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7. Multiple Integrals

7. Multiple Integrals

7.1. Multiple Integrals of Bounded Continuous Functions

We considers integrals of continuous real-valued functions of
several real variables over regions that are products of closed
bounded intervals. Any subset of n-dimensional Euclidean
space Rn that is a product of closed bounded intervals is a closed
bounded set in Rn. It follows from the Extreme Value Theorem
(Theorem 4.21) that any continuous real-valued function on a
product of closed bounded intervals is necessarily bounded on that
product of intervals. It is also uniformly continuous on that
product of intervals (see Theorem 4.22)



7. Multiple Integrals (continued)

Proposition 7.1

Let n be an integer greater than 1, let a1, a2, . . . , an and
b1, b2, . . . , bn be real numbers, where ai < bi for i = 1, 2, . . . , n, let
f : [a1, b1]× · · · × [an, bn]→ R be a continuous real-valued
function, and let

g(x1, x2, . . . , xn−1) =

∫ bn

an

f (x1, x2, . . . , xn−1, t) dt.

for all (n − 1)-tuples (x1, x2, . . . , xn−1) of real numbers satisfying
ai ≤ xi ≤ bi for i = 1, 2, . . . , n − 1. Then the function

g : [a1, b1]× [a2, b2] · · · × [an−1, bn−1]→ R

is continuous.
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Proof
Let some positive real number ε be given, and let ε0 be chosen so
that 0 < (bn − an)ε0 < ε. The function f is uniformly continuous
on [a1, b1]× [a2, b2] · · · × [an, bn] (see Theorem 4.22). Therefore
there exists some positive real number δ such that

|f (x1, x2, . . . , xn−1, t)− f (u1, u2, . . . , un−1, t)| < ε0

for all real numbers x1, x2, . . . , xn−1, u1, u2, . . . , un−1 and t
satisfying ai ≤ xi ≤ bi , ai ≤ ui < bi and |xi − ui | < δ for
i = 1, 2, . . . , n − 1 and an ≤ t ≤ bn. Applying Proposition 6.9, we
see that
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|g(x1, x2, . . . , xn−1)− g(u1, u2, . . . , un−1)|

=

∣∣∣∣∫ bn

an

(f (x1, x2, . . . , xn−1, t)− f (u1, u2, . . . , un−1, t)) dt

∣∣∣∣
≤

∫ bn

an

|f (x1, x2, . . . , xn−1, t)− f (u1, u2, . . . , un−1, t)| dt

≤ ε0(bn − an) < ε

whenever ai ≤ xi ≤ bi , ai ≤ ui < bi and |xi − ui | < δ for
i = 1, 2, . . . , n − 1. The result follows.
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Proposition 7.1 ensures that, given a continuous real-valued
function f : [a1, b1]× · · · × [an, bn]→ R, where a1, a2, . . . , an and
b1, b2, . . . , bn are real numbers and ai < bi for i = 1, 2, . . . , n,
there is a well-defined multiple integral∫ bn

xn=an

· · ·
∫ b2

x2=a2

∫ b1

x1=a1

f (x1, x2, . . . , xn) dx1 dx2 · · · dxn,

in which, at each stage of evaluation, the integrand is a continuous
function of its arguments. To evaluate this integral, one integrates
first with respect to x1, then with respect to x2, and so on, finally
integrating with respect to xn.

In fact, if the function f is continuous, the order of evaluation of
the integrals with respect to the individual variables does not affect
the value of the multiple integral. We prove this first for
continuous functions of two variables.
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Theorem 7.2

Let f : [a, b]× [c , e]→ R be a continuous real-valued function on
the closed rectangle [a, b]× [c, e]. Then∫ e

c

(∫ b

a
f (x , y) dx

)
dy =

∫ b

a

(∫ e

c
f (x , y) dy

)
dx .
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Proof
Let f : [a, b]× [c , e]→ R is continuous, and is therefore uniformly
continuous on [a, b]× [c, e] (see Theorem 4.22). Let some positive
real number ε be given. It follows from the uniform continuity of
the function f that there exists some positive real number δ with
the property that

|f (x , y)− f (u, v)| < ε

for all x , u ∈ [a, b] and y , v ∈ [c , e] satisfying |x − u| < δ and
|y − v | < δ.
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Let P be a partition of [a, b], and let Q be a partition of [c , e],
where

P = {u0, u1, . . . , up}, Q = {v0, v1, . . . , vq},

a = u0 < u1 < · · · < up = b, c = v0 < v1 < · · · < vq = e,

uj − uj−1 < δ for j = 1, 2, . . . , p and vk − vk−1 < δ for
k = 1, 2, . . . , q. Then

|f (x , y)− f (uj , vk)| < ε

whenever uj−1 ≤ x ≤ uj for some integer j between 1 and p and
vk−1 ≤ y ≤ vk for some integer k between 1 and q.
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Now∫ e

c

(∫ b

a
f (x , y) dx

)
dy =

q∑
k=1

p∑
j=1

∫ vk

vk−1

(∫ uj

uj−1

f (x , y) dx

)
dy .

