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9. Modes of Convergence on Measure Spaces

9.1. Egorov’s Theorem

Proposition 9.1

Let (X ,A, µ) be a measure space, and let E be a measurable
subset of X , where µ(E ) < +∞. Let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions that converges on E
to a measurable function f . Then, given any strictly positive real
numbers ε and δ, there exists a measurable subset F of E and a
positive integer N such that µ(F ) < δ and |fj(x)− f (x)| < ε
whenever x ∈ E \ F and j ≥ N.
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Proof
Let strictly positive real numbers ε and δ be given and, for each
positive integer k , let

Ek =
+∞⋂
j=k

{x ∈ X : |fj(x)− f (x)| < ε}.

Let x ∈ E . Then lim
j→+∞

fj(x) = f (x), and therefore there exists

some positive integer k such that |fj(x)− f (x)| < ε whenever

j ≥ k . But then x ∈ Ek . It follows from this that E =
+∞⋃
k=1

Ek .
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Now Ej ⊂ Ej+1 for all positive integers j . It follows from the
countable additivity of the measure µ that µ(E ) = lim

k→+∞
µ(Ek)

(see Lemma 7.25). Now µ(E ) < +∞. It follows that there exists
some positive integer N that is large enough to ensure that
µ(EN) > µ(E )− δ. Let F = E \ EN . Then µ(F ) < δ and
|f (x)− fj(x)| < ε whenever x ∈ E \ F and j ≥ N, as required.
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Let X be a set, and let E be a subset of X . Let f1, f2, f3, . . . be an
infinite sequence of real-valued functions on X , and let f be a
real-valued function on X . The sequence f1, f2, f3, . . . is said to
converge uniformly on E to the limit function f if, given any
strictly positive real number ε, there exists some positive integer N
(independent of the choice of x in the set E ) such that
|fj(x)− f (x)| < ε whenever x ∈ E and j ≥ N.

Sequences of functions that converge pointwise do not necessarily
converge uniformly. An infinite sequence f1, f2, f3, . . . of real-valued
functions on the set X is said to converge pointwise to the
real-valued function f on a subset E of X if, given any strictly
positive real number ε, and given any point x of E , there exists
some positive integer N(x) (in general dependent on the choice of
both ε and x , such set E ) such that |fj(x)− f (x)| < ε whenever
j ≥ N(x).



9. Modes of Convergence on Measure Spaces (continued)

Now let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X , and let
f be a measurable real-valued function on f . If there exists a
subset F of X satisfying µ(F ) = 0, and if the infinite sequence
f1, f2, f3, . . . converges pointwise to f on the complement X \ F of
F in X , then the sequence f1, f2, f3, . . . is said to converge
pointwise almost everywhere on X .
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Theorem 9.2 (Egorov’s Theorem)

Let (X ,A, µ) be a measure space, and let E be a measurable
subset of X , where µ(E ) < +∞. Let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions that converges
pointwise almost everywhere on E to a measurable function f .
Then, given any strictly positive real number δ, there exists a
subset F of E such that µ(F ) < δ and the sequence f1, f2, f3, . . . of
real-valued functions converges uniformly to the limit function f on
E \ F .
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Proof
If the infinite sequence f1, f2, f3, . . . does not converge to f
throughout the set E , then there exists some subset E0 of E such
that µ(E \ E0) = 0 and the sequence f1, f2, f3, . . . converges to the
limit function f at all points of E0, because the sequence
f1, f2, f3, . . . does at least converge to f almost everywhere on E . If
then, for a given strictly positive real number δ, we show the
existence of a subset F0 of E0 such that µ(F0) < δ and the
sequence f1, f2, f3, . . . converges uniformly to f on E0 \ F0, and if
we take F = F0 ∪ (E \ E0), then µ(F ) < δ and the sequence
f1, f2, f3, . . . of functions converges uniformly to the limit function f
on E \ F . Thus we may assume, without loss of generality, that
the sequence of functions f1, f2, f3, . . . converges to the limit
function throughout the set E .
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Thus suppose that the sequence f1, f2, f3, . . . converges pointwise
to the limit function f throughout E , and let some strictly positive
real number δ be given. It follows on applying Proposition 9.1,
that there exist positive integers N1,N2,N3, . . . and measurable
subsets F1,F2,F3. . . . of E such that µ(Fk) < 2−kδ and
|fj(x)− f (x)| < 1/k whenever x ∈ E \ Fk and j ≥ Nk . Let

F =
+∞⋃
k=1

Fk . Then

µ(F ) ≤
+∞∑
k=1

µ(Fk) < δ.

The required result is thus established once we prove that the
infinite sequence f1, f2, f3, . . . of measurable functions converges
uniformly to the limit function f on the set E \ F .
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Let some strictly positive real number ε be given. Then some
positive integer k can be chosen large enough to ensure that
1/k < ε. Let N = Nk . Now E \ F ⊂ E \ Fk . It follows that
|fj(x)− f (x)| < ε whenever x ∈ E \ F and j ≥ N. Thus the
functions f1, f2, f3, . . . do indeed converge uniformly to the limit
function f on E \ F . The result follows.
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9.2. Almost Uniform Convergence

Definition

Let (X ,A, µ) be a measure space, let E be a measurable subset of
E , let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , and let f be a measurable real-valued
function on X . The infinite sequence f1, f2, f3, . . . is said to
converge almost uniformly on E if, given any positive real
number δ, there exists a measurable subset F of E such that
µ(F ) < δ and the infinite sequence f1, f2, f3, . . . converges
uniformly to the limit function f on E \ F .
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Egorov’s Theorem (Theorem 9.2) ensures that if (X ,A, µ) is a
measure space, and if E is a measurable subset of X whose
measure µ(E ) is finite, then any infinite sequence of measurable
real-valued functions that converges pointwise almost everywhere
on E also converges almost uniformly on E .

