MAU23203—Analysis in Several Variables
School of Mathematics, Trinity College
Michaelmas Term 2019
Section 3: Open and Closed Sets in
Euclidean Spaces

David R. Wilkins

3. Open and Closed Sets in Euclidean Spaces

3.1. Open Sets in Euclidean Spaces

Definition

Given a point \mathbf{p} of \mathbb{R}^n and a non-negative real number r, the *open ball* $B(\mathbf{p}, r)$ in \mathbb{R}^n of *radius* r about \mathbf{p} is defined to be the subset of \mathbb{R}^n defined so that

$$B(\mathbf{p}, r) = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| < r \}.$$

(Thus $B(\mathbf{p}, r)$ is the set consisting of all points of \mathbb{R}^n that lie within a sphere of radius r centred on the point \mathbf{p} .)

The open ball $B(\mathbf{p}, r)$ of radius r about a point \mathbf{p} of \mathbb{R}^n is bounded by the sphere of radius r about \mathbf{p} . This sphere is the set

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| = r\}.$$

Definition

A subset V of \mathbb{R}^n is said to be an *open set* (in \mathbb{R}^n) if, given any point \mathbf{p} of V, there exists some strictly positive real number δ such that $B(\mathbf{p}, \delta) \subset V$, where $B(\mathbf{p}, \delta)$ is the open ball in \mathbb{R}^n of radius δ about the point \mathbf{p} , defined so that

$$B(\mathbf{p}, \delta) = {\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| < \delta}.$$

Example

Let $H=\{(x,y,z)\in\mathbb{R}^3:z>c\}$, where c is some real number. Then H is an open set in \mathbb{R}^3 . Indeed let \mathbf{p} be a point of H. Then $\mathbf{p}=(u,v,w)$, where w>c. Let $\delta=w-c$. If the distance from a point (x,y,z) to the point (u,v,w) is less than δ then $|z-w|<\delta$, and hence z>c, so that $(x,y,z)\in H$. Thus $B(\mathbf{p},\delta)\subset H$, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1 and n, and given any real number c_i , the sets

$$\{(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n:x_i>c_i\}$$

and

$$\{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_i < c_i\}$$

are open sets in \mathbb{R}^n .

Example

Let

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 9\}.$$

Then the subset V of \mathbb{R}^3 is the open ball of radius 3 in \mathbb{R}^3 about the origin. This open ball is an open set. Indeed let \mathbf{x} be a point of V. Then $|\mathbf{x}| < 3$. Let $\delta = 3 - |\mathbf{x}|$. Then $\delta > 0$. Moreover if \mathbf{y} is a point of \mathbb{R}^3 that satisfies $|\mathbf{y} - \mathbf{x}| < \delta$ then

$$|y| = |x + (y - x)| \le |x| + |y - x| < |x| + \delta = 3,$$

and therefore $\mathbf{y} \in V$. This proves that V is an open set.

More generally, an open ball of any positive radius about any point of a Euclidean space \mathbb{R}^n of any dimension n is an open set in that Euclidean space. A more general result is proved below (see Lemma 3.1).

3.2. Open Sets in Subsets of Euclidean Spaces

Definition

Let X be a subset of \mathbb{R}^n . Given a point \mathbf{p} of X and a non-negative real number r, the open ball $B_X(\mathbf{p},r)$ in X of radius r about \mathbf{p} is defined to be the subset of X defined so that

$$B_X(\mathbf{p}, r) = {\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < r}.$$

(Thus $B_X(\mathbf{p}, r)$ is the set consisting of all points of X that lie within a sphere of radius r centred on the point \mathbf{p} .)

Definition

Let X be a subset of \mathbb{R}^n . A subset V of X is said to be *open* in X if, given any point \mathbf{p} of V, there exists some strictly positive real number δ such that $B_X(\mathbf{p},\delta) \subset V$, where $B_X(\mathbf{p},\delta)$ is the open ball in X of radius δ about on the point \mathbf{p} . The empty set \emptyset is also defined to be an open set in X.

Example

Let U be an open set in \mathbb{R}^n . Then for any subset X of \mathbb{R}^n , the intersection $U\cap X$ is open in X. (This follows directly from the definitions.) Thus for example, let S^2 be the unit sphere in \mathbb{R}^3 , given by

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

and let N be the subset of S^2 given by

$$N = \{(x, y, z) \in \mathbb{R}^n : x^2 + y^2 + z^2 = 1 \text{ and } z > 0\}.$$

Then N is open in S^2 , since $N = H \cap S^2$, where H is the open set in \mathbb{R}^3 given by

$$H = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}.$$

Note that N is not itself an open set in \mathbb{R}^3 . Indeed the point (0,0,1) belongs to N, but, for any $\delta>0$, the open ball (in \mathbb{R}^3) of radius δ about (0,0,1) contains points (x,y,z) for which $x^2+y^2+z^2\neq 1$. Thus the open ball of radius δ about the point (0,0,1) is not a subset of N.

