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10. Stieltjes Measure (continued)

10.1. Stieltjes Content

Lemma 10.1

Let F : R→ R be a non-decreasing function of a real variable.
Then, for each real number s, there are well-defined real numbers
F (s−) and F (s+) characterized by the properties that

F (s−) = lim
x→s−

F (x) = sup{F (x) : x < s}

and
F (s+) = lim

x→s+
F (x) = inf{F (x) : x > s}.

Moreover F (s−) ≤ F (s) ≤ F (s+) for all real numbers s, and
F (u+) ≤ F (v) ≤ F (w−) for all real numbers u, v and w satisfying
u < v < w.
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Proof
Let s be a real number. The set {F (x) : x < s} is non-empty, and
is bounded above by F (s). This set therefore has a least upper
bound F (s−), and moreover F (s−) ≤ F (s).

Now let ε be any strictly positive real number. Then F (s−)− ε is
not an upper bound for the set {F (x) : x < s}, because F (s−) is
the least upper bound of this set. It follows that there exists some
strictly positive real number δ for which F (s − δ) > F (s−)− ε.
Then F (s−)− ε < F (x) ≤ F (s−) for all real numbers x satisfying
s − δ < x < s. It follows that F (s−) = lim

x→s−
F (x). An analogous

argument shows that the set {F (x) : x > s} has a greatest lower
bound F (s+), and moreover F (s+) ≥ F (s) and
F (s+) = lim

x→s+
F (x).
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Now let u, v and w be real numbers satisfying u < v < w , Then
the real numbers F (u+) and F (w−) are the greatest lower bound
and least upper bound of the sets {F (x) : x > u} and
{F (x) : x < w}, respectively, and F (v) belongs to both of these
sets. It follows that F (u+) ≤ F (v) ≤ F (w−), as required.

The definition of F (s+) and F (s−) for each real number s ensures
that, given any given any real number s and any strictly positive
real number ε, there exist real numbers q and r satisfying
q < s < r for which F (q) > F (s−)− ε and F (r) < F (s+) + ε.
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Definition

Let F : R→ R be a non-decreasing function of a real variable. The
Stieltjes content mF (I ) of each bounded interval or singleton set I
contained in R with respect to the function F is then defined so
that

mF ({v}) = F (v+)− F (v−),

mF ([u, v ]) = F (v+)− F (u−),

mF ([u, v)) = F (v−)− F (u−),

mF ((u, v ]) = F (v+)− F (u+),

mF ((u, v)) = F (v−)− F (u+)

for all real numbers u and v satisfying u < v .
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Proposition 10.2

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval J, let mF (J) denote the
Stieltjes content of J with respect to the function F . Let a and b
be real numbers satisfying a < b, and let u0, u1, . . . , uN be a list of
real numbers with the property that

a = u0 < u1 < u2 < · · · < uN = b.

For each integer j between 0 and N, let Dj = {uj}, and, for each
integer j between 1 and N, let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

Then
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mF ((a, b)) =
N−1∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej).

Also

mF ([a, b)) =
N−1∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej),

mF ((a, b]) =
N∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej),

mF ([a, b]) =
N∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej).
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Proof

mF ((a, b)) = F (b−)− F (a+) = F (u−N )− F (u+0 )

= F (u+N−1)− F (u+0 ) + F (u−N )− F (u+N−1)

=
N−1∑
j=1

(F (u+j )− F (u+j−1)) + mF (EN)

=
N−1∑
j=1

(mF (Dj) + mF (Ej)) + mF (EN)

=
N−1∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej).

