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6 Limits of Functions of Several Real Vari-

ables

6.1 Limit Points of Subsets of Euclidean Spaces

Definition Let X be a subset of n-dimensional Euclidean space Rn, and
let p ∈ Rn. The point p is said to be a limit point of the set X if, given
any positive real number δ, there exists some point x of X for which 0 <
|x− p| < δ.

6.2 Basic Properties of Limits of Functions of Several
Real Variables

Definition Let X be a subset of m-dimensional Euclidean space Rm, let
ϕ:X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let v be a vector in Rn.
The point v is said to be the limit of ϕ(x), as x tends to p in X, if and
only if, given any strictly positive real number ε, there exists some strictly
positive real number δ such that |ϕ(x) − v| < ε whenever x ∈ X satisfies
0 < |x− p| < δ.

Let X be a subset of m-dimensional Euclidean space Rm, let ϕ:X → Rn

be a function mapping the set X into n-dimensional Euclidean space Rn, let
p be a limit point of the set X, and let v be a vector in Rn. If v is the
limit of ϕ(x) as x tends to p in X then we can denote this fact by writing
lim
x→p

ϕ(x) = v.

Proposition 6.1 Let X be a subset of Rm, let p be a limit point of X, and
let v be a vector in Rn. A function ϕ:X → Rn has the property that

lim
x→p

ϕ(x) = v

if and only if
lim
x→p

fi(x) = vi

for i = 1, 2, . . . , n, where f1, f2, . . . , fn are the components of the function ϕ
and v = (v1, v2, . . . , vn).

Proof Suppose that lim
x→p

ϕ(x) = v. Let i be an integer between 1 and n, and

let some positive real number ε be given. Then there exists some positive
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real number δ such that |ϕ(x) − v| < ε whenever 0 < |x − p| < δ. It then
follows from the definition of the Euclidean norm that

|fi(x)− vi| ≤ |ϕ(x)− v| < ε

whenever 0 < |x − p| < δ. Thus if lim
x→p

ϕ(x) = v then lim
x→p

fi(x) = vi for

i = 1, 2, . . . , n.
Conversely suppose that

lim
x→p

fi(x) = vi

for i = 1, 2, . . . , n. Let some positive real number ε be given. Then there
exist positive real numbers δ1, δ2, . . . , δn such that |fi(x) − vi| < ε/

√
n for

x ∈ X satisfying 0 < |x− p| < δi. Let δ be the minimum of δ1, δ2, . . . , δn. If
x ∈ X satisfies 0 < |x− p| < δ then

|ϕ(x)− v|2 =
n∑

i=1

(fi(x)− vi)2 < ε2,

and hence |ϕ(x)− v| < ε. Thus

lim
x→p

ϕ(x) = v,

as required.

Proposition 6.2 Let X be a subset of m-dimensional Euclidean space Rm,
let ϕ:X → Rn and ψ:X → Rn be functions mapping X into n-dimensional
Euclidean space Rn, let p be a limit point of X, and let v and w be points of
Rn. Suppose that

lim
x→p

ϕ(x) = v

and
lim
x→p

ψ(x) = w.

Then
lim
x→p

(ϕ(x) + ψ(x)) = v + w.

Proof Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that

|ϕ(x)− v| < 1
2
ε
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whenever x ∈ X satisfies 0 < |x− p| < δ1 and

|ψ(x)−w| < 1
2
ε

whenever x ∈ X satisfies 0 < |x− p| < δ2. Let δ be the minimum of δ1 and
δ2. Then δ > 0, and if x ∈ X satisfies 0 < |x− p| < δ then

|ϕ(x)− v| < 1
2
ε

and
|ψ(x)−w| < 1

2
ε,

and therefore

|ϕ(x) + ψ(x)− (v + w)| ≤ |ϕ(x)− v|+ |ψ(x)−w|
< 1

2
ε+ 1

2
ε = ε.

It follows that
lim
x→p

(ϕ(x) + ψ(x)) = v + w,

as required.