Lemma 3.1

Let X be a subset of \mathbb{R}^n , and let \mathbf{p} be a point of X. Then, for any positive real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about \mathbf{p} is open in X.

Proof

Let \mathbf{x} be an element of $B_X(\mathbf{p}, r)$. We must show that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. Let $\delta = r - |\mathbf{x} - \mathbf{p}|$. Then $\delta > 0$, since $|\mathbf{x} - \mathbf{p}| < r$. Moreover if $\mathbf{y} \in B_X(\mathbf{x}, \delta)$ then

$$|\mathbf{y} - \mathbf{p}| \le |\mathbf{y} - \mathbf{x}| + |\mathbf{x} - \mathbf{p}| < \delta + |\mathbf{x} - \mathbf{p}| = r,$$

by the Triangle Inequality, and hence $\mathbf{y} \in B_X(\mathbf{p}, r)$. Thus $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. This shows that $B_X(\mathbf{p}, r)$ is an open set, as required.

Lemma 3.2

Let X be a subset of \mathbb{R}^n , and let \mathbf{p} be a point of X. Then, for any non-negative real number r, the set $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| > r\}$ is an open set in X.

Proof

Let **x** be a point of *X* satisfying $|\mathbf{x} - \mathbf{p}| > r$, and let **y** be any point of *X* satisfying $|\mathbf{y} - \mathbf{x}| < \delta$, where $\delta = |\mathbf{x} - \mathbf{p}| - r$. Then

$$|\mathbf{x} - \mathbf{p}| \le |\mathbf{x} - \mathbf{y}| + |\mathbf{y} - \mathbf{p}|,$$

by the Triangle Inequality, and therefore

$$|\mathbf{y} - \mathbf{p}| \ge |\mathbf{x} - \mathbf{p}| - |\mathbf{y} - \mathbf{x}| > |\mathbf{x} - \mathbf{p}| - \delta = r.$$

Thus $B_X(\mathbf{x}, \delta)$ is contained in the given set. The result follows.

Proposition 3.3

Let X be a subset of \mathbb{R}^n . The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open in X;
- (ii) the union of any collection of open sets in X is itself open in X;
- (iii) the intersection of any finite collection of open sets in X is itself open in X.

Proof

The empty set \emptyset is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set X. This proves (i).

Let \mathcal{A} be any collection of open sets in X, and let U denote the union of all the open sets belonging to \mathcal{A} . We must show that U is itself open in X. Let $\mathbf{x} \in U$. Then $\mathbf{x} \in V$ for some set V belonging to the collection \mathcal{A} . It follows that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset V$. But $V \subset U$, and thus $B_X(\mathbf{x}, \delta) \subset U$. This shows that U is open in X. This proves (ii).

Finally let $V_1, V_2, V_3, \ldots, V_k$ be a *finite* collection of subsets of X that are open in X, and let V denote the intersection $V_1 \cap V_2 \cap \cdots \cap V_k$ of these sets. Let $\mathbf{x} \in V$. Now $\mathbf{x} \in V_i$ for $j = 1, 2, \dots, k$, and therefore there exist strictly positive real numbers $\delta_1, \delta_2, \dots, \delta_k$ such that $B_X(\mathbf{x}, \delta_i) \subset V_i$ for $j = 1, 2, \dots, k$. Let δ be the minimum of $\delta_1, \delta_2, \dots, \delta_k$. Then $\delta > 0$. (This is where we need the fact that we are dealing with a finite collection of sets.) Now $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{x}, \delta_i) \subset V_i$ for i = 1, 2, ..., k, and thus $B_X(\mathbf{x}, \delta) \subset V$. Thus the intersection V of the sets V_1, V_2, \ldots, V_k is itself open in X. This proves (iii).

Example

The set $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ and } z > 1\}$ is an open set in \mathbb{R}^3 , since it is the intersection of the open ball of radius 2 about the origin with the open set $\{(x,y,z) \in \mathbb{R}^3 : z > 1\}$.

Example

The set $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ or } z > 1\}$ is an open set in \mathbb{R}^3 , since it is the union of the open ball of radius 2 about the origin with the open set $\{(x,y,z) \in \mathbb{R}^3 : z > 1\}$.