Example
For each positive integer j , let fj : R→ R be defined so that

fj(x) =

{
1 if j − 1 < x ≤ j ;
0 otherwise.

Then the infinite sequence f1, f2, f3, . . . converges pointwise to the
zero function throughout the real line R but does not converge
almost uniformly with respect to Lebesgue measure on the real line.
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Lemma 9.3

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , and let f be a
measurable real-valued function on X . Suppose that the infinite
sequence f1, f2, f3, . . . of functions converges almost uniformly to
the limit function f . Then the sequence f1, f2, f3, . . . converges to f
pointwise almost everywhere.

Proof
Let F be the subset of X consisting of those points x for which the
infinite sequence f1(x), f2(x), f3(x), . . . does not converge to f (x).
We must show that µ(F ) = 0.
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Now the infinite sequence f1, f2, f3, . . . converges almost uniformly
on X to the limit function f , and therefore, given any strictly
positive real number δ, there exists some measurable set Fδ such
that µ(Fδ) < δ and lim

j→+∞
fj(x) = f (x) for all x ∈ X \ Fδ. But then

F ⊂ Fδ, and consequently µ(F ) ≤ µ(Fδ) < δ. We conclude
therefore that µ(F ) < δ for all positive real numbers δ. It follows
that µ(F ) = 0, as required.
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9.3. Convergence in Measure

Definition

Let (X ,A, µ) be a measure space, and let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functgions on X , and
let f be a measurable real-valued function on X . The sequence
f1, f2, f3, . . . is said to converge in measure to the function f if,
given any strictly positive real numbers ε and δ, there exists some
positive integer N such that

µ ({x ∈ X : |fj(x)− f (x)| ≥ ε}) < δ

whenever j ≥ N.
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The following result follows immediately from the relevant
definitions.

Lemma 9.4

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , and let f be a
measurable real-valued function on X . Then the infinite sequence
f1, f2, f3, . . . converges in measure to the limit function f if and
only if, given any strictly positive real number ε,

lim
j→+∞

µ ({x ∈ X : |fj(x)− f (x)| ≥ ε}) = 0.
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Proposition 9.5

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , and let f and
f̃ be a measurable real-valued functions on X . Suppose that the
infinite sequence f1, f2, f3, . . . converges in measure both to the the
function f s and also to the function f̃ . Then the functions f and f̃
are equal almost everywhere.
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Proof
For each positive integer j and positive real number ε, let

Ej ,ε = {x ∈ X : |fj(x)− f (x)| ≥ ε},

Ẽj ,ε = {x ∈ X : |fj(x)− f̃ (x)| ≥ ε}.

Then
lim

j→+∞
µ(Ej ,ε)→ 0 and lim

j→+∞
µ(Ẽj ,ε)→ 0.

Now if x is a point of X , j is a positive integer, ε is a positive real
number, and if |f (x)− f̃ (x)| ≥ 2ε, then either |fj(x)− f (x)| ≥ ε or
else |fj(x)− f̃ (x)| ≥ ε. It follows that

{x ∈ X : |f (x)− f̃ (x)| ≥ 2ε} ⊂ Ej ,ε ∪ Ẽj ,ε

for all positive integers j , and therefore

µ
(
{x ∈ X : |f (x)− f̃ (x)| ≥ 2ε}

)
≤ µ(Ej ,ε) + µ(Ẽj ,ε)

for all positive integers j .
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Taking limits as j → +∞, we conclude that

µ
(
{x ∈ X : |f (x)− f̃ (x)| ≥ 2ε}

)
= 0

for all positive real numbers ε. Now

{x ∈ X : f (x) 6= f̃ (x)} =
+∞⋃
k=1

{x ∈ X : |f (x)− f̃ (x)| ≥ 2/k}.

It follows that {x ∈ X : f (x) 6= f̃ (x)} is expressible as a countable
union of subsets of X that are each of measure zero, and thus
must itself be of measure zero. The result follows.
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Proposition 9.6

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , and let f be a
measurable real-valued function on X . Suppose that the infinite
sequence f1, f2, f3, . . . converges almost uniformly on X to the limit
function f . Then the sequence f1, f2, f3, . . . converges in measure
on X to the limit function f .
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Proof
Let strictly positive real numbers ε and δ be given. There then
exists a measurable subset F of X such that µ(F ) < δ and
f1, f2, f3, . . . converges uniformly to f on X \ F . There then exists
some positive integer N such that |fj(x)− f (x)| < ε whenever
x ∈ X \ F and j ≥ N. But then

{x ∈ X : |fj(x)− f (x)| ≥ ε} ⊂ F

whenever j ≥ N. But µ(F ) < δ. It follows that

µ ({x ∈ X : |fj(x)− f (x)| ≥ ε}) < δ

whenever j ≥ N. Thus f1, f2, f3, . . . converges in measure to the
limit function f , as required.
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9.4. Sequences of Functions that are Cauchy in Measure

Definition

Let (X ,A, µ) be a measure space, and let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X . The
sequence f1, f2, f3, . . . is said to to be Cauchy in measure if, given
any positive real numbers ε and δ, there exists some positive
integer N such that

µ ({x ∈ X : |fj(x)− fk(x)| ≥ ε}) < δ

whenever j ≥ N and k ≥ N.
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Lemma 9.7

Let (X ,A, µ) be a measure space, and let f1, f2, f3, . . . be a
sequence of measurable real-valued functions on X that converges
in measure to some limit function. Then the infinite sequence
f1, f2, f3, . . . of functions is Cauchy in measure.

