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6 Limits of Functions of Several Real Vari-
ables

6.1 Limit Points of Subsets of Euclidean Spaces

Definition Let X be a subset of n-dimensional Euclidean space R™, and
let p € R™. The point p is said to be a limit point of the set X if, given
any positive real number §, there exists some point x of X for which 0 <
|x — p| < 6.

6.2 Basic Properties of Limits of Functions of Several
Real Variables

Definition Let X be a subset of m-dimensional Euclidean space R™, let
©: X — R" be a function mapping the set X into n-dimensional Euclidean
space R", let p be a limit point of the set X, and let v be a vector in R".
The point v is said to be the limit of p(x), as x tends to p in X, if and
only if, given any strictly positive real number ¢, there exists some strictly
positive real number § such that |¢(x) — v| < & whenever x € X satisfies
0<|x—p|<éd.

Let X be a subset of m-dimensional Euclidean space R™, let p: X — R"
be a function mapping the set X into n-dimensional Euclidean space R", let
p be a limit point of the set X, and let v be a vector in R”. If v is the
limit of p(x) as x tends to p in X then we can denote this fact by writing
li =v.

lim o(x) = v
Proposition 6.1 Let X be a subset of R™, let p be a limit point of X, and
let v be a vector in R™. A function p: X — R™ has the property that

lim o(x) = v

if and only if
)1(1_13% filx) = v;
fori=1,2,...,n, where fi, fo,..., fn are the components of the function
and v = (v, Vg, ..., Uy).
Proof Suppose that lim p(x) = v. Let i be an integer between 1 and n, and
X—p

let some positive real number £ be given. Then there exists some positive
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real number 0 such that |p(x) — v| < € whenever 0 < |x — p| < J. It then
follows from the definition of the Euclidean norm that

[fi(x) —vil < fe(x) —v] <e

whenever 0 < |x — p| < §. Thus if lim ¢(x) = v then lim f;(x) = v; for

X—p X—p
1=1,2,...,n.
Conversely suppose that

lim f;(x) = v;

X—Pp
for 2 = 1,2,...,n. Let some positive real number € be given. Then there
exist positive real numbers 4y, ds, ..., 0, such that |fi(x) — v;| < ¢/y/n for

x € X satisfying 0 < |x — p| < §;. Let § be the minimum of dy,ds,...,6,. If
x € X satisfies 0 < |x — p| < 0 then

n

lo(x) = v[* =) (filx) —v)’ < &,

i=1
and hence |p(x) — v| < e. Thus

lim o(x) = v,

as required. |

Proposition 6.2 Let X be a subset of m-dimensional Euclidean space R™,
let o: X — R™ and ¢: X — R"™ be functions mapping X into n-dimensional
Fuclidean space R™, let p be a limit point of X, and let v and w be points of
R™. Suppose that

lim p(x) =v
x—p
and
)lci—r>111) P(x) =w.
Then

lim (p(x) + ¢¥(x)) = v+ w.

X—=p

Proof Let some strictly positive real number € be given. Then there exist
strictly positive real numbers d; and d, such that

p(x) = v| < 3¢
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whenever x € X satisfies 0 < |x — p| < §; and
[P(x) —w| < 3¢

whenever x € X satisfies 0 < |[x —p| < d2. Let § be the minimum of §; and
d2. Then 6 > 0, and if x € X satisfies 0 < |x — p| < J then

p(x) = v| < 3¢

and
[(x) — w| < 3¢,

and therefore

lp(x) + (%) = (v+w)| < |o(x)—v|+[(x) — W]
< fetie=e

It follows that
lim (ip(x) + $(x)) = v + W,

X—Pp

as required. |}

Lemma 6.3 Let X and Y be subsets of R™ and R™ respectively, let p be a
limit point of X, let v be a point of Y, let o: X — Y be a function mapping
the set X into the set Y, and let 1:Y — RF be a function mapping the set Y
into R*. Suppose that

lim p(x) =v

X—p

and that the function v is continuous at v. Then

lim h(p(x)) = ().

X—p
Proof Let some positive real number ¢ be given. Then there exists some
positive real number 1 such that |[)(y) — ¢(v)| < € for all y € Y satisfying
ly — v| < n, because the function ¢ is continuous at v. But then there exists
some positive real number ¢ such that |¢(x) —v| < n for all x € X satisfying
0 < |x—p| < 4. It follows that [1)(p(x)) — (V)| < e for all x € X satisfying
0 < |x — p| < ¢, and thus

lim ¢ (p(x)) = P(v),

X—p

as required. |}
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Proposition 6.4 Let X be a subset of R™, let f: X — R and g: X — R

be real-valued functions on X, and let p be a limit point of the set X. Sup-

pose that lim f(x) and lim g(x) both exist. Then so do lim(f(x) + g(x)),
X—p X—p X—p

)1(1_I)Tll)(f(X> —g(x)) and }l{i_r)r;(f(x)g(x)), and moreover

lim /() + 9(x)) = lim £() + lim g(x),
lim (£(x) = g(x)) = lim f(x) — lim g(x),
lim (f(x)g(x)) = T f(x) x lim g(x)

If moreover g(x) # 0 for all x € X and lim g(x) # 0 then

X—p

£(x) lim f(x)

X—Pp

lim = — .
P g(x)  lim g(x)

Proof Let ¢ = lim f(x) and r = lim g(x), and let ¢: X — R? be defined

X—p X—Pp
such that

for all x € X. Then
lim ¢ (x) = (q,7)

X—p

(see Proposition 6.1).

Let s: R? — R and m:R? — R be the functions from R? to R defined such
that s(u,v) = u+ v and m(u,v) = wv for all u,v € R. Then the functions s
and m are continuous (see Lemma 5.4). Also f+¢g = soy and f-g=mo1.
It follows from this that

lim (f(x) +g(x)) = lim s(f(x),g(x)) = lim s(¢(x))

X—Pp X—p X—p
= s <lim w(x)) =s(q,r)=q+r,
X—p

(see Lemma 6.3), and
lim (—g(x)) = —r.

X—=p

It follows that
lim (f(x) — g(x)) =g — 1

X—p
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Similarly, when taking limits of products of functions,

lim (f(x)g(x)) = limm(f(x),g(x)) = lim m(t(x))

X—p X—p X—Pp

= (lim v ) = mlar) =

X—=p

Now suppose that g(x) # 0 for all x € X and that lim g(x) # 0. Rep-
X—p

resenting the function sending x € X to 1/¢g(x) as the composition of the
function g and the reciprocal function e:R\ {0} — R, where e(t) = 1/t for
all non-zero real numbers ¢, we find, as in the first proof, that the function
sending each point x of X to

i (5w) =

. f(x) ¢
I )~

It then follows that

as required. |

6.3 Relationships between Limits and Continuity

Proposition 6.5 Let X be a subset of R™, let f: X — R"™ be a function
mapping the set X into R™, and let p be a point of the set X that is also
a limit point of X. Then the function f is continuous at the point p if and

only if lim f(x) = f(p).
X—p
Proof The result follows directly on comparing the relevant definitions. |}

Let X be a subset of m-dimensional Euclidean space R, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number 0y such that |x —p| > do
for all x € X satisfying x # p. The point p is then said to be an isolated
point of X.

Let X be a subset of m-dimensional Euclidean space R™. The definition
of continuity then ensures that any function ¢: X — R™ mapping the set X
into n-dimensional Euclidean space R™ is continuous at any isolated point of
its domain X.
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