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7. Measure Spaces

7. Measure Spaces

7.1. Blocks

Definition

We define a block in Rn to be a subset of Rn that is a Cartesian
product of subsets of R that are bounded intervals or singleton
sets.

Let B be a block in Rn. Then there exist bounded intervals or
singleton sets I1, I2, . . . , In in R such that B = I1 × I2 × · · · × In.
Let ai and bi denote the endpoints of the interval Ii or singleton
set for i = 1, 2, . . . , n, where ai ≤ bi . Then the interval Ii must
coincide with one of the intervals (ai , bi ), (ai , bi ], [ai , bi ) and
[ai , bi ] determined by its endpoints, where

(ai , bi ) = {x ∈ R : ai < x < bi}, (ai , bi ] = {x ∈ R : ai < x ≤ bi}

[ai , bi ) = {x ∈ R : ai ≤ x < bi}, [ai , bi ] = {x ∈ R : ai ≤ x ≤ bi}.
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Definition

Let B be a block in Rn, and let B = I1 × I2 × · · · × In, where, for
each integer i between 1 and n, either Ii is an interval of strictly
positive length or else Ii is a singleton set consisting of a single real
number. We define the dimension of the block B to be the number
of values of i for which the subset Ii of R is an interval of positive
length.

Thus a k-dimensional block B in Rn is the Cartesian product of k
bounded intervals of strictly positive length and n − k singleton
sets.
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The following two results, characterizing open and closed blocks in
n-dimensional Euclidean space Rn follow directly on applying the
definition of open and closed sets in Rn.

Lemma 7.1

A block in Rn is open in Rn if it is the Cartesian product of n
bounded open intervals.

Lemma 7.2

A block in Rn is closed in Rn if it is the Cartesian product of
bounded closed intervals and singleton sets.
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Note that a closed one-dimensional block in R is a closed bounded
interval, and a closed one-dimensional block in Rn is a closed
bounded line segment parallel to one of the coordinate axes. A
closed two-dimensional block in Rn is a closed rectangle with each
side parallel to some coordinate axis.
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Definition

Let B be a block in Rn, and let

B = I1 × I2 × · · · × In

where Ii is a bounded interval or singleton set in R for
i = 1, 2, . . . , n. . The (n-dimensional) content m(B) is defined so
that

m(B) =
n∏

i=1

(bi − ai ),

where ai and bi are the lower and upper endpoints respectively of
the interval or singleton set Ii for i = 1, 2, . . . , n. (Thus, for each
integer i between 1 and n, ai = inf Ii , bi = sup Ii , bi > ai in cases
where Ii is an interval of positive length, and bi = ai in cases
where Ii is a singleton set.)
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Proposition 7.3

Let B be a block in n-dimensional Euclidean space Rn, and let
B1,B2, . . . ,Bs be a finite collection of blocks in Rn. Suppose that

the blocks B1,B2, . . . ,Bs are pairwise disjoint and B =
s⋃

k=1

Bk .

Then m(B) =
s∑

k=1

m(Bk).

Proof
The statement of this proposition is an immediate consequence, or
particular case, of Corollary 6.24.
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Proposition 7.4

Let B1,B2, . . . ,Bs be a finite list whose members are blocks in Rn.
Then there exists a finite list D1,D2, . . . ,Dq of blocks in Rn such
that the blocks D1,D2, . . . ,Dq are pairwise disjoint and such that,
for k = 1, 2, . . . , s, the block Bk is the union of those blocks in the
list D1,D2, . . . ,Dq that are contained in Bk . Moreover the content
m(Bk) is equal to the sum of the contents m(Dj) of those blocks
Dj in the list D1,D2, . . . ,Dq for which Dj ⊂ Bk .
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Proof
The collection of subsets of R consisting of the empty set, the
singleton sets that are of the form {c} for some real number c ,
and the bounded intervals is a semiring of subsets of R.
(Lemma 6.5). Applying Proposition 6.14 we deduce that those
subsets of Rn that are blocks constitute a semiring of subsets of
Rn. Indeed the definition of blocks ensures that each block in Rn

is a Cartesian product of subsets of R that are singleton sets or
bounded intervals. The result concerning the existence of the finite
list D1,D2, . . . ,Dq of blocks therefore follows from
Proposition 6.8.
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Proposition 7.5

Let B be a block in n-dimensional Euclidean space Rn, and let
B1,B2, . . . ,Bs be a finite collection of blocks in Rn. Suppose that

B ⊂
s⋃

k=1

Bk . Then m(B) ≤
s∑

k=1

m(Bk).

