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5. Compactness and the Heine-Borel Theorem

5.1. Compact Subsets of Euclidean Spaces

Definition

Let K be a subset of n-dimensional Euclidean space Rn. A
collection C of open sets in Rn is said to cover K if

K =
⋃

V∈C
V .

In other words, a collection C of open sets in Rn is said to cover K
if and only if each point of K belongs to at least one open set
belonging to the collection C.



5. Compactness and the Heine-Borel Theorem (continued)

Definition

A subset K of Rn is said to be compact if, given any collection of
open sets in Rn which covers K , there exists some finite
subcollection which also covers K .
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Lemma 5.1

Let F and K be subsets of Rn where F is closed, K is compact
and F ⊂ K. Then F is compact.

Proof
Let C be any collection of open sets in Rn covering F . On
adjoining the open set Rn \ F to C, we obtain a collection of open
sets which covers the compact set K . The compactness of K
ensures that some finite subcollection of this collection covers K .
The open sets in this subcollection that belong to C then
constitute a finite subcollection of C that covers F . Thus F is
compact, as required.
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Lemma 5.2

Let ϕ : Rm → Rn be a continuous function between Euclidean
spaces Rm and Rn, and let K be a compact subset of Rm. Then
ϕ(K ) is a compact subset of Rn.

Proof
Let C be a collection of open sets in Rn which covers ϕ(K ). Then
K is covered by the collection of all open sets of the form ϕ−1(V )
for some V ∈ C. It follows from the compactness of K that there
exists a finite collection V1,V2, . . . ,Vk of open sets belonging to C
such that

K ⊂ ϕ−1(V1) ∪ ϕ−1(V2) ∪ · · · ∪ ϕ−1(Vk).

But then ϕ(K ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk . This shows that ϕ(K ) is
compact.
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Lemma 5.3

Let f : K → R be a continuous real-valued function on a compact
subset K of Rn. Then f is bounded above and below on K.

Proof
The range f (K ) of the function f is covered by some finite
collection I1, I2, . . . , Ik of open intervals of the form (−m,m),
where m ∈ N, since f (K ) is compact (Lemma 5.2) and R is
covered by the collection of all intervals of this form. It follows
that f (K ) ⊂ (−M,M), where (−M,M) is the largest of the
intervals I1, I2, . . . , Ik . Thus the function f is bounded above and
below on K , as required.
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Proposition 5.4

Let f : K → R be a continuous real-valued function on a compact
subset K of Rn. Then there exist points u and v of K such that
f (u) ≤ f (x) ≤ f (v) for all x ∈ K.

Proof
Let m = inf{f (x) : x ∈ K} and M = sup{f (x) : x ∈ K}. There
must exist v ∈ K satisfying f (v) = M, for if f (x) < M for all
x ∈ K then the function x 7→ 1/(M − f (x)) would be a continuous
real-valued function on K that was not bounded above,
contradicting Lemma 5.3. Similarly there must exist u ∈ K
satisfying f (u) = m, since otherwise the function
x 7→ 1/(f (x)−m) would be a continuous function on K that was
not bounded above, again contradicting Lemma 5.3. But then
f (u) ≤ f (x) ≤ f (v) for all x ∈ K , as required.
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Proposition 5.5

Let K be a compact subset of a Euclidean space Rn. Then K is
closed in Rn.

Proof
Let p be a point of Rn that does not belong to K , and let
f (x) = |x− p| for all x ∈ Rn. It follows from Proposition 5.4 that
there is a point q of K such that f (x) ≥ f (q) for all x ∈ K ,
because K is compact. Now f (q) > 0, since q 6= p. Let δ satisfy
0 < δ ≤ f (q). Then the open ball of radius δ about the point p is
contained in the complement of K , because f (x) < f (q) for all
points x of this open ball. It follows that the complement of K is
an open set in Rn, and thus K itself is closed in Rn.
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Let F be a subset of n-dimensional Euclidean space Rn. For each
x ∈ Rn, we denote by d(x,F ) the (Euclidean) distance from the
point x to the set F . This distance d(x,F ) is defined so that

d(x,F ) = inf{|x−w| : w ∈ F}.