Then
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mF ([a, b)) = F (b−)− F (a−)

= F (a+)− F (a−) + F (b−)− F (a−)

= mF (D0) + mF ((a, b))

=
N−1∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej),

mF ((a, b]) = F (b+)− F (a+)

= F (b+)− F (b−) + F (b−)− F (a+)

= mF (DN) + mF ((a, b))

=
N∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej)
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and

mF ([a, b]) = F (b+)− F (a−)

= F (a+)− F (a−) + F (b+)− F (a+)

= mF (D0) + mF ((a, b])

=
N∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej),

This establishes all the required identities.
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Proposition 10.3

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval J, let mF (J) denote the
Stieltjes content of J with respect to the function F . Let a and b
be real numbers satisfying a < b, and let u0, u1, . . . , uN be a list of
real numbers with the property that

a = u0 < u1 < u2 < · · · < uN = b.

For each integer j between 0 and N, let Dj = {uj}, and, for each
integer j between 1 and N, let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

Also let J be an interval or singleton set whose endpoints are
included in the list u0, u1, . . . , uN , and let
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S(J) = {j ∈ Z : 0 ≤ j ≤ N and Dj ⊂ J},
T (J) = {j ∈ Z : 1 ≤ j ≤ N and Ej ⊂ J}.

Then
mF (J) =

∑
j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).
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Proof
An integer j between 0 and N belongs to S(J) if and only if
uj ∈ J, and an integer j between 1 and N belongs to T (J) if and
only if (uj−1, uj) ⊂ J.

The proof is accomplished through a case-by-case analysis.

First suppose that J is a singleton set. Then J = {uk} for some
integer k between 1 and N. In this case S(J) = {uk}, T (J) = ∅
and

mF (J) = mF = mF (Dk) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).
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In the remaining cases, suppose that J takes one of the forms
(a, b), [a, b), (a, b] or [a, b], where a and b are real numbers and
a < b. There then exist integers p and q between 1 and N
satisfying p < q for which a = up and b = uq.
Suppose then that J = (a, b) = (up, uq). Then

S(J) = {k ∈ Z : p < k < q} and T (J) = {k ∈ Z : p < k ≤ q}.

Then Proposition 10.2 ensures that

mF ((a, b)) =

q−1∑
j=p+1

mF (Dj) +

q∑
j=p+1

mF (Ej)

=
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).
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The same strategy applies in the remaining cases. In the case
where J = [a, b) = [up, uq) we have

S(J) = {k ∈ Z : p ≤ k < q} and T (J) = {k ∈ Z : p < k ≤ q},

in the case where J = (a, b] = (up, uq] we have

S(J) = {k ∈ Z : p < k ≤ q} and T (J) = {k ∈ Z : p < k ≤ q},

in the case where J = [a, b] = [up, uq] we have

S(J) = {k ∈ Z : p ≤ k ≤ q} and T (J) = {k ∈ Z : p < k ≤ q},

and in each of these three cases the required identity follows on
applying the relevant identity stated in Proposition 10.2.
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Proposition 10.4

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Also J,
J(1), J(2), . . . , J(s) be bounded intervals or singleton sets contained
in the set R of real numbers. Suppose that J(1), J(2), . . . , J(s) are

pairwise disjoint and that J =
s⋃

r=1
J(r). Then

mF (J) =
s∑

r=1

mF (J(r)).
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Proof
Let u0, u1, . . . , uN be a list of real numbers, listed in increasing
order, that contains the endpoints of each of the singleton sets or
bounded intervals J, J(1), J(2), . . . , J(s). For each integer j between
0 and N, let Dj = {uj}, and, for each integer j between 1 and N,
let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

Also, for each interval or singleton set K whose endpoints are
included in the list u0, u1, . . . , uN , let

S(K ) = {j ∈ Z : 0 ≤ j ≤ N and Dj ⊂ I},
T (K ) = {j ∈ Z : 1 ≤ j ≤ N and Ej ⊂ I}.