Proof
For all positive integers j and k and positive real numbers ε, let

Ej ,ε = {x ∈ X : |fj(x)− f (x)| ≥ ε}

and
Gj ,k,ε = {x ∈ X : |fj(x)− fk(x)| ≥ ε}.
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Let strictly positive real numbers ε and δ be given. Then there
exists some positive integer N such that µ(Ej , 1

2
ε) <

1
2δ whenever

j ≥ N, because the sequence f1, f2, f3, . . . converges in measure to
the function f . Now if x ∈ X , if j and k are positive integers, and
if |fj(x)− fk(x)| ≥ ε then either |fj(x)− f (x)| ≥ 1

2ε or else
|fk(x)− f (x)| ≥ 1

2ε. It follows that

Gj ,k,ε ⊂ Ej , 1
2
ε ∪ Ek, 1

2
ε

for all positive integers j and k, and therefore

µ(Gj ,k,ε) ≤ µ(Ej , 1
2
ε) + µ(Ek, 1

2
ε) <

1
2δ + 1

2δ = δ

whenever j ≥ N and k ≥ N. The result follows.
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Proposition 9.8

Let (X ,A, µ) be a measure space, and let f1, f2, f3, . . . be a
sequence of measurable real-valued functions on X that is Cauchy
in measure. Then the sequence f1, f2, f3, . . . has a subsequence that
converges almost uniformly on X .



9. Modes of Convergence on Measure Spaces (continued)

Proof
The sequence f1, f2, f3, . . . is Cauchy in measure, and therefore
there exists an infinite sequence j1, j2, j3, . . . of positive integers,
where

j1 < j2 < j3 < · · · ,

such that, for each positive integer k ,

µ

({
x ∈ X : |fr (x)− fs(x)| ≥ 1

2k

})
<

1

2k

whenever r ≥ jk and s ≥ jk . It then follows in particular that
µ(Ek) < 2−k for all positive integers k, where

Ek =

{
x ∈ X : |fjk (x)− fjk+1

(x)| ≥ 1

2k

}
.
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Let Fk =
+∞⋃
p=k

Ep for all positive integers k . Then

µ(Fk) ≤
+∞∑
p=k

µ(Ep) ≤
+∞∑
p=k

1

2p
=

1

2k−1
.

for all positive integers k .
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Let k be a positive integer, and let x ∈ X \ Fk . Then x 6∈ Ep for all
integers p satisfying p ≥ k , and therefore |fjp(x)− fjp+1(x)| < 2−p

for all p ≥ k . Thus if p and q are integers satisfying k ≤ p < q
then

|fjp(x)− fjq(x)| <
q−1∑
r=p

1

2r
<

1

2p−1
.

It follows that, given any positive real number ε, there exists some
positive integer M such that |fjp(x)− fjq(x)| < ε for all integers p
and q satisfying M ≤ p < q. Thus f1(x), f2(x), f3(x), . . . is a
Cauchy sequence of real numbers. The completeness of the real
number system ensures that every Cauchy sequence of real
numbers is convergent. It follows that f (x) is well-defined for all
x ∈ X \ Fk , where f (x) = lim

p→+∞
fjp(x).
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Now we showed that |fjp(x)− fjq(x)| < 21−p whenever x 6∈ Fk and
k ≤ p < q. Taking limits as q → +∞, it follows that
|fjp(x)− f (x)| ≤ 21−p whenever p ≥ k . Therefore, given any
positive real number ε, there exists a positive integer Mk ,
independent of the choice of x , such that |fjp(x)− f (x)| < ε for all
x ∈ X \ Fk and for all integers p satisfying p ≥ Mk . The sequence
fj1 , fj2 , fj3 , . . . of real-valued functions therefore converges uniformly
on X \ Fk to the limit function f .
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Now f (x) is well-defined for all positive integers k and for all
points x of X \ Fk . It is therefore well-defined for all points x of

X \ F∞, where F∞ =
+∞⋂
k=1

Fk . Now F∞ is a measurable set, and

µ(F∞) ≤ µ(Fk) ≤ 21−k for all positive integers. It follows that
µ(F∞) = 0. Thus the limit function f is defined almost everywhere
on X . Also, given any positive real number δ, the positive
integer k can be chosen large enough to ensure that µ(Fk) < δ.
The sequence fj1 , fj2 , fj3 , . . . then converges uniformly to the limit
function f on X \ Fk . The sequence fj1 , fj2 , fj3 , . . . is therefore
almost uniformly convergent on X . Moreover it is a subsequence of
the given sequence f1, f2, f3, . . .. The result follows.
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Proposition 9.9

Let (X ,A, µ) be a measure space, and let f1, f2, f3, . . . be a
sequence of measurable real-valued functions on X that is Cauchy
in measure. Then the sequence f1, f2, f3, . . . converges in measure
to some measurable real-valued function f on X .