Lemma 5.6

Let F be a subset of Rn. Then

|d(x,F )− d(y,F )| ≤ |x− y|

for all x, y ∈ F , and thus the function sending points x on Rn to
their distance d(x,F ) from the set F is a continuous real-valued
function on Rn.
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Proof
Let ε be a real number satisfying ε > 0, and let x and y be points
of Rn. Then there exists z ∈ F for which |y − z| < d(y,F ) + ε. It
follows from the Triangle Inequality that

d(x,F ) ≤ |x− z| ≤ |x− y|+ |y − z| < |x− y|+ d(y,F ) + ε

and thus
d(x,F )− d(y,F ) < |x− y|+ ε.

Now the inequality just obtained must hold for all positive real
numbers ε, and the left hand side of the inequality is independent
of the value of ε. It must therefore be the case that

d(x,F )− d(y,F ) ≤ |x− y|.
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Interchanging the roles of x and y, we see also that

d(y,F )− d(x,F ) ≤ |x− y|.

It follows that
|d(x,F )− d(y,F )| ≤ |x− y|.

This inequality ensures that the function that sends points x of Rn

to their distance d(x,F ) from the set F is a continuous function
on Rn, as required.
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Given a subset F of Rn and a positive real number δ, we denote by
B(F , δ) the δ-neighbourhood of the set F in Rn, defined so that

B(F , δ) = {x ∈ Rn : d(x,F ) < δ}.

Proposition 5.7

Let K and V be subsets of Rn, where K is compact, V is open
and K ⊂ V . Then there exists some positive real number δ for
which B(K , δ) ⊂ V .
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Proof
Let F = Rn \ V , and let f (x) = d(x,F ) for all x ∈ Rn, where
d(x,F ) denotes the distance from the point x to the set F . Now
the function f is a continuous real-valued function on Rn.
Moreover f (x) > 0 for all x ∈ V , and therefore f (x) > 0 for all
x ∈ K . It then follows from Proposition 5.4 that there exists some
point u of K with the property that f (u) ≤ f (x) for all x ∈ K . Let
δ = f (u). Then |x− z| ≥ δ for all x ∈ K and z ∈ F . It follows that
B(x, δ) ⊂ V for all x ∈ K , where B(x, δ) denotes the open ball of
radius δ centred on the point x. Therefore B(K , δ) ⊂ V , as
required.
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Alternative Proof
For each point w of K there exists some positive real number δw

such that B(w, 2δw) ⊂ V where B(w, 2δw) denotes the open ball
of radius 2δw centred on the point w for each w ∈ K . Now the
collection (B(w, δw) : w ∈ K ) of open balls constitutes an open
cover of the compact set K . The definition of compactness
therefore ensures that there exist points w1,w2, . . . ,wm (finite in
number) such that

K ⊂
m⋃
j=1

B(wj , δwj ).
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Let δ be the minimum of the positive real numbers δwj for
j = 1, 2, . . . ,m. Then δ > 0. Moreover the Triangle Inequality
ensures that

B(z, δ) ⊂ B(wj , 2δwj ) ⊂ V

for all z ∈ B(wj , δwj ), and therefore
⋃

z∈K B(z, δ) ⊂ V . But⋃
z∈K B(z, δ) = B(K , δ), because a point x of Rn belongs to

B(K , δ) if and only if |x− z| < δ for some z ∈ K . Thus
B(K , δ) ⊂ V , as required.
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5.2. The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is
compact. This result is known as the Heine-Borel Theorem. The
proof of this theorem uses the least upper bound principle which
states that, given any non-empty set S of real numbers which is
bounded above, there exists a least upper bound (or supremum)
supS for the set S .

Theorem 5.8

(Heine-Borel in One Dimension) Let a and b be real numbers
satisfying a < b. Then the closed bounded interval [a, b] is a
compact subset of R.
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Proof
Let C be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open
sets. We must show that [a, b] is covered by finitely many of these
open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is
covered by some finite collection of open sets belonging to C, and
let s = supS . Now s ∈W for some open set W belonging to C.
Moreover W is open in R, and therefore there exists some δ > 0
such that (s − δ, s + δ) ⊂W . Moreover s − δ is not an upper
bound for the set S , hence there exists some τ ∈ S satisfying
τ > s − δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1,V2, . . . ,Vr of open sets belonging
to C.
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Let t ∈ [a, b] satisfy τ ≤ t < s + δ. Then

[a, t] ⊂ [a, τ ] ∪ (s − δ, s + δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W ,

and thus t ∈ S . In particular s ∈ S , and moreover s = b, since
otherwise s would not be an upper bound of the set S . Thus
b ∈ S , and therefore [a, b] is covered by a finite collection of open
sets belonging to C, as required.
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Definition

We define a closed n-dimensional block in Rn to be a subset of Rn

that is a product of closed bounded intervals.