Then
mF (K ) =

∑
j∈S(K)

mF (Dj) +
∑

j∈T (K)

mF (Ej)

for any such interval K .
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In particular

mF (J) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej)

and
mF (J(r)) =

∑
j∈S(J(r))

mF (Dj) +
∑

j∈T (J(r))

mF (Ej)

for r = 1, 2, . . . , s.
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Now the sets J(1), J(2), . . . , J(s) are pairwise disjoint, and the union
of these pairwise disjoint sets is the set J. It follows that if j is an
integer between 0 and N for which Dj ⊂ J then there is exactly
one integer r between 1 and s for which Dj ⊂ J(r), and therefore
each integer j in S(J) belongs to exactly one of the sets
S(J(1)), S(J(2)), . . . ,S(J(s)). Similarly if j is an integer between 1
and N for which Ej ⊂ J then there is exactly one integer r between
1 and s for which Ej ⊂ J(r). and therefore each integer j in T (J)
belongs to exactly one of the sets T (J(1)),T (J(2)), . . . ,T (J(s)). It
follows that
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mF (J) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej)

=
s∑

r=1

∑
j∈S(J(r))

mF (Dj) +
s∑

r=1

∑
j∈T (J(r))

mF (Ej)

=
s∑

r=1

mF (J(r)),

as required.
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The following two propositions are the analogues, for Stieltjes
measures, of Proposition 7.5 and Proposition 7.6.

Proposition 10.5

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let J be a
bounded interval or singleton set in the real line R, and let
J1, J2, . . . , Js be a finite collection of sets each of which is a

bounded interval or singleton set in R. Suppose that J ⊂
s⋃

k=1

Jk .

Then mF (J) ≤
s∑

k=1

mF (Jk).
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Proof
The collection of subsets of R consisting of the empty set, the
singleton sets that are of the form {c} for some real number c ,
and the bounded intervals is a semiring of subsets of R.
Proposition 10.4 establishes that Stieljes content is finitely additive
on this semiring and is thus a true content function on the
semiring. The required result therefore follows immediately on
applying Proposition 6.19.
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Proposition 10.6

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let J be a
bounded interval or singleton set in the real line R, and let
J1, J2, . . . , Js be a finite collection of sets each of which is a
bounded interval or singleton set in R. Suppose that the sets
J1, J2, . . . , Js are pairwise disjoint and are contained in J. Then
s∑

k=1

mF (Jk) ≤ mF (J).
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Proof
The collection of subsets of R consisting of the empty set, the
singleton sets that are of the form {c} for some real number c ,
and the bounded intervals is a semiring of subsets of R.
Proposition 10.4 establishes that Stieljes content is finitely additive
on this semiring and is thus a true content function on the
semiring. The required result therefore follows immediately on
applying Proposition 6.20.
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Lemma 10.7

Let F : R→ R be a non-decreasing function of a real-variable. Let
{v} be a singleton set in the real line. Then, given any positive
real number ε, there exists an open interval V such that v ∈ V
and mF (V ) < mF ({v}) + ε, where mF ({v}) and mF (V ) denote
the Stieltjes content of the sets {v} and V respectively with
respect to the function F .
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Proof
The Stieltjes measure mF ({v}) of the singleton set {v} is defined
by the identity mF ({v}) = F (v+)− F (v−), where

F (v+) = inf{F (x) : x > v} and F (v−) = inf{F (x) : x < v}

(see Lemma 10.1). It follows that, given any strictly positive real
number ε, there exist real numbers u and w satisfying u < v < w
for which F (u) > F (v−)− 1

2ε and F (w) < F (v+) + 1
2ε. Let

V = (u,w). Then V is an open interval and

mF (V ) = F (w−)− F (u+) ≤ F (w)− F (u)

< F (v+)− F (v−) + ε = mF ({v}) + ε,

as required.
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Lemma 10.8

Let F : R→ R be a non-decreasing function of a real-variable. Let
J be a bounded interval of positive length in the real line, and let
a = inf J and b = sup J. Then, given any positive real number ε,
there exists an open interval V such that J ⊂ V and
mF (V ) < mF (J) + ε, where mF (J) and mF (V ) denote the
Stieltjes content of the sets J and V respectively with respect to
the function F .
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Proof
The endpoints a and b of the interval J satisfy a < b, and J
coincides with exactly one of the intervals (a, b), [a, b), (a, b] and
[a, b]. And the Stieltjes measures of these intervals are defined so
that

mF ((a, b) = F (b−)− F (a+), mF ([a, b) = F (b−)− F (a−),

mF ((a, b] = F (b+)− F (a+), mF ([a, b] = F (b+)− F (a−).

