers k is the set {(0, 0, 0)}, and thus the intersection of the sets
Vk for all positive integers k is not itself an open set in R3. This example
demonstrates that infinite intersections of open sets need not be open.

Proposition 4.5 Let X be a subset of Rn, and let W be a subset of X. Then
W is open in X if and only if there exists some open set V in Rn for which
W = V ∩X.

Proof First suppose that W = V ∩ X for some open set V in Rn. Let
p ∈ W . Then the definition of open sets in Rn ensures that there exists some
positive real number δ such that

{x ∈ Rn : |x− p| < δ} ⊂ V.
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Then
{x ∈ X : |x− p| < δ} ⊂ W.

This shows that W is open in X.
Conversely suppose that the subset W of X is open in X. For each

point p of W there exists some positive real number δp such that

{x ∈ X : |x− p| < δp} ⊂ W.

For each p ∈ W , let B(p, δp) denote the open ball in Rn of radius δp centred
on the point p, so that

B(p, δp) = {x ∈ Rn : |x− p| < δp}

for all p ∈ W , and let V be the union of all the open balls B(p, δp) as p
ranges over all the points of W . Then V is an open set in Rn.

Indeed every open ball in Rn is an open set (Lemma 4.1), and any union
of open sets in Rn is itself an open set (Proposition 4.4). The set V is a union
of open balls. It is therefore a union of open sets, and so must itself be an
open set.

Now B(p, δp) ∩ X ⊂ W . for all p ∈ W . Also every point of V belongs
to B(p, δp) for at least one point p of W . It follows that V ∩X ⊂ W . But
p ∈ B(p, δp) and B(p, δp) ⊂ V for all p ∈ W , and therefore W ⊂ V , and
thus W ⊂ V ∩X. It follows that W = V ∩X, as required.

4.4 Closed Sets in Euclidean Spaces

Definition Let X be a subset of Rn. A subset F of X is said to be closed
in X if and only if its complement X \ F in X is open in X.

(Recall that X \ F = {x ∈ X : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.

Example Let X be a subset of Rn, let p be a point of X, and let η be
a non-negative real number. Then the sets {x ∈ X : |x − p| ≤ η} and
{x ∈ X : |x− p| ≥ η} are closed in X. In particular, the set {p} consisting
of the single point p is a closed set in X. (These results follow immediately
using Lemma 4.1 and Lemma 4.2 and the definition of closed sets.)

21



Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the complements
of those sets).

Indeed let A be some collection of subsets of a set X, and let x be a point
of X. Then

x ∈ X \
⋃
S∈A

S ⇐⇒ x 6∈
⋃
S∈A

S

⇐⇒ for all S ∈ A, x 6∈ S
⇐⇒ for all S ∈ A, x ∈ X \ S
⇐⇒ x ∈

⋂
S∈A

(X \ S),

and therefore
X \

⋃
S∈A

S =
⋂
S∈A

(X \ S).

Again let x be a point of X. Then

x ∈ X \
⋂
S∈A

S ⇐⇒ x 6∈
⋂
S∈A

S

⇐⇒ there exists S ∈ A for which x 6∈ S
⇐⇒ there exists S ∈ A for which x ∈ X \ S
⇐⇒ x ∈

⋃
S∈A

(X \ S),

and therefore
X \

⋂
S∈A

S =
⋃
S∈A

(X \ S).

The following result therefore follows directly from Proposition 4.4.

Proposition 4.6 Let X be a subset of Rn. The collection of closed sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

22



(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Proof The empty set ∅ is the complement in X of the whole set X. The
set X is open in itself. It follows that the empty set ∅ is closed in X.

The whole set X is the complement in X of the empty set. The empty
set is open in X. It follows that the whole set X is closed in itself.

Next let C be a collection of subsets of X that are closed in X, and let G
be the intersection of all the sets that are members of the collection C. Now
the complement in X of the set G, being the complement of the intersection
of all the members of the collection C is the union of the complements of the
members of this collection C. Now the complement of each member of the
collection C is open in X. Consequently the union of the complements of the
members of the collection must also be open in X. Thus the complement of
the set G is open in X, and therefore the set G itself is closed in X.

Now suppose that the collection C is a finite collection of subsets of X
that are closed in X, and let H be the union of all the sets that are members
of the finite collection C. Now the complement in X of the set H, being the
complement of the union of all the members of the finite collection C is the
intersection of the complements of the members of this finite collection C.
Now the complement of each member of the finite collection C is open in
X. Consequently the intersection of the complements of the members of the
finite collection must also be open in X. Thus the complement of the set H
is open in X, and therefore the set H itself is closed in X. This completes
the proof.

Lemma 4.7 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be an infinite sequence of points of F which
converges to some point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X \F . It would then follow from Lemma 4.3
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.
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