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5. Compactness and the Heine-Borel Theorem

5.1. Compact Subsets of Euclidean Spaces

Definition

Let K be a subset of n-dimensional Euclidean space R". A
collection C of open sets in R” is said to cover K if

K= UVec L

In other words, a collection C of open sets in R” is said to cover K
if and only if each point of K belongs to at least one open set
belonging to the collection C.
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Definition

A subset K of R” is said to be compact if, given any collection of
open sets in R” which covers K, there exists some finite
subcollection which also covers K.
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Let F and K be subsets of R" where F is closed, K is compact
and F C K. Then F is compact.

Proof

Let C be any collection of open sets in R” covering F. On
adjoining the open set R” \ F to C, we obtain a collection of open
sets which covers the compact set K. The compactness of K
ensures that some finite subcollection of this collection covers K.
The open sets in this subcollection that belong to C then
constitute a finite subcollection of C that covers F. Thus F is
compact, as required. |
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Let ¢: R™ — R" be a continuous function between Euclidean
spaces R™ and R", and let K be a compact subset of R™. Then
©(K) is a compact subset of R".

Proof

Let C be a collection of open sets in R” which covers ¢(K). Then
K is covered by the collection of all open sets of the form ¢~1(V)
for some V € C. It follows from the compactness of K that there
exists a finite collection Vi, V5, ..., V) of open sets belonging to C
such that

KCe  (V)Up H(Va)U---Up (Vi)

But then ¢(K) C Vi U VL U--- U Vj. This shows that ¢(K) is
compact. |}
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Let f: K — R be a continuous real-valued function on a compact
subset K of R". Then f is bounded above and below on K.

Proof
The range f(K) of the function f is covered by some finite
collection I, b, ..., I of open intervals of the form (—m, m),

where m € N, since f(K) is compact (Lemma 5.2) and R is
covered by the collection of all intervals of this form. It follows
that f(K) C (=M, M), where (—M, M) is the largest of the
intervals I, b, ..., lx. Thus the function f is bounded above and
below on K, as required. |}
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Proposition 5.4

Let f: K — R be a continuous real-valued function on a compact
subset K of R". Then there exist points u and v of K such that
f(u) < f(x) < f(v) forall x € K.

Proof

Let m = inf{f(x) :x € K} and M = sup{f(x) : x € K}. There
must exist v € K satisfying f(v) = M, for if f(x) < M for all

x € K then the function x — 1/(M — f(x)) would be a continuous
real-valued function on K that was not bounded above,
contradicting Lemma 5.3. Similarly there must exist u € K
satisfying f(u) = m, since otherwise the function

x — 1/(f(x) — m) would be a continuous function on K that was
not bounded above, again contradicting Lemma 5.3. But then
f(u) < f(x) < f(v) for all x € K, as required. |}
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Proposition 5.5

Let K be a compact subset of a Euclidean space R". Then K is
closed in R".

Proof

Let p be a point of R” that does not belong to K, and let

f(x) = |x — p| for all x € R". It follows from Proposition 5.4 that
there is a point q of K such that f(x) > f(q) for all x € K,
because K is compact. Now 7(q) > 0, since q # p. Let § satisfy
0 < 6 < f(q). Then the open ball of radius § about the point p is
contained in the complement of K, because f(x) < f(q) for all
points x of this open ball. It follows that the complement of K is
an open set in R”, and thus K itself is closed in R”. |}
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Let F be a subset of n-dimensional Euclidean space R". For each
x € R", we denote by d(x, F) the (Euclidean) distance from the
point x to the set F. This distance d(x, F) is defined so that

d(x,F) =inf{|x —w|:w € F}.

Lemma 5.6
Let F be a subset of R". Then

d(x, F) —d(y, F)| < [x —|

for all x,y € F, and thus the function sending points x on R" to
their distance d(x, F) from the set F is a continuous real-valued
function on R".
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Proof

Let € be a real number satisfying £ > 0, and let x and y be points
of R". Then there exists z € F for which |y — z| < d(y,F) +¢. It
follows from the Triangle Inequality that

dix, F) < |x—z[ < |x—y|+]y—z| < |x —y[+d(y,F) +¢

and thus
d(x,F)—d(y,F) < |x—y|+e.

Now the inequality just obtained must hold for all positive real
numbers €, and the left hand side of the inequality is independent
of the value of €. It must therefore be the case that

d(x,F)—d(y,F) <|x—yl|
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Interchanging the roles of x and y, we see also that
It follows that
‘d(X, F) - d(ya F)‘ < ’X - y|

This inequality ensures that the function that sends points x of R”
to their distance d(x, F) from the set F is a continuous function
on R", as required. |}
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Given a subset F of R"” and a positive real number §, we denote by
B(F,¢) the d-neighbourhood of the set F in R", defined so that

B(F,5) = {x € R": d(x, F) < &}.

Proposition 5.7

Let K and V be subsets of R", where K is compact, V is open
and K C V. Then there exists some positive real number § for
which B(K,0) C V.
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Proof

Let F =R"\ V, and let f(x) = d(x, F) for all x € R", where

d(x, F) denotes the distance from the point x to the set F. Now
the function f is a continuous real-valued function on R”".
Moreover f(x) > 0 for all x € V/, and therefore f(x) > 0 for all

x € K. It then follows from Proposition 5.4 that there exists some
point u of K with the property that f(u) < f(x) for all x € K. Let
d = f(u). Then |[x —z| > 6 for all x € K and z € F. It follows that
B(x,0) C V for all x € K, where B(x,J) denotes the open ball of
radius & centred on the point x. Therefore B(K,d) C V, as
required. |}
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Alternative Proof