Example

The set

$$\{(x, y, z) \in \mathbb{R}^3 : (x - n)^2 + y^2 + z^2 < \frac{1}{4} \text{ for some } n \in \mathbb{Z}\}$$

is an open set in \mathbb{R}^3 , since it is the union of the open balls of radius $\frac{1}{2}$ about the points (n,0,0) for all integers n.

Example

For each positive integer k, let

$$V_k = \{(x, y, z) \in \mathbb{R}^3 : k^2(x^2 + y^2 + z^2) < 1\}.$$

Now each set V_k is an open ball of radius 1/k about the origin, and is therefore an open set in \mathbb{R}^3 . However the intersection of the sets V_k for all positive integers k is the set $\{(0,0,0)\}$, and thus the intersection of the sets V_k for all positive integers k is not itself an open set in \mathbb{R}^3 . This example demonstrates that infinite intersections of open sets need not be open.

Proposition 3.4

Let X be a subset of \mathbb{R}^n , and let U be a subset of X. Then U is open in X if and only if there exists some open set V in \mathbb{R}^n for which $U = V \cap X$.

Proof

First suppose that $U = V \cap X$ for some open set V in \mathbb{R}^n . Let $\mathbf{u} \in U$. Then the definition of open sets in \mathbb{R}^n ensures that there exists some positive real number δ such that

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < \delta\} \subset V.$$

Then

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{u}| < \delta\} \subset U.$$

This shows that U is open in X.

Conversely suppose that the subset U of X is open in X. For each point \mathbf{u} of U there exists some positive real number $\delta_{\mathbf{u}}$ such that

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{u}| < \delta_{\mathbf{u}}\} \subset U.$$

For each $\mathbf{u} \in U$, let $B(\mathbf{u}, \delta_{\mathbf{u}})$ denote the open ball in \mathbb{R}^n of radius $\delta_{\mathbf{u}}$ about the point \mathbf{u} , so that

$$B(\mathbf{u}, \delta_{\mathbf{u}}) = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < \delta_{\mathbf{u}} \}$$

for all $\mathbf{u} \in U$, and let V be the union of all the open balls $B(\mathbf{u}, \delta_{\mathbf{u}})$ as \mathbf{u} ranges over all the points of U. Then V is an open set in \mathbb{R}^n .

Indeed every open ball in \mathbb{R}^n is an open set (Lemma 3.1), and any union of open sets in \mathbb{R}^n is itself an open set (Proposition 3.3). The set V is a union of open balls. It is therefore a union of open sets, and so must itself be an open set.

Now $B(\mathbf{u}, \delta_{\mathbf{u}}) \cap X \subset U$. for all $\mathbf{u} \in U$. Also every point of V belongs to $B(\mathbf{u}, \delta_{\mathbf{u}})$ for at least one point \mathbf{u} of U. It follows that $V \cap X \subset U$. But $\mathbf{u} \in B(\mathbf{u}, \delta_{\mathbf{u}})$ and $B(\mathbf{u}, \delta_{\mathbf{u}}) \subset V$ for all $\mathbf{u} \in U$, and therefore $U \subset V$, and thus $U \subset V \cap X$. It follows that $U = V \cap X$, as required.

3.3. Convergence of Sequences and Open Sets

Lemma 3.5

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n converges to a point \mathbf{p} if and only if, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ for all j satisfying $j \geq N$.

Proof

Suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ has the property that, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ whenever $j \geq N$. Let $\varepsilon > 0$ be given. The open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is an open set by Lemma 3.1. Therefore there exists some positive integer N such that $\mathbf{x}_j \in B(\mathbf{p}, \varepsilon)$ whenever $j \geq N$. Thus $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \geq N$. This shows that the sequence converges to \mathbf{p} .

Conversely, suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to \mathbf{p} . Let U be an open set which contains \mathbf{p} . Then there exists some $\varepsilon > 0$ such that the open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is a subset of U. Thus there exists some $\varepsilon > 0$ such that U contains all points \mathbf{x} of \mathbb{R}^n that satisfy $|\mathbf{x} - \mathbf{p}| < \varepsilon$. But there exists some positive integer N with the property that $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \geq N$, since the sequence converges to \mathbf{p} . Therefore $\mathbf{x}_j \in U$ whenever $j \geq N$, as required.

3.4. Closed Sets in Euclidean Spaces

Let X be a subset of \mathbb{R}^n . A subset F of X is said to be *closed* in X if and only if its complement $X \setminus F$ in X is open in X. (Recall that $X \setminus F = \{\mathbf{x} \in X : \mathbf{x} \notin F\}$.)