Lemma 6.3 Let X and Y be subsets of Rm and Rn respectively, let p be a
limit point of X, let v be a point of Y , let ϕ:X → Y be a function mapping
the set X into the set Y , and let ψ:Y → Rk be a function mapping the set Y
into Rk. Suppose that

lim
x→p

ϕ(x) = v

and that the function ψ is continuous at v. Then

lim
x→p

ψ(ϕ(x)) = ψ(v).

Proof Let some positive real number ε be given. Then there exists some
positive real number η such that |ψ(y) − ψ(v)| < ε for all y ∈ Y satisfying
|y−v| < η, because the function g is continuous at v. But then there exists
some positive real number δ such that |ϕ(x)−v| < η for all x ∈ X satisfying
0 < |x−p| < δ. It follows that |ψ(ϕ(x))−ψ(v)| < ε for all x ∈ X satisfying
0 < |x− p| < δ, and thus

lim
x→p

ψ(ϕ(x)) = ψ(v),

as required.
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Proposition 6.4 Let X be a subset of Rm, let f :X → R and g:X → R
be real-valued functions on X, and let p be a limit point of the set X. Sup-
pose that lim

x→p
f(x) and lim

x→p
g(x) both exist. Then so do lim

x→p
(f(x) + g(x)),

lim
x→p

(f(x)− g(x)) and lim
x→p

(f(x)g(x)), and moreover

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) = lim
x→p

f(x)× lim
x→p

g(x),

If moreover g(x) 6= 0 for all x ∈ X and lim
x→p

g(x) 6= 0 then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

Proof Let q = lim
x→p

f(x) and r = lim
x→p

g(x), and let ψ:X → R2 be defined

such that
ψ(x) = (f(x), g(x))

for all x ∈ X. Then
lim
x→p

ψ(x) = (q, r)

(see Proposition 6.1).
Let s:R2 → R and m:R2 → R be the functions from R2 to R defined such

that s(u, v) = u+ v and m(u, v) = uv for all u, v ∈ R. Then the functions s
and m are continuous (see Lemma 5.4). Also f + g = s◦ψ and f · g = m◦ψ.
It follows from this that

lim
x→p

(f(x) + g(x)) = lim
x→p

s(f(x), g(x)) = lim
x→p

s(ψ(x))

= s

(
lim
x→p

ψ(x)

)
= s(q, r) = q + r,

(see Lemma 6.3), and
lim
x→p

(−g(x)) = −r.

It follows that
lim
x→p

(f(x)− g(x)) = q − r.
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Similarly, when taking limits of products of functions,

lim
x→p

(f(x)g(x)) = lim
x→p

m(f(x), g(x)) = lim
x→p

m(ψ(x))

= m

(
lim
x→p

ψ(x)

)
= m(q, r) = qr

Now suppose that g(x) 6= 0 for all x ∈ X and that lim
x→p

g(x) 6= 0. Rep-

resenting the function sending x ∈ X to 1/g(x) as the composition of the
function g and the reciprocal function e:R \ {0} → R, where e(t) = 1/t for
all non-zero real numbers t, we find, as in the first proof, that the function
sending each point x of X to

lim
x→p

(
1

g(x)

)
=

1

r
.

It then follows that

lim
x→p

f(x)

g(x)
=
q

r
,

as required.

6.3 Relationships between Limits and Continuity

Proposition 6.5 Let X be a subset of Rm, let f :X → Rn be a function
mapping the set X into Rn, and let p be a point of the set X that is also
a limit point of X. Then the function f is continuous at the point p if and
only if lim

x→p
f(x) = f(p).

Proof The result follows directly on comparing the relevant definitions.

Let X be a subset of m-dimensional Euclidean space Rm, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number δ0 such that |x−p| ≥ δ0
for all x ∈ X satisfying x 6= p. The point p is then said to be an isolated
point of X.

Let X be a subset of m-dimensional Euclidean space Rm. The definition
of continuity then ensures that any function ϕ:X → Rn mapping the set X
into n-dimensional Euclidean space Rn is continuous at any isolated point of
its domain X.
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