Proof
The sequence f1, f2, f3, . . . of functions is Cauchy in measure and
therefore has a subsequence fj1 , fj2 , fj3 , . . . that converges almost
uniformly on X to some measurable real-valued function f
(Proposition 9.8). We show that the sequence f1, f2, f3, . . .
converges in measure to this limit function f .
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Let strictly positive real numbers ε and δ be given. The
subsequence fj1 , fj2 , fj3 , . . . converges in measure on X to the limit
function f , because it converges almost uniformly to f on X
(Proposition 9.6). Therefore there exists some positive integer M
such that

µ
(
{x ∈ X : |fjk (x)− f (x)| ≥ 1

2ε}
)
< 1

2δ

whenever k ≥ M. Also there exists some positive integer N such
that

µ
(
{x ∈ X : |fp(x)− fq(x)| ≥ 1

2ε}
)
< 1

2δ

whenever p ≥ N and q ≥ N, because the infinite sequence
f1, f2, f3, . . . is Cauchy in measure on X .
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Choose a positive integer k large enough to ensure that k ≥ M
and jk ≥ N, and let g = fjk . Also let

Fj = {x ∈ X : |fj(x)− g(x)| ≥ 1
2ε}

for all positive integers j , and let

G = {x ∈ X : |g(x)− f (x)| ≥ 1
2ε}.

Then µ(Fj) <
1
2δ whenever j ≥ N. Also µ(G ) < 1

2δ. Now if
x ∈ X , and if |fj(x)− g(x)| < 1

2ε and |g(x)− f (x)| < 1
2ε then

|fj(x)− f (x)| ≤ |fj(x)− g(x)|+ |g(x)− f (x)| < ε.

Thus
{x ∈ X : |fj(x)− f (x)| ≥ ε} ⊂ Fj ∪ G

for all positive integers j .
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It follows that if j ≥ N then

µ ({x ∈ X : |fj(x)− f (x)| ≥ ε}) ≤ µ(Fj ∪ G ) ≤ µ(Fj) + µ(G ) < δ.

Thus the infinite sequence f1, f2, f3, . . . of measurable real-valued
functions converges in measure to the limit function f , as
required.
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9.5. Convergence in Mean

Definition

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , where∫
X |fj | dµ < +∞ for all positive integers j , and let f be a

measurable real-valued function on X . We say that the infinite
sequence f1, f2, f3, . . . of functions converges in mean to the
function f if, given any strictly positive real number ε, there exists
some positive integer N such that∫

X
|fj − f | dµ < ε

whenever j ≥ N.
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Definition

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , where∫
X |fj | dµ < +∞ for all positive integers j . We say that the infinite

sequence f1, f2, f3, . . . of functions is Cauchy in mean if given any
strictly positive real number ε, there exists some positive integer N
such that ∫

X
|fj − fk | dµ < ε

whenever j ≥ N and k ≥ N.
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Proposition 9.10

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , where∫
X |fj | dµ < +∞ for all positive integers j , and let f be a

measurable real-valued function on X . Suppose that the infinite
sequence f1, f2, f3, . . . of functions on X is Cauchy in mean and
also converges almost everywhere on X to the limit function f .
Then the infinite sequence f1, f2, f3, . . . of functions on X converges
in mean to the function f .
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Proof
Let some strictly positive real number ε be given, and let ε0 satisfy
0 < ε0 < ε. The infinite sequence f1, f2, f3, . . . of functions is
Cauchy in mean, hence there exists some positive integer N such
that

∫
X |fj − fk | dµ < ε0 whenever j ≥ N and k ≥ N. Taking limits

as k → +∞, and applying Fatou’s Lemma (Lemma 8.25), we find
that ∫

X
|fj − f | dµ =

∫
X

(
lim

k→+∞
|fj − fk |

)
dµ

≤ lim inf
k→+∞

∫
X
|fj − fk | dµ ≤ ε0 < ε

whenever j ≥ N, Therefore lim
j→+∞

∫
X |fj − f | dµ = 0, and thus fj

converges to f in mean, as required.
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Lemma 9.11

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , where∫
X |fj | dµ < +∞ for all positive integers j , and let f be a

measurable real-valued function on X . Suppose that the infinite
sequence f1, f2, f3, . . . of functions on X is converges in mean to
the limit function f . Then this infinite sequence of functions also
converges in measure to the function f .
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Proof
Let

Ej ,ε = {x ∈ X : |fj(x)− f (x)| ≥ ε}

and let χj ,ε denote the characteristic function of the set Ej ,ε for all
positive integers j and for all positive real numbers ε. Then
|fj(x)− f (x)| ≥ εχj ,ε(x) for all x ∈ X , positive integers j and
positive real numbers ε, and therefore∫

X
|fj − f | dx ≥ εµ(Ej ,ε)

for all positive integers j and for all positive real number ε.
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Now let positive real numbers ε and δ be given. The sequence
f1, f2, f3, . . . is Cauchy in mean. It follows that there exists some
positive integer N such that

∫
X |fj − f | dµ < εδ whenever j ≥ N.