Example

The sets $\{(x,y,z) \in \mathbb{R}^3 : z \geq c\}$, $\{(x,y,z) \in \mathbb{R}^3 : z \leq c\}$, and $\{(x,y,z) \in \mathbb{R}^3 : z = c\}$ are closed sets in \mathbb{R}^3 for each real number c, since the complements of these sets are open in \mathbb{R}^3 .

Example

Let X be a subset of \mathbb{R}^n , and let \mathbf{x}_0 be a point of X. Then the sets $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{x}_0| \le r\}$ and $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{x}_0| \ge r\}$ are closed for each non-negative real number r. In particular, the set $\{\mathbf{x}_0\}$ consisting of the single point \mathbf{x}_0 is a closed set in X. (These results follow immediately using Lemma 3.1 and Lemma 3.2 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

$$X \setminus \bigcup_{S \in \mathcal{A}} S = \bigcap_{S \in \mathcal{A}} (X \setminus S), \qquad X \setminus \bigcap_{S \in \mathcal{A}} S = \bigcup_{S \in \mathcal{A}} (X \setminus S)$$

(i.e., the complement of the union of some collection of subsets of X is the intersection of the complements of those sets, and the complement of the intersection of some collection of subsets of X is the union of the complements of those sets).

Indeed let $\mathcal A$ be some collection of subsets of a set X, and let $\mathbf x$ be a point of X. Then

$$\mathbf{x} \in X \setminus \bigcup_{S \in \mathcal{A}} S \iff \mathbf{x} \notin \bigcup_{S \in \mathcal{A}} S$$

$$\iff \text{ for all } S \in \mathcal{A}, \mathbf{x} \notin S$$

$$\iff \mathbf{x} \in \bigcap_{S \in \mathcal{A}} (X \setminus S),$$

and therefore

$$X \setminus \bigcup_{S \in \mathcal{A}} S = \bigcap_{S \in \mathcal{A}} (X \setminus S).$$

Again let \mathbf{x} be a point of X. Then

$$\mathbf{x} \in X \setminus \bigcap_{S \in \mathcal{A}} S \iff \mathbf{x} \notin \bigcap_{S \in \mathcal{A}} S$$

$$\iff \text{ there exists } S \in \mathcal{A} \text{ for which } \mathbf{x} \notin S$$

$$\iff \mathbf{x} \in \bigcup_{S \in \mathcal{A}} (X \setminus S),$$

and therefore

$$X\setminus\bigcap_{S\in\mathcal{A}}S=\bigcup_{S\in\mathcal{A}}(X\setminus S).$$

The following result therefore follows directly from Proposition 3.3.

Proposition 3.6

Let X be a subset of \mathbb{R}^n . The collection of closed sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both closed in X;
- (ii) the intersection of any collection of closed sets in X is itself closed in X;
- (iii) the union of any finite collection of closed sets in X is itself closed in X.

Lemma 3.7

Let X be a subset of \mathbb{R}^n , and let F be a subset of X which is closed in X. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of F which converges to a point \mathbf{p} of X. Then $\mathbf{p} \in F$.

Proof

The complement $X \setminus F$ of F in X is open, since F is closed. Suppose that \mathbf{p} were a point belonging to $X \setminus F$. It would then follow from Lemma 3.5 that $\mathbf{x}_j \in X \setminus F$ for all values of j greater than some positive integer N, contradicting the fact that $\mathbf{x}_j \in F$ for all j. This contradiction shows that \mathbf{p} must belong to F, as required.

3.5. Closed Sets and Limit Points

Lemma 3.8

A subset F of n-dimensional Euclidean space \mathbb{R}^n is closed in \mathbb{R}^n if and only if it contains its limit points.

Proof

Let F be a closed set in \mathbb{R}^n and let \mathbf{p} be a limit point of F. It follows from Lemma 2.5 that there exists an infinite sequence of points of F that converges to the point \mathbf{p} . It then follows from Lemma 3.7 that $\mathbf{p} \in F$. Thus if the set F is closed then it contains its limit points.

Conversely let F be a subset of \mathbb{R}^n that contains its limit points. Let $\mathbf{p} \in \mathbb{R}^n \setminus F$. Then \mathbf{p} is not a limit point of F. It follows from the definition of limit points that there exists some positive real number δ for which

$$\{\mathbf{x} \in F : 0 < |\mathbf{x} - \mathbf{p}| < \delta\} = \emptyset.$$

It then follows from this that the open ball in \mathbb{R}^n of radius δ about the point \mathbf{p} is contained in the complement of F. We conclude therefore that the complement of F in \mathbb{R}^n is open in \mathbb{R}^n , and thus F is closed in \mathbb{R}^n , as required.