Also the definitions of F (a−) and F (b+) ensure that there exist
real numbers u and v satisfying u < a < b < v for which
F (u) > F (a−)− 1

2ε and F (w) < F (b+) + 1
2ε.
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In the case where J = (a, b) we can take V = J.

Suppose next that J = [a, b). In this case take V = (u, b). Then
mF (J) = F (b−)− F (a−) and

mF (V ) = F (b−)− F (u+) ≤ F (b−)− F (u)

< F (b−)− F (a−) + 1
2ε < mF (J) + ε.

Next suppose next that J = (a, b]. In this case take V = (a,w).
Then mF (J) = F (b+)− F (a+) and

mF (V ) = F (w−)− F (a+) ≤ F (w)− F (a+)

< F (b+)− F (a+) + 1
2ε < mF (J) + ε.
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Finally suppose next that J = [a, b]. In this case take V = (u,w).
Then mF (J) = F (b+)− F (a−) and

mF (V ) = F (w−)− F (u+) ≤ F (w)− F (u)

< F (b+)− F (a−) + ε = mF (J) + ε.

We have now verified the existence of the open set V with the
required properties in all cases.
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Lemma 10.9

Let F : R→ R be a non-decreasing function of a real-variable. Let
J be a bounded interval or singleton set in the real line, and let
a = inf J and b = sup J. Then, given any positive real number ε,
there exists a closed interval K such that mF (K ) > mF (J) + ε,
where mF (J) and mF (K ) denote the Stieltjes content of the sets J
and K respectively with respect to the function F .
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Proof
The endpoints a and b of the interval J satisfy a ≤ b, and either J
is a singleton set or else J coincides with exactly one of the
intervals (a, b), [a, b), (a, b] and [a, b]. And the Stieltjes measures
of these intervals are defined so that

mF ((a, b) = F (b−)− F (a+), mF ([a, b) = F (b−)− F (a−),

mF ((a, b] = F (b+)− F (a+), mF ([a, b] = F (b+)− F (a−).

Also the definitions of F (a+) and F (b−) ensure that there exist
real numbers u and v satisfying a < u < v < b for which
F (u) < F (a+) + 1

2ε and F (w) > F (b−)− 1
2ε.
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In the case where J is a singleton set or a closed interval we can
take K = J.

Suppose next that J = (a, b]. In this case take K = [u, b]. Then
mF (J) = F (b+)− F (a+) and

mF (K ) = F (b+)− F (u−) ≥ F (b+)− F (u)

> F (b+)− F (a+)− 1
2ε > mF (J)− ε.

Next suppose next that J = [a, b). In this case take K = [a,w ].
Then mF (J) = F (b−)− F (a−) and

mF (K ) = F (w+)− F (a−) ≥ F (w)− F (a−)

> F (b−)− F (a−)− 1
2ε > mF (J)− ε.
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Finally suppose next that J = (a, b). In this case take V = [u,w ].
Then mF (J) = F (b−)− F (a+) and

mF (K ) = F (w+)− F (u−) ≥ F (w)− F (u)

> F (b−)− F (a+)− ε = mF (J)− ε.

We have now verified the existence of the open set V with the
required properties in all cases.