Then µ(Ej ,ε) < δ whenever j ≥ N. The result follows.
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Lemma 9.12

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , where∫
X |fj | dµ < +∞ for all positive integers j . Suppose that the

infinite sequence f1, f2, f3, . . . of functions on X is Cauchy in mean.
Then this infinite sequence of functions is also Cauchy in measure.
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Proof
Let

Ej ,k,ε = {x ∈ X : |fj(x)− fk(x)| ≥ ε}

and let χj ,k,ε denote the characteristic function of the set Ej ,k,ε for
all positive integers j and k and for all positive real numbers ε.
Then |fj(x)− fk(x)| ≥ εχj ,k,ε(x) for all x ∈ X , positive integers j
and k and positive real numbers ε, and therefore∫

X
|fj − fk | dx ≥ εµ(Ej ,k,ε)

for all positive integers j and k and for all positive real number ε.
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Now let positive real numbers ε and δ be given. The sequence
f1, f2, f3, . . . is Cauchy in mean. It follows that there exists some
positive integer N such that

∫
X |fj − fk | dµ < εδ whenever j ≥ N

and k ≥ N. Then µ(Ej ,k,ε) < δ whenever j ≥ N and k ≥ N. The
result follows.
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Proposition 9.13

Let (X ,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X , where∫
X |fj | dµ < +∞ for all positive integers j . Suppose that the

infinite sequence f1, f2, f3, . . . of functions on X is Cauchy in mean.
Then this infinite sequence of functions converges in mean to some
measurable real-valued function f for which

∫
X |f | dµ < +∞.
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Proof
The infinite sequence f1, f2, f3, . . . of functions is Cauchy in mean.
It is therefore Cauchy in measure (Lemma 9.12). It therefore has a
subsequence fj1 , fj2 , fj3 , . . . that converges almost uniformly on X to
some measurable real-valued function f on X (Proposition 9.8).
This subsequence converges pointwise almost everywhere on X to
the limit function f , (Lemma 9.3), and therefore converges in
mean to the function f (Proposition 9.10). A positive integer k
can then be chosen large enough to ensure that

∫
X |fjk − f | dµ ≤ 1.

It then follows that∫
X
|f | dµ ≤

∫
X
|fjk | dµ+

∫
X
|fjk − f | dµ ≤

∫
X
|fjk | dµ+ 1 < +∞.

To complete the proof we show that the original sequence
f1, f2, f3, . . . converges in mean to the limit function f .
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Let some strictly positive real number ε be given. Then there exist
positive integers M and N that are large enough to ensure that∫
X |fjk − f | dµ < 1

2ε whenever k ≥ M and
∫
X |fs − ft | dµ < 1

2ε
whenever s ≥ N and t ≥ N. Let some positive integer k be chosen
large enough to ensure that k ≥ M and jk ≥ N. Then∫

X
|fn − f | dµ ≤

∫
X
|fn − fjk | dµ+

∫
X
|fjk − f | dµ < ε

whenever n ≥ N. Thus lim
n→+∞

∫
X |fn − f | dµ = 0. The result

follows.
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9.6. Hölder’s Inequality

Lemma 9.14 (Young’s Inequality)

Let a and b be non-negative real numbers, and let p and q be real

numbers for which p > 1, q > and
1

p
+

1

q
= 1. Then

ab ≤ ap

p
+

bq

q
.

Proof
First we show that e(1−t)u+tv ≤ (1− t)eu + tev for all real
numbers u, v and t satisfying 0 ≤ t ≤ 1. This is a consequence of
the fact that the derivative of the exponential function is
increasing. The result clearly holds when u = v , and moreover the
form of the inequality is preserved on swapping u and v and
replacing t by 1− t. It therefore suffices to verify that the above
inequality holds in the case when u < v .



9. Modes of Convergence on Measure Spaces (continued)

Suppose then that u < v , and let

f (t) = (1− t)eu + tev − e(1−t)u+tv .

for all real numbers t. Then f (0) = f (1) = 0 and

f ′(t) = ev − eu − (v − u)e(1−t)u+tv .

From this expression we see that f ′(t) is a decreasing function of
t. It must therefore be the case that f ′(0) > 0 and f ′(1) < 0. This
is then a real number t0 satisfying 0 < t0 < 1 for which f ′(t0) = 0.
The function f is then an increasing function of t on the interval
[0, t0] and a decreasing function of t on the interval [t0, 1]. But
f (0) = f (1) = 0. It follows that f (t) > 0 whenever 0 < t < 1, and
thus e(1−t)u+tv < (1− t)eu + tev for all real numbers u, v and t
satisfying u < v and 0 < t < 1. This completes the verification
that e(1−t)u+tv ≤ (1− t)eu + tev in all cases where u, v and t are
real numbers and 0 ≤ t ≤ 1.
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Now let a and b be positive real numbers, and let p and q be real
numbers for which p > 1, q > 1 and p−1 + q−1 = 1. Let
u = p log a, v = q log b and t = 1/q. Then 1− t = 1/p, and
therefore

e(1−t)u+tv = e log a+log b = e log ae log b = ab.

Also

(1− t)eu =
1

p
ep log a =

ap

p
and tev =

1

q
eq log b =

bq

q
.