For each point w of K there exists some positive real number dy,
such that B(w, 2dy) C V where B(w,2d,,) denotes the open ball
of radius 2dy, centred on the point w for each w € K. Now the
collection (B(w, dw) : w € K) of open balls constitutes an open
cover of the compact set K. The definition of compactness
therefore ensures that there exist points wi, wa, ..., wp, (finite in
number) such that

m
K c | B(wj,du;).
j=1
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Let 0 be the minimum of the positive real numbers oy, for
j=1,2,...,m. Then § > 0. Moreover the Triangle Inequality
ensures that

B(z,0) C B(wj,26w;) C V

for all z € B(w;, dw,), and therefore |, B(z,0) C V. But
U,ex B(z,6) = B(K, ), because a point x of R” belongs to
B(K,9) if and only if |x — z| < § for some z € K. Thus
B(K,0) C V, as required. |}
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5.2. The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is
compact. This result is known as the Heine-Borel Theorem. The
proof of this theorem uses the least upper bound principle which
states that, given any non-empty set S of real numbers which is
bounded above, there exists a least upper bound (or supremum)
sup S for the set S.

Theorem 5.8

(Heine-Borel in One Dimension) Let a and b be real numbers
satisfying a < b. Then the closed bounded interval [a, b] is a
compact subset of R.
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Proof

Let C be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open
sets. We must show that [a, b] is covered by finitely many of these
open sets.

Let S be the set of all 7 € [a, b] with the property that [a, 7] is
covered by some finite collection of open sets belonging to C, and
let s =supS. Now s € W for some open set W belonging to C.
Moreover W is open in R, and therefore there exists some § > 0
such that (s — d,s + d) C W. Moreover s — § is not an upper
bound for the set S, hence there exists some 7 € S satisfying

T > s — 0. It follows from the definition of S that [a, 7] is covered
by some finite collection Vi, V5, ..., V, of open sets belonging

to C.
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Let t € [a, b] satisfy 7 < t < s+ . Then
[a,t] C [a,7]U(s —d,s+ ) Cc ViU VL U---UV,UW,

and thus t € S. In particular s € S, and moreover s = b, since
otherwise s would not be an upper bound of the set S. Thus

b € S, and therefore [a, b| is covered by a finite collection of open
sets belonging to C, as required. |
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Definition
We define a closed n-dimensional block in R" to be a subset of R”
that is a product of closed bounded intervals.

Thus a subset K of R" is a closed n-dimensional block if and only
if there exist real numbers a1, as,...,a, and by, by, ..., b, such
that a; < b; for i =1,2,...,n and

K= [alvbl] X [a2ab2] Ko X [ana bn]

Proposition 5.9

A closed n-dimensional block is a compact set.
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Proof

We prove the result by induction on the dimension n of the
Euclidean space. The result when n =1 is the one-dimensional
Heine-Borel Theorem (Theorem 5.8). Thus suppose as our
induction hypothesis that n > 1 and that that every closed

(n — 1)-dimensional block in R"! is a compact set. Let K be an
n-dimensional block in R”, and let

K= [alvbl] X [ag,bz] Koeee X [ana bn]v

where a1, as,...,a, and by, bo, ..., b, are real numbers that satisfy
aj<bjfori=1,2,...,n
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Let p: R” — R be the projection function defined such that
p(X1, X2, ...y Xn) = Xn

for all (x1,x2,...,xn) € R". The induction hypothesis then ensures
that K is a compact set for all z € [a,, b,], where

K, ={xe€ K:p(x) = z}.

Let C be a collection of open sets in R” that covers K. The
compactness of K, ensures that, for each real number z satisfying
an < z < b, there exists a finite subcollection C, of C such that
K: CUvyece, V. Let W, =Uyce, V. (The set W, is thus the
union of the open sets belonging to the finite subcollection C, of

C.)
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Now K is compact, W, is open, and K, C W,. It follows that
there exists some positive real number ¢, such that

B(K,d,) C W,, where B(K, ¢,) denotes the §-neighbourhood of K
in R" i.e., the subset of R"” consisting of those points of R” that lie
within a distance 0, of the set K, (see Proposition 5.7). But then

{xeK:z—0,<p(x)<z+0d,}C W,

for all z € [an, bn]. Now the collection of all open intervals in R
that are of the form (z — 0.,z + ¢,) constitute an open cover of
the closed bounded interval [a,, by]. It follows from the
one-dimensional Heine-Borel Theorem (Theorem 5.8) that there
exist z1, 22, ...,2Zm € [an, bn| such that

m

[an, ba] € | (2 = 67, 2 + 5z).-
j=1
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But then

KclJws
j=1

n
Moreover |J W, is the union of all the open sets that belong to

Jj=1
the collection D obtained by amalgamating the finite collections
C2,Cs,...,Cy,. Then D is a finite subcollection of C which covers

the n-dimensional block K. The result follows. ||
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Theorem 5.10 (Multidimensional Heine-Borel Theorem)

A subset of a Euclidean space is compact if and only if it is both
closed and bounded.

Proof

Let K be a compact subset of n-dimensional Euclidean space. The
function that maps each point x of R” to its Euclidean distance |x|
from the origin is then a bounded function on K (Lemma 5.3) and
therefore K is a bounded set. Moreover it follows from
Proposition 5.5 that K is closed in R".
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Conversely let K be a subset of R” that is both closed and
bounded. Then there exists some positive real number R large
enough to ensure that K C H, where

H={(x1,x2,...,%7) ER": =R < x; < Rfori=1,2,...,n}.

Now H is a closed n-dimensional block in R”. It follows from
Proposition 5.9 that H is a compact subset of R”. Thus K is a
closed subset of a compact set. It follows from Lemma 5.1 that K
is a compact subset of R”, as required. |}
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