10. Stieltjes Measure (continued)

Proposition 10.10

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let I be a
bounded interval or singleton set in the real line R, and let C be a
countable collection of subsets of R each of which is a bounded
interval or singleton set. Suppose that I ⊂

⋃
B∈C J. Then

mF (I ) ≤
∑
B∈C

mF (J).
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Proof
There is nothing to prove if

∑
J∈C

m(B) = +∞. We may therefore

restrict our attention to the case where
∑
J∈C

m(B) < +∞.

Moreover the result is an immediate consequence of
Proposition 10.5 if the collection C is finite. It therefore only
remains to prove the result in the case where the collection C is
infinite, but countable.
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In that case there exists an infinite sequence J1, J2, J3, . . . of sets,
each of which is a bounded interval or singleton set, with the
property that each set in the collection C occurs exactly once in
the sequence. Let some positive real number ε be given. It follows
from Lemma 10.9 that there exists a closed interval or singleton
set K such that K ⊂ I and mF (K ) ≥ mF (I )− ε. Also, for each
k ∈ N, it follows from Lemma 10.7 and Lemma 10.8 that there
exists a bounded open interval Vk such that Jk ⊂ Vk and

mF (Vk) < mF (Jk) + 2−kε. Then K ⊂
+∞⋃
k=1

Vk , and thus

{V1,V2,V3, . . .} is a collection of open sets in the real line R
which covers the closed bounded set K . It follows from the
compactness of K that there exists a finite collection k1, k2, . . . , ks
of positive integers such that K ⊂ Vk1 ∪ Vk2 ∪ · · · ∪ Vks . It then
follows from Proposition 10.5 that

mF (K ) ≤ mF (Vk1) + mF (Vk2) + · · ·+ mF (Vks ).
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Now
1

2k1
+

1

2k2
+ · · ·+ 1

2ks
≤

+∞∑
k=1

1

2k
= 1,

and therefore

mF (K ) ≤ mF (Vk1) + mF (Vk2) + · · ·+ mF (Vks )

≤ mF (Jk1) + mF (Jk2) + · · ·+ mF (Jks ) + ε

≤
+∞∑
k=1

mF (Jk) + ε.

Also mF (A) < mF (K ) + ε. It follows that

mF (I ) ≤
+∞∑
k=1

mF (Jk) + 2ε.
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Moreover this inequality holds no matter how small the value of
the positive real number ε. It follows that

mF (I ) ≤
+∞∑
k=1

mF (Jk),

as required.
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10.2. Lebesgue-Stieltjes Outer Measure

Let J be the semiring of subsets of the real line consisting of the
empty set together with all singleton sets and bounded intervals
contained in the set R of real numbers. Also let the empty set be
assigned Stieltjes content equal to zero, so that mF (∅) = 0. Then
Stieltjes measure determines a finitely additive content function
mF : J → [0,+∞) on the semiring J (see Proposition 10.4). The
result of (f) Moreover this content function is countably
subadditive. (Proposition 10.10).
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We say that a collection C of subsets of the real line R covers a
subset E of R if E ⊂

⋃
J∈C J, (where

⋃
J∈C J denotes the union of

all the sets belonging to the collection C). Given any subset E of
R, we shall denote by CCI(E ) the set of all countable collections,
made up of bounded intervals and singleton sets, that cover the
set E .
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Definition

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let E be a
subset of R. We define the Lebesgue-Stieltjes outer measure
µ∗F (E ) of E to be the infimum, or greatest lower bound, of the
quantities

∑
J∈C

mF (J), where this infimum is taken over all

countable collections C, made up of bounded intervals and
singleton sets, that cover the set E . Thus

µ∗F (E ) = inf

{∑
J∈C

mF (J) : C ∈ CCI(E )

}
.
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Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval J, let mF (J) denote the
Stieltjes content of J with respect to the function F . The
Lebesgue-Stieltjes outer measure µ∗F (E ) of a subset E of the real
line R is then the greatest extended real number l with the
property that l ≤

∑
J∈C

mF (J) for any countable collection C, made

up of bounded intervals and singleton sets, that covers the set E .
In particular, µ∗F (E ) = +∞ if and only if

∑
J∈C

mF (J) = +∞ for

every countable collection C, made up of bounded intervals and
singleton sets, that covers the set E .