The inequality previously established therefore ensures that

ab ≤ ap

p
+

bq

q

for all positive real numbers a and b. This inequality also holds
when a ≥ 0, b ≥ 0 and either a = 0 or b = 0. The result
follows.
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Alternative Proof
Let p and q be real numbers satisfying p > 1, q > 1 and
p−1 + q−1 = 1. Then q − 1 = 1/(p − 1). It follows that if x and y
are positive real numbers then y = xp−1 if and only if x = yq−1.
Let a and b be positive real numbers. Then the rectangle in R2

with vertices (0, 0), (a, 0), (a, b) and (0, b) is contained in the
union of the regions A and B, where

A = {(x , y) ∈ R2 : 0 ≤ x ≤ a and 0 ≤ y ≤ xp−1},
B = {(x , y) ∈ R2 : 0 ≤ y ≤ b and 0 ≤ x ≤ yq−1}.

It follows that

ab ≤
∫ a

0
xp−1 dx +

∫ b

0
yq−1 dy =

ap

p
+

bq

q
,

as required.
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Proposition 9.15 (Hölder’s Inequality)

Let (X ,A, µ) be a measure space, let p and q be real numbers
satisfying the conditions p > 1, q > 1 and p−1 + q−1 = 1, and let
f and g be measurable real-valued functions on X . Suppose that
the functions |f |p and |g |q are integrable. Then the function fg is
integrable and∫

X
|fg | dµ ≤

(∫
X
|f |p dµ

) 1
p
(∫

X
|g |q dµ

) 1
q

.
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Proof
Let

‖f ‖p =

(∫
X
|f |p dµ

) 1
p

and ‖g‖q =

(∫
X
|g |q dµ

) 1
q

.

The identity ab ≤ p−1ap + q−1bq holds for all non-negative real
numbers a and b. (Lemma 9.14). Setting a = |f (x)|/‖f ‖p and
b = |g(x)|/‖g‖q, and integrating over the space X we find that

1

‖f ‖p ‖g‖q

∫
X
|fg | dµ ≤ 1

p ‖f ‖pp

∫
X
|f |p dµ+

1

q ‖g‖qq

∫
X
|g |q dµ

=
1

p
+

1

q
= 1.

Thus
∫
X |fg | dµ ≤ ‖f ‖p ‖g‖q, as required.
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9.7. Minkowski’s Inequality

Proposition 9.16 (Minkowski’s Inequality)

Let (X ,A, µ) be a measure space, let p be a real number satisfying
the conditions p ≥ 1, and let f and g be measurable real-valued
functions on X . Suppose that the functions |f |p and |g |p are
integrable. Then the function |f + g |p is integrable and(∫

X
|f + g |p dµ

) 1
p

≤
(∫

X
|f |p dµ

) 1
p

+

(∫
X
|g |p dµ

) 1
p

.
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Proof
The result in the case p = 1 follows immediately on integrating the
inequality |f + g | ≤ |f |+ |g | over the measure space X . It remains
therefore to prove the result in the case p > 1. There then exists
some positive real number q, such that q > 1 and p−1 + q−1 = 1.
Then 1/q = (p − 1)/p, and thus p = (p − 1)q. Let

‖f ‖p =

(∫
X
|f |p dµ

) 1
p

, ‖g‖p =

(∫
X
|g |p dµ

) 1
p

and

‖f + g‖p =

(∫
X
|f + g |p dµ

) 1
p

.

We may assume moreover that ‖f + g‖p > 0, since the required
inequality is trivially satisfied in cases where ‖f + g‖ = 0. Now,
applying Hölder’s Inequality (Proposition 9.15), we find that
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‖f + g‖pp =

∫
X
|f + g |p dµ

≤
∫
X
|f + g |p−1(|f |+ |g |) dµ

≤
(∫

X
|f + g |(p−1)q dµ

) 1
q

(‖f ‖p + ‖g‖p)

=

(∫
X
|f + g |p dµ

)1− 1
p

(‖f ‖p + ‖g‖p)

= ‖f + g‖p−1p (‖f ‖p + ‖g‖p)

Thus ‖f + g‖pp ≤ ‖f + g‖p−1p (‖f ‖p + ‖g‖p). Dividing both sides

of the inequality by |f + g |p−1p , we find that
‖f + g‖p ≤ ‖f ‖p + ‖g‖p, as required.
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9.8. Convergence in Lp norm

Definition

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j , and let f be a measurable real-valued function on X .
We say that the infinite sequence f1, f2, f3, . . . of functions
converges in Lp norm to the function f if, given any strictly positive
real number ε, there exists some positive integer N such that∫

X
|fj − f |p dµ < εp

whenever j ≥ N.
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Given a measure space (X ,A, µ), and given a real number p
satisfying p ≥ 1, it is convenient to define

‖f ‖p =

(∫
X
|f |p dµ

) 1
p

for all measurable real-valued functions f on X for which∫
X |f |

p dµ < +∞. With this notation, we can say that if
f1, f2, f3, . . . is an infinite sequence of measurable real-valued
functions on X , where

∫
X |f |

p dµ < +∞, and if f is a measurable
real-valued function on X , then the infinite sequence f1, f2, f3 of
functions converges to the the limit function f in Lp norm if and
only if lim

j→+∞
‖fj − f ‖p = 0.
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Definition

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j . We say that the infinite sequence f1, f2, f3, . . . of
functions is Cauchy in Lp norm if given any strictly positive real
number ε, there exists some positive integer N such that∫

X
|fj − fk |p dµ < εp

whenever j ≥ N and k ≥ N.
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Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j . The infinite sequence f1, f2, f3, . . . of functions on X is
then Cauchy in Lp norm if, given any positive real number ε, there
exists some positive integer N such that ‖fj − fk‖p < ε whenever
j ≥ N and k ≥ N.