Proof
The collection of subsets of R consisting of the empty set, the
singleton sets that are of the form {c} for some real number c ,
and the bounded intervals is a semiring of subsets of R. The
required result therefore follows immediately on applying
Proposition 6.19.
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Proposition 7.6

Let B be a block in n-dimensional Euclidean space Rn, and let
B1,B2, . . . ,Bs be a finite collection of blocks in Rn. Suppose that
the blocks B1,B2, . . . ,Bs are pairwise disjoint and are contained in

B. Then
s∑

k=1

m(Bk) ≤ m(B).

Proof
The collection of subsets of R consisting of the empty set, the
singleton sets that are of the form {c} for some real number c ,
and the bounded intervals is a semiring of subsets of R. The
required result therefore follows immediately on applying
Proposition 6.20.
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Lemma 7.7

Let B be an block in Rn, and let ε be any positive real number.
Then there exist a closed block F and and open block V such that
F ⊂ B ⊂ V , m(F ) > m(B)− ε and m(V ) < m(B) + ε.

Proof
Suppose that B = I1 × I2 × · · · × In, where I1, I2, . . . , In are
bounded intervals. Now

lim
h→0

n∏
i=1

(m(Ii ) + h) =
n∏

i=1

m(Ii ) = m(B).

It follows that, given any positive real number ε, we can choose
the positive real number δ small enough to ensure that

n∏
i=1

(m(Ii )− δ) > m(B)− ε,
n∏

i=1

(m(Ii ) + δ) < m(B) + ε.



7. Measure Spaces (continued)

Let F = J1 × J2 × · · · × Jn and V = K1 × K2 × · · · × Kn, where
J1, J2, . . . , Jn are closed bounded intervals chosen such that Ji ⊂ Ii
and m(Ji ) > m(Ii )− δ for i = 1, 2, . . . , n, and K1,K2, . . . ,Kn are
open bounded intervals chosen such that Ii ⊂ Ki and
m(Ki ) < m(Ii ) + δ for i = 1, 2, . . . , n. Then F is a closed block, V
is an open block, F ⊂ B ⊂ V , m(F ) > m(B)− ε and
m(V ) < m(B) + ε, as required.
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Any closed n-dimensional block F is a compact subset of Rn. This
means that, given any collection V of open sets in Rn that covers
F (so that each point of F belongs to at least one of the open sets
in the collection), there exists some finite collection V1,V2, . . . ,Vs

of open sets belonging to the collection V such that

F ⊂ V1 ∪ V2 ∪ · · · ∪ Vs .

We shall use this property of closed blocks in order to generalize
Proposition 7.5 to countable infinite unions of blocks.
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Proposition 7.8

Let A be a block in n-dimensional Euclidean space Rn, and let C
be a countable collection of blocks in Rn. Suppose that
A ⊂

⋃
B∈C B. Then m(A) ≤

∑
B∈C

m(B).

Proof
There is nothing to prove if

∑
B∈C

m(B) = +∞. We may therefore

restrict our attention to the case where
∑
B∈C

m(B) < +∞.

Moreover the result is an immediate consequence of
Proposition 7.5 if the collection C is finite. It therefore only
remains to prove the result in the case where the collection C is
infinite, but countable.
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In that case there exists an infinite sequence B1,B2,B3, . . . of
blocks with the property that each block in the collection C occurs
exactly once in the sequence. Let some positive real number ε be
given. It follows from Lemma 7.7 that there exists a closed
block F such that F ⊂ A and m(F ) ≥ m(A)− ε. Also, for each
k ∈ N, there exists an open block Vk such that Bk ⊂ Vk and

m(Vk) < m(Bk) + 2−kε. Then F ⊂
+∞⋃
k=1

Vk , and thus

{V1,V2,V3, . . .} is a collection of open sets in Rn which covers the
closed bounded set F . It follows from the compactness of F that
there exists a finite collection k1, k2, . . . , ks of positive integers
such that F ⊂ Vk1 ∪ Vk2 ∪ · · · ∪ Vks . It then follows from
Proposition 7.5 that

m(F ) ≤ m(Vk1) + m(Vk2) + · · ·+ m(Vks ).
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Now
1

2k1
+

1

2k2
+ · · ·+ 1

2ks
≤

+∞∑
k=1

1

2k
= 1,

and therefore

m(F ) ≤ m(Vk1) + m(Vk2) + · · ·+ m(Vks )

≤ m(Bk1) + m(Bk2) + · · ·+ m(Bks ) + ε

≤
+∞∑
k=1

m(Bk) + ε.