Note that µ∗F (E ) ≥ 0 for all subsets E of R.
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Lemma 10.11

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let E be a
bounded interval or singleton set in R. Then µ∗F (E ) = mF (E ),
where mF (E ) is the content of the set E .

Proof
It follows from Proposition 10.10 that mF (E ) ≤

∑
J∈C

mF (J) for any

countable collection, made up of bounded intervals and singleton
sets, that covers the set E . Therefore mF (E ) ≤ µ∗F (E ). But the
collection {E} made up of the single set E is itself a countable
collection of bounded intervals or singleton sets covering E , and
therefore µ∗F (E ) ≤ mF (E ). It follows that µ∗F (E ) = mF (E ), as
required.
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Lemma 10.12

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let E and G
be subsets of R. Suppose that E ⊂ F . Then µ∗F (E ) ≤ µ∗F (G ).
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Proof
Any countable collection, made up of bounded intervals and
singleton sets, that covers the set G will also cover the set E , and
therefore CCI(G ) ⊂ CCI(E ). It follows that

µ∗F (G ) = inf

{∑
J∈C

mF (J) : C ∈ CCI(G )

}

≥ inf

{∑
J∈C

mF (J) : C ∈ CCI(E )

}
= µ∗F (E ),

as required.
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Proposition 10.13

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let E be a
countable collection of subsets of R. Then

µ∗F

(⋃
E∈E

E
)
≤
∑
E∈E

µ∗F (E ).

Proof
Let K = N in the case where the countable collection E is infinite,
and let K = {1, 2, . . . ,m} in the case where the collection E is
finite and has m elements. Then there exists a bijective function
ϕ : K → E . We define Ek = ϕ(k) for all k ∈ K . Then
E = {Ek : k ∈ K}, and any subset of R belonging to the
collection E is of the form Ek for exactly one element k of the
indexing set K .
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Let some positive real number ε be given. Then corresponding to
each element k of K there exists a countable collection Ck , made
up of bounded intervals and singleton sets, covering the set Ek for
which ∑

J∈Ck

mF (J) < µ∗F (Ek) +
ε

2k
.

Let C =
⋃

k∈K Ck . Then C is a collection, made up of bounded
intervals and singleton sets, that covers the union

⋃
E∈E E of all

the sets in the collection E . Moreover every bounded interval or
singleton set belonging to the collection C belongs to at least one
of the collections Ck , and therefore belongs to exactly one of the
collections Dk , where Dk = Ck \

⋃
j<k Cj . It follows that
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µ∗F

(⋃
E∈E

E
)
≤

∑
J∈C

mF (J) =
∑
k∈K

∑
J∈Dk

mF (J)

≤
∑
k∈K

∑
J∈Ck

mF (J) ≤
∑
k∈K

(
µ∗F (Ek) +

ε

2k

)
≤

∑
k∈K

µ∗F (Ek) + ε

Thus µ∗F
(⋃

E∈E E
)
≤
∑
k∈K

µ∗F (Ek) + ε, no matter how small the

value of ε. It follows that µ∗F
(⋃

E∈E E
)
≤
∑
k∈K

µ∗F (Ek), as

required.
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Proposition 10.14

Let F : R→ R be a non-decreasing function of a real-variable and,
for any singleton set or bounded interval K , let mF (K ) denote the
Stieltjes content of K with respect to the function F . Let J be a
bounded interval or singleton set in R. Then

µ∗F (A) = µ∗F (A ∩ J) + µ∗F (A \ J)

for all subsets A of R.
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Proof
First we deal with the case when µ∗F (A) = +∞, and this case
either µ∗F (A ∩ J) = +∞ or else µ∗F (A \ J) = +∞ because
otherwise the subadditivity of Lebesgue-Stieltjes outer measure
(Proposition 10.13) would ensure that µ∗F (A), being non-negative
and less than the sum of two finite quantities, would itself be a
finite quantity. The stated result is thus valid in cases where
µ∗F (A) = +∞.
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Now suppose that µ∗F (A) < +∞. Let some positive real number ε
be given. It then follows from the definition of Lebesgue-Stieltjes
outer measure that there exists a collection (Ci : i ∈ I ) of sets,
made up of bounded intervals and singleton sets, which is indexed
by a countable set I , and for which∑

i∈I
mF (Ci ) < µ∗F (A) + ε.

Then, for each i ∈ I , Proposition 7.4 guarantees the existence of a
finite list Di ,1,Di ,2, . . .Di ,q(i) of sets, made up of bounded intervals
and singleton sets, satisfying the following conditions:

the sets Di ,1,Di ,2, . . .Di ,q(i) are pairwise disjoint;

Ci is the union of all the sets Di ,k for which 1 ≤ k ≤ q(i);

Ci ∩ J is the union of those sets Di ,k with 1 ≤ k ≤ q(i) for
which Di ,k ⊂ Ci ∩ J.
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For each i ∈ I , let L(i) denote the set of integers between 1 and
q(i) for which Di ,k 6⊂ Ci ∩ J. and let I0 denote the subset of I
consisting of those i ∈ I for which L(i) is non-empty. Then

Ci \ J ⊂
⋃

k∈L(i)
Di ,k

for all i ∈ I0, and
A \ J ⊂

⋃
i∈I0

(Ci \ J),

and therefore
A \ J ⊂

⋃
i∈I0

⋃
k∈L(i)

Di ,k

It then follows from the definition of Lebesgue-Stieltjes outer
measure that

µ∗F (A \ J) ≤
∑
i∈I0

∑
k∈L(i)

mF (Di ,k),

where mF (Di ,k) denotes the content of the set Di ,k for all i ∈ I
and for all integers k in the range 1 ≤ k ≤ q(i).
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But, for each i ∈ I0, the content mF (Ci ) of the set Ci is equal to
the sum of the contents mF (Di ,k) of the sets Di ,k for all integer
values of k satisfying 1 ≤ k ≤ q(i) (see Proposition 7.3), whilst
the content mF (Ci ∩ J) of the set Ci ∩ J is equal to the sum of the
contents mF (Di ,k) of those sets Di ,k with 1 ≤ k ≤ q(i) for which
Di ,k ⊂ Ci ∩ J. It follows that, for all i ∈ I0,∑

k∈L(i)

mF (Di ,k) = mF (Ci )−mF (Ci ∩ J).

Also mF (Ci ) = mF (Ci ∩ J) for all i ∈ I \ I0. It follows that

µ∗F (A \ J) ≤
∑
i∈I0

∑
k∈L(i)

mF (Di ,k)

=
∑
i∈I0

(mF (Ci )−mF (Ci ∩ J))

=
∑
i∈I

(mF (Ci )−mF (Ci ∩ J)).
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The definition of definition of Lebesgue-Stieltjes outer measure
also ensures that

µ∗F (A ∩ J) ≤
∑
i∈I

mF (Ci ∩ J).

Adding these two inequalities, we find that

µ∗F (A ∩ J) + µ∗F (A \ J) ≤
∑
i∈I

µ(Ci ) < µ∗F (A) + ε.
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We have now shown that

µ∗F (A ∩ J) + µ∗F (A \ J) < µ∗F (A) + ε

for all strictly positive numbers ε. It follows that

µ∗F (A ∩ J) + µ∗F (A \ J) ≤ µ∗F (A).

The reverse inequality

µ∗F (A) ≤ µ∗F (A ∩ J) + µ∗F (A \ J),

is a consequence of Proposition 10.13. It follows that

µ∗F (A) = µ∗F (A ∩ J) + µ∗F (A \ J),

as required.
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