An infinite sequence of measurable real-valued functions on a
measure space converges in L1 norm if and only if it converges in
mean. Similarly an infinite sequence of measurable real-valued
functions on a measure space is Cauchy in L1 norm if and only if it
is Cauchy in mean. The following results, and their proofs,
accordingly generalize those previously stated and proved for
sequences of functions that converge in mean or are Cauchy in
mean.
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Proposition 9.17

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j , and let f be a measurable real-valued function on X .
Suppose that the infinite sequence f1, f2, f3, . . . of functions on X is
Cauchy in Lp norm and also converges almost everywhere on X to
the limit function f . Then the infinite sequence f1, f2, f3, . . . of
functions on X converges in Lp norm to the function f .



9. Modes of Convergence on Measure Spaces (continued)

Proof
Let some strictly positive real number ε be given, and let ε0 satisfy
0 < ε0 < ε. The infinite sequence f1, f2, f3, . . . of functions is
Cauchy in Lp norm, hence there exists some positive integer N
such that ‖fj − fk‖p < ε0 whenever j ≥ N and k ≥ N. Taking
limits as k → +∞, and applying Fatou’s Lemma (Lemma 8.25),
we find that∫

X
|fj − f |p dµ =

∫
X

(
lim

k→+∞
|fj − fk |p

)
dµ

≤ lim inf
k→+∞

∫
X
|fj − fk |p dµ ≤ εp0 < εp

whenever j ≥ N, Therefore lim
j→+∞

‖fj − f ‖p = 0, and thus fj

converges to f in Lp norm, as required.
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Lemma 9.18

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j , and let f be a measurable real-valued function on X .
Suppose that the infinite sequence f1, f2, f3, . . . of functions on X is
converges in Lp norm to the limit function f . Then this infinite
sequence of functions also converges in measure to the function f .
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Proof
Let

Ej ,ε = {x ∈ X : |fj(x)− f (x)| ≥ ε}

and let χj ,ε denote the characteristic function of the set Ej ,ε for all
positive integers j and for all positive real numbers ε. Then
|fj(x)− f (x)|p ≥ εpχj ,ε(x) for all x ∈ X , positive integers j and
positive real numbers ε, and therefore∫

X
|fj − f |p dx ≥ εpµ(Ej ,ε)

for all positive integers j and for all positive real number ε.
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Now let positive real numbers ε and δ be given. The sequence
f1, f2, f3, . . . is Cauchy in Lp norm. It follows that there exists some

positive integer N such that ‖fj − f ‖p < εδ
1
p whenever j ≥ N.

Then µ(Ej ,ε) < δ whenever j ≥ N. The result follows.
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Lemma 9.19

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j . Suppose that the infinite sequence f1, f2, f3, . . . of
functions on X is Cauchy in Lp norm. Then this infinite sequence
of functions is also Cauchy in measure.
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Proof
Let

Ej ,k,ε = {x ∈ X : |fj(x)− fk(x)| ≥ ε}

and let χj ,k,ε denote the characteristic function of the set Ej ,k,ε for
all positive integers j and k and for all positive real numbers ε.
Then |fj(x)− fk(x)|p ≥ εpχj ,k,ε(x) for all x ∈ X , positive
integers j and k and positive real numbers ε, and therefore∫

X
|fj − fk |p dx ≥ εpµ(Ej ,k,ε)

for all positive integers j and k and for all positive real number ε.
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Now let positive real numbers ε and δ be given. The sequence
f1, f2, f3, . . . is Cauchy in Lp norm. It follows that there exists some

positive integer N such that ‖fj − fk‖p < εδ
1
p whenever j ≥ N and

k ≥ N. Then µ(Ej ,k,ε) < δ whenever j ≥ N and k ≥ N. The result
follows.
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Proposition 9.20

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable
real-valued functions on X , where

∫
X |fj |

p dµ < +∞ for all positive
integers j . Suppose that the infinite sequence f1, f2, f3, . . . of
functions on X is Cauchy in Lp norm. Then this infinite sequence
of functions converges in Lp norm to some measurable real-valued
function f for which

∫
X |f |

p dµ < +∞.
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Proof
The infinite sequence f1, f2, f3, . . . of functions is Cauchy in Lp

norm. It is therefore Cauchy in measure (Lemma 9.19). It
therefore has a subsequence fj1 , fj2 , fj3 , . . . that converges almost
uniformly on X to some measurable real-valued function f on X
(Proposition 9.8). The subsequence fj1 , fj2 , fj3 , . . . then converges
pointwise almost everywhere on X to the limit function f
(Lemma 9.3), and therefore converges in Lp norm to the
function f (Proposition 9.17). A positive integer k can then be
chosen large enough to ensure that ‖fjk − f ‖p ≤ 1. It then follows
from Minkowski’s inequality (Proposition 9.16) that(∫

X
|f |p dµ

) 1
p

≤ ‖fjk‖p + ‖fjk − f ‖p ≤ ‖fjk‖p + 1 < +∞.