(This follows from straightforward applications of Proposition 6.10
and Proposition 6.4.) Moreover∫ uj

uj−1

f (x , y) dx ≤
(
f (uj , vk) + ε

)
(uj − uj−1)

for all y ∈ [vk−1, vk ], and therefore∫ vk

vk−1

(∫ uj

uj−1

f (x , y) dx

)
dy ≤

(
f (uj , vk)+ε

)
(vk−vk−1)(uj−uj−1)

for all integers j between 1 and p and integers k between 1 and q.
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It follows that∫ e

c

(∫ b

a
f (x , y) dx

)
dy

≤
q∑

k=1

p∑
j=1

(
f (uj , vk) + ε

)
(vk − vk−1)(uj − uj−1)

= S + ε(b − a)(e − c),

where

S =

q∑
k=1

p∑
j=1

f (uj , vk)(vk − vk−1)(uj − uj−1).
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Similarly∫ e

c

(∫ b

a
f (x , y) dx

)
dy

≥
q∑

k=1

p∑
j=1

(
f (uj , vk)− ε

)
(vk − vk−1)(uj − uj−1)

= S − ε(b − a)(e − c).

Thus ∣∣∣∣∫ e

c

(∫ b

a
f (x , y) dx

)
dy − S

∣∣∣∣ ≤ ε(b − a)(e − c).
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On interchanging the roles of the variables x and y , we conclude
similarly that∣∣∣∣∫ b

a

(∫ e

c
f (x , y) dy

)
dx − S

∣∣∣∣ ≤ ε(b − a)(e − c).

It follows that∣∣∣∣∫ e

c

(∫ b

a
f (x , y) dx

)
dy −

∫ b

a

(∫ e

c
f (x , y) dy

)
dx

∣∣∣∣
≤ 2ε(b − a)(e − c).

Moreover the inequality just obtained must hold for every positive
real number ε, no matter how small the value of ε. It follows that∫ e

c

(∫ b

a
f (x , y) dx

)
dy =

∫ b

a

(∫ e

c
f (x , y) dy

)
dx ,

as required.
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Now let us consider a multiple integral involving a continuous
function of three real variables. Let

f : [a1, b1]× [a2, b2]× [a3, b3]→ R

be a continuous real-valued function, where a1, a2, a3, b1, b2 and
b3 are real numbers satisfying a1 < b1, a2 < b2 and a3 < b3. It
follows from Theorem 7.2 that∫ b1

a1

∫ b2

a2

f (x1, x2, x3) dx2 dx1 =

∫ b2

a2

∫ b1

a1

f (x1, x2, x3) dx1 dx2

for all real numbers x3 satisfying a3 < x3 < b3. It follows that∫ b3

a3

∫ b1

a1

∫ b2

a2

f (x1, x2, x3) dx2 dx1 dx3

=

∫ b3

a3

∫ b2

a2

∫ b1

a1

f (x1, x2, x3) dx1 dx2 dx3.
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Also it follows from Proposition 7.1 that the function sending
(x2, x3) to ∫ b1

a1

f (x1, x2, x3) dx1

for all (x2, x3) ∈ [a2, b2]× [a3, b3] is a continuous function of
(x2, x3). It then follows from Theorem 7.2 that∫ b2

a2

∫ b3

a3

∫ b1

a1

f (x1, x2, x3) dx1 dx3 dx2

=

∫ b3

a3

∫ b2

a2

∫ b1

a1

f (x1, x2, x3) dx1 dx2 dx3.
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Repeated applications of these results establish that the value of
the repeated integral with respect to the real variables x1, x2 and
x3 is independent of the order in which the successive integrations
are performed.

Corresponding results hold for integration of continuous real-valued
functions of four or more real variables. In general, if the integrand
is a continuous real-valued function of n real variables, and if this
function is integrated over a product of n closed bounded intervals,
by repeated integration, then the value of the integral is
independent of the order in which the integrals are performed.
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7.2. A Counterexample involving an Unbounded Function

Example
Let f : R2 → R be defined such that

f (x , y) =


4xy(x2 − y2)

(x2 + y2)3
if (x , y) 6= (0, 0);

0 if (x , y) = (0, 0).

Set u = x2 + y2. Then

f (x , y) =
2x(2x2 − u)

u3
∂u

∂y
,

and therefore, when x 6= 0,
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∫ 1

y=0
f (x , y) dy =

∫ x2+1

u=x2

(
4x3

u3
− 2x

u2

)
du

=

[
−2x3

u2
+

2x

u

]x2+1

u=x2

= − 2x3

(x2 + 1)2
+

2x

x2 + 1

=
2x

(x2 + 1)2
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It follows that∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx =

∫ 1

x=0

2x

(x2 + 1)2
dx

=

[
− 1

x2 + 1

]1
0

=
1

2
.

Now f (y , x) = −f (x , y) for all x and y . Interchanging x and y in
the above evaluation, we find that∫ 1

y=0

(∫ 1

x=0
f (x , y) dx

)
dy =

∫ 1

x=0

(∫ 1

y=0
f (y , x) dy

)
dx

= −
∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx

= −1

2
.
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Thus∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx 6=

∫ 1

y=0

(∫ 1

x=0
f (x , y) dx

)
dy .

when

f (x , y) =
4xy(x2 − y2)

(x2 + y2)3

for all (x , y) ∈ R2 distinct from (0, 0). Note that, in this case
f (2t, t)→ +∞ as t → 0+, and f (t, 2t)→ −∞ as t → 0−. Thus
the function f is not continuous at (0, 0) and does not remain
bounded as (x , y)→ (0, 0).
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