Also m(A) < m(F ) + ε. It follows that

m(A) ≤
+∞∑
k=1

m(Bk) + 2ε.
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Moreover this inequality holds no matter how small the value of
the positive real number ε. It follows that

m(A) ≤
+∞∑
k=1

m(Bk),

as required.
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7.2. Lebesgue Outer Measure

We say that a collection C of n-dimensional blocks covers a
subset E of Rn if E ⊂

⋃
B∈C B, (where

⋃
B∈C B denotes the union

of all the blocks belonging to the collection C). Given any subset E
of Rn, we shall denote by CCBn(E ) the set of all countable
collections of n-dimensional blocks that cover the set E .

Definition

Let E be a subset of Rn. We define the Lebesgue outer measure
µ∗(E ) of E to be the infimum, or greatest lower bound, of the
quantities

∑
B∈C

m(B), where this infimum is taken over all countable

collections C of n-dimensional blocks that cover the set E . Thus

µ∗(E ) = inf

{∑
B∈C

m(B) : C ∈ CCBn(E )

}
.
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The Lebesgue outer measure µ∗(E ) of a subset E of Rn is thus the
greatest extended real number l with the property that
l ≤

∑
B∈C

m(B) for any countable collection C of n-dimensional

blocks that covers the set E . In particular, µ∗(E ) = +∞ if and
only if

∑
B∈C

m(B) = +∞ for every countable collection C of

n-dimensional blocks that covers the set E .

Note that µ∗(E ) ≥ 0 for all subsets E of Rn.
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Lemma 7.9

Let E be a block in Rn. Then µ∗(E ) = m(E ), where m(E ) is the
content of the block E.

Proof
It follows from Proposition 7.8 that m(E ) ≤

∑
B∈C

m(B) for any

countable collection of n-dimensional blocks that covers the
block E . Therefore m(E ) ≤ µ∗(E ). But the collection {E}
consisting of the single block E is itself a countable collection of
blocks covering E , and therefore µ∗(E ) ≤ m(E ). It follows that
µ∗(E ) = m(E ), as required.
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Lemma 7.10

Let E and F be subsets of Rn. Suppose that E ⊂ F . Then
µ∗(E ) ≤ µ∗(F ).

Proof
Any countable collection of n-dimensional blocks that covers the
set F will also cover the set E , and therefore
CCBn(F ) ⊂ CCBn(E ). It follows that

µ∗(F ) = inf

{∑
B∈C

m(B) : C ∈ CCBn(F )

}

≥ inf

{∑
B∈C

m(B) : C ∈ CCBn(E )

}
= µ∗(E ),

as required.
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Proposition 7.11

Let E be a countable collection of subsets of Rn. Then

µ∗
(⋃

E∈E
E
)
≤
∑
E∈E

µ∗(E ).

Proof
Let K = N in the case where the countable collection E is infinite,
and let K = {1, 2, . . . ,m} in the case where the collection E is
finite and has m elements. Then there exists a bijective function
ϕ : K → E . We define Ek = ϕ(k) for all k ∈ K . Then
E = {Ek : k ∈ K}, and any subset of Rn belonging to the
collection E is of the form Ek for exactly one element k of the
indexing set K .
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Let some positive real number ε be given. Then corresponding to
each element k of K there exists a countable collection Ck of
n-dimensional blocks covering the set Ek for which∑

B∈Ck

m(B) < µ∗(Ek) +
ε

2k
.

Let C =
⋃

k∈K Ck . Then C is a collection of n-dimensional blocks
that covers the union

⋃
E∈E E of all the sets in the collection E .