To complete the proof we show that the original sequence
f1, f2, f3, . . . converges in Lp norm to the limit function f .
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Let some strictly positive real number ε be given. Then there exist
positive integers M and N that are large enough to ensure that
‖fjk − f ‖p < 1

2ε whenever k ≥ M and ‖fs − ft‖p < 1
2ε whenever

s ≥ N and t ≥ N. Let some positive integer k be chosen large
enough to ensure that k ≥ M and jk ≥ N. Then

‖fn − f ‖p ≤ ‖fn − fjk‖p + ‖fjk − f ‖p < ε

whenever n ≥ N. Thus lim
n→+∞

‖fn − f ‖p = 0. The result

follows.
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9.9. The Lp Spaces

Let (X ,A, µ) be a measure space, let p be a real number satisfying
p ≥ 1, and let Lp(X , µ) denote the collection consisting of all
measurable real-valued functions f on X with the property that∫
X |f |

p dµ < +∞. It follows from Minkowski’s Inequality
(Proposition 9.16) that the sum of two real-valued functions
belonging to Lp(X , µ) itself belongs to Lp(X , µ), and thus
Lp(X , µ) is a real vector space.

Let

‖f ‖p =

(∫
X
|f |p dµ

) 1
p

for all f ∈ Lp(X , µ). Then ‖f ‖p ≥ 0 and ‖cf ‖p = |c | ‖f ‖p for all
f ∈ Lp(X , µ) and for all real numbers c . Also Minkowski’s
Inequality (Proposition 9.16) ensures that ‖f + g‖p ≤ ‖f ‖p + ‖g‖p
for all f , g ∈ Lp(X , µ).
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However it is not the case that ‖f ‖p = 0 implies that f = 0. In
fact ‖f ‖p = 0 if and only if the set {x ∈ X : f (x) 6= 0} has
measure zero, so that the function f is equal to zero almost
everywhere on X .

Now it is an easy exercise to verify that the relation of being equal
almost everywhere is an equivalence relation on the set of
functions that belong to Lp(X , µ). This relation therefore
partitions the set Lp(X , µ) into equivalence claases. Let f be a
measurable real-valued function on X for which |f |p is integrable
on X . The equivalence class [f ]p of f then consists of those
measurable real-valued functions on X that are equal to the
function f almost everywhere on X .
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Now if f , g , f̃ and g̃ are measurable functions on X , if c is a real
numher, if f and f̃ are equal almost everywhere on X , and if g and
g̃ are equal almost everywhere on X , then cf and cf̃ are equal
almost everywhere on X , and f + g and f̃ + g̃ are equal almost
everywhere on X . We may therefore add together equivalence
classes of functions belonging to Lp(X , µ) and multiply them by
real scalars so that [f ]p + [g ]p = [f + g ]p and [cf ]p = c[fp] for all
f , g ∈ Lp(X , µ) and for all real numbers c . Also ‖f ‖p = ‖f̃ ‖p
whenever the measurable real-valued functions f and f̃ are equal
almost everywehre on X and belong to the vector space Lp(X , µ).
We may therefore define ‖[f ]p‖p = ‖f ‖p for all f ∈ Lp(X , µ).
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Now let Lp(X , µ) denote the set of all equivalence classes [f ]p of
measurable real-valued functions on X that belong to Lp(X , µ),
where two such functions on X belong to the same equivalence
class if and only if they are equal almost everywhere on X .
Denoting the equivalence class of any member f of Lp(X , µ) by
[f ]p, we note that there are well-defined operations of addition and
multiplication-by-scalars on Lp(X , µ), where

[f ]p + [g ]p = [f + g ]p, c[f ]p = [cf ]p

for all f , g ∈ Lp(X , µ) and for all real numbers c.
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Also setting ‖[f ]p‖p = ‖f ‖p for all f ∈ Lp(X , µ), where

‖f ‖p =

(∫
X
|f |p dµ

) 1
p

,

we find that ‖[f ]p‖p ≥ 0, ‖c[f ]p‖p = |c | ‖[f ]p‖p and
‖[f ]p + [g ]p‖p ≤ ‖[f ]p‖p + ‖[g ]p‖p for all f , g ∈ L(X , µ) and for
all real numbers c . Also ‖[f ]p‖p = 0 if and only if [f ]p = [0]p. It
follows that the function that maps the equivalence class [f ]p of
each member f of Lp(X , µ) to the non-negative real number ‖f ‖p
is a norm on the vector space Lp(X , µ). We obtain in this fashion
a normed vector space Lp(X , µ) whose elements are equivalence
classes of measurable real-valued functions f on X . A measurable
real-valued function f on X determines a corresponding element of
Lp(X , µ) if and only if

∫
X |f |

p dµ < +∞. Two such functions
determine the same element of Lp(X , µ) if and only if they are
equal almost everywhere on X with respect to the measure µ.
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Proposition 9.20 ensures that the normed vector space Lp(X , µ) is
complete for all real numbers p satisfying p ≥ 1. The space
Lp(X , µ) is thus a Banach space. (Banach spaces are complete
normed vector spaces.) This result is of fundamental importance in
many branches of mathematics developed from the early twentieth
century onwards.
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