Thus a subset K of Rn is a closed n-dimensional block if and only
if there exist real numbers a1, a2, . . . , an and b1, b2, . . . , bn such
that ai ≤ bi for i = 1, 2, . . . , n and

K = [a1, b1]× [a2, b2]× · · · × [an, bn].

Proposition 5.9

A closed n-dimensional block is a compact set.
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Proof
We prove the result by induction on the dimension n of the
Euclidean space. The result when n = 1 is the one-dimensional
Heine-Borel Theorem (Theorem 5.8). Thus suppose as our
induction hypothesis that n > 1 and that that every closed
(n − 1)-dimensional block in Rn−1 is a compact set. Let K be an
n-dimensional block in Rn, and let

K = [a1, b1]× [a2, b2]× · · · × [an, bn],

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers that satisfy
ai ≤ bi for i = 1, 2, . . . , n.
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Let p : Rn → R be the projection function defined such that

p(x1, x2, . . . , xn) = xn

for all (x1, x2, . . . , xn) ∈ Rn. The induction hypothesis then ensures
that Kz is a compact set for all z ∈ [an, bn], where

Kz = {x ∈ K : p(x) = z}.

Let C be a collection of open sets in Rn that covers K . The
compactness of Kz ensures that, for each real number z satisfying
an ≤ z ≤ bn there exists a finite subcollection Cz of C such that
Kz ⊂

⋃
V∈Cz V . Let Wz =

⋃
V∈Cz V . (The set Wz is thus the

union of the open sets belonging to the finite subcollection Cz of
C.)
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Now Kz is compact, Wz is open, and Kz ⊂Wz . It follows that
there exists some positive real number δz such that
B(K , δz) ⊂Wz , where B(K , δz) denotes the δ-neighbourhood of K
in Rn i.e., the subset of Rn consisting of those points of Rn that lie
within a distance δz of the set Kz (see Proposition 5.7). But then

{x ∈ K : z − δz < p(x) < z + δz} ⊂Wz

for all z ∈ [an, bn]. Now the collection of all open intervals in R
that are of the form (z − δz , z + δz) constitute an open cover of
the closed bounded interval [an, bn]. It follows from the
one-dimensional Heine-Borel Theorem (Theorem 5.8) that there
exist z1, z2, . . . , zm ∈ [an, bn] such that

[an, bn] ⊂
m⋃
j=1

(zj − δzj , zj + δzj ).
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But then

K ⊂
n⋃

j=1

Wzj .

Moreover
n⋃

j=1
Wzj is the union of all the open sets that belong to

the collection D obtained by amalgamating the finite collections
Cz1 , Cz2 , . . . , Czm . Then D is a finite subcollection of C which covers
the n-dimensional block K . The result follows.



5. Compactness and the Heine-Borel Theorem (continued)

Theorem 5.10 (Multidimensional Heine-Borel Theorem)

A subset of a Euclidean space is compact if and only if it is both
closed and bounded.

Proof
Let K be a compact subset of n-dimensional Euclidean space. The
function that maps each point x of Rn to its Euclidean distance |x|
from the origin is then a bounded function on K (Lemma 5.3) and
therefore K is a bounded set. Moreover it follows from
Proposition 5.5 that K is closed in Rn.



5. Compactness and the Heine-Borel Theorem (continued)

Conversely let K be a subset of Rn that is both closed and
bounded. Then there exists some positive real number R large
enough to ensure that K ⊂ H, where

H = {(x1, x2, . . . , xn) ∈ Rn : −R ≤ xi ≤ R for i = 1, 2, . . . , n}.

Now H is a closed n-dimensional block in Rn. It follows from
Proposition 5.9 that H is a compact subset of Rn. Thus K is a
closed subset of a compact set. It follows from Lemma 5.1 that K
is a compact subset of Rn, as required.
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