Moreover every block belonging to the collection C belongs to at
least one of the collections Ck , and therefore belongs to exactly
one of the collections Dk , where Dk = Ck \

⋃
j<k Cj . It follows that
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µ∗
(⋃

E∈E
E
)
≤

∑
B∈C

m(B) =
∑
k∈K

∑
B∈Dk

m(B)

≤
∑
k∈K

∑
B∈Ck

m(B) ≤
∑
k∈K

(
µ∗(Ek) +

ε

2k

)
≤

∑
k∈K

µ∗(Ek) + ε

Thus µ∗
(⋃

E∈E E
)
≤
∑
k∈K

µ∗(Ek) + ε, no matter how small the

value of ε. It follows that µ∗
(⋃

E∈E E
)
≤
∑
k∈K

µ∗(Ek), as

required.
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Proposition 7.12

Let B be a block in Rn. Then

µ∗(A) = µ∗(A ∩ B) + µ∗(A \ B)

for all subsets A of Rn.

Proof
First we deal with the case when µ∗(A) = +∞, and this case either
µ∗(A ∩ B) = +∞ or else µ∗(A \ B) = +∞ because otherwise the
subadditivity of Lebesgue outer measure (Proposition 7.11) would
ensure that µ∗(A), being non-negative and less than the sum of
two finite quantities, would itself be a finite quantity. The stated
result is thus valid in cases where µ∗(A) = +∞.
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Now suppose that µ∗(A) < +∞. Let some positive real number ε
be given. It then follows from the definition of Lebesgue outer
measure that there exists a collection (Ci : i ∈ I ) of blocks indexed
by a countable set I for which∑

i∈I
m(Ci ) < µ∗(A) + ε.

Then, for each i ∈ I , Proposition 7.4 guarantees the existence of a
finite list Di ,1,Di ,2, . . .Di ,q(i) of blocks satisfying the following
conditions:

the blocks Di ,1,Di ,2, . . .Di ,q(i) are pairwise disjoint;

Ci is the union of all the blocks Di ,k for which 1 ≤ k ≤ q(i);

Ci ∩ B is the union of those blocks Di ,k with 1 ≤ k ≤ q(i) for
which Di ,k ⊂ Ci ∩ B.
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For each i ∈ I , let L(i) denote the set of integers between 1 and
q(i) for which Di ,k 6⊂ Ci ∩ B. and let I0 denote the subset of I
consisting of those i ∈ I for which L(i) is non-empty. Then

Ci \ B ⊂
⋃

k∈L(i)
Di ,k

for all i ∈ I0, and

A \ B ⊂
⋃

i∈I0
(Ci \ B),

and therefore
A \ B ⊂

⋃
i∈I0

⋃
k∈L(i)

Di ,k

It then follows from the definition of Lebesgue outer measure that

µ∗(A \ B) ≤
∑
i∈I0

∑
k∈L(i)

m(Di ,k),

where m(Di ,k) denotes the content of the block Di ,k for all i ∈ I
and for all integers k in the range 1 ≤ k ≤ q(i).
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But, for each i ∈ I0, the content m(Ci ) of the block Ci is equal to
the sum of the contents m(Di ,k) of the blocks Di ,k for all integer
values of k satisfying 1 ≤ k ≤ q(i) (see Proposition 7.3), whilst
the content m(Ci ∩ B) of the block Ci ∩ B is equal to the sum of
the contents m(Di ,k) of those blocks Di ,k with 1 ≤ k ≤ q(i) for
which Di ,k ⊂ Ci ∩ B. It follows that, for all i ∈ I0,∑

k∈L(i)

m(Di ,k) = m(Ci )−m(Ci ∩ B).

Also m(Ci ) = m(Ci ∩ B) for all i ∈ I \ I0. It follows that

µ∗(A \ B) ≤
∑
i∈I0

∑
k∈L(i)

m(Di ,k)

=
∑
i∈I0

(m(Ci )−m(Ci ∩ B))

=
∑
i∈I

(m(Ci )−m(Ci ∩ B)).
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The definition of definition of Lebesgue outer measure also ensures
that

µ∗(A ∩ B) ≤
∑
i∈I

m(Ci ∩ B).

Adding these two inequalities, we find that

µ∗(A ∩ B) + µ∗(A \ B) ≤
∑
i∈I

µ(Ci ) < µ∗(A) + ε.
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We have now shown that

µ∗(A ∩ B) + µ∗(A \ B) < µ∗(A) + ε

for all strictly positive numbers ε. It follows that

µ∗(A ∩ B) + µ∗(A \ B) ≤ µ∗(A).

The reverse inequality

µ∗(A) ≤ µ∗(A ∩ B) + µ∗(A \ B),

is a consequence of Proposition 7.11. It follows that

µ∗(A) = µ∗(A ∩ B) + µ∗(A \ B),

as required.
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7.3. Outer Measures

Definition

Let X be a set, and let P(X ) be the collection of all subsets of X .
An outer measure λ : P(X )→ [0,+∞] on X is a function,
mapping subsets of X to non-negative extended real numbers,
which has the following properties:

(i) λ(∅) = 0;

(ii) λ(E ) ≤ λ(F ) for all subsets E and F of X that satisfy E ⊂ F ;

(iii) λ
(⋃

E∈E E
)
≤
∑
E∈E

λ(E ) for any countable collection E of

subsets of X .

Lebesgue outer measure is an outer measure on the set Rn. (This
follows directly from the definition of Lebesgue outer measure, and
from Lemma 7.10 and Proposition 7.11.)
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We shall prove that any outer measure on a set X determines a
collection of subsets of X with particular properties. The subsets
belonging to this collection are known as measurable sets. Any
countable union or intersection of measurable sets is itself a
measurable set. Also any difference of measurable sets is itself a
measurable set. We shall also prove that if C is any countable
collection of pairwise disjoint measurable sets then
λ
(⋃

E∈E E
)

=
∑
E∈E

λ(E ). These results are fundamental to the

branch of mathematics known as measure theory. Moreover the
existence of such collections of measurable sets underlies the
powerful and very general theory of integration introduced into
mathematics by Lebesgue.
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Definition

Let λ be an outer measure on a set X . A subset E of X is said to
be λ-measurable if λ(A) = λ(A∩ E ) + λ(A \ E ) for all subsets A of
X .

The above definition of measurable sets may seem at first
somewhat strange and unmotivated. Nevertheless it serves to
characterize a collection of subsets of X with convenient
properties, as we shall see.
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Proposition 7.13

Let λ be an outer measure on a set X . Then the empty set ∅ and
the whole set X are λ-measurable. Moreover the complement
X \ E of E , and the union E ∪ F , intersection E ∩ F and difference
E \ F of E and F are λ-measurable for all λ-measurable subsets E
and F of X .
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Proof
It follows directly from the definition of λ-measurability that ∅ and
X are λ-measurable.

For each subset E of X , let us denote the complement X \ E of E
in X by E c . Then A \ E = A ∩ E c for all subsets A and E of X ,
and thus a subset E of X is λ-measurable if and only if

λ(A) = λ(A ∩ E ) + λ(A ∩ E c)

for all subsets A of X . Now (E c)c = E . It follows that if a
subset E of X is λ-measurable, then so is E c . Thus X \ E is
λ-measurable for all measurable subsets E of X .
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Let E and F be λ-measurable subsets of X , and let A be an
arbitrary subset of X . Then

λ(A) = λ(A ∩ E ) + λ(A ∩ E c).

Also
λ(A ∩ E ) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c)

and
λ(A ∩ E c) = λ(A ∩ E c ∩ F ) + λ(A ∩ E c ∩ F c).

It follows that

λ(A) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c)

+ λ(A ∩ E c ∩ F ) + λ(A ∩ E c ∩ F c).



7. Measure Spaces (continued)

Now, replacing A by A ∩ (E ∪ F ), we find that

λ(A ∩ (E ∪ F )) = λ(A ∩ (E ∪ F ) ∩ E ∩ F )

+ λ(A ∩ (E ∪ F ) ∩ E ∩ F c)

+ λ(A ∩ (E ∪ F ) ∩ E c ∩ F )

+ λ(A ∩ (E ∪ F ) ∩ E c ∩ F c).

But

A ∩ (E ∪ F ) ∩ E ∩ F = A ∩ E ∩ F ,

A ∩ (E ∪ F ) ∩ E ∩ F c = A ∩ E ∩ F c ,

A ∩ (E ∪ F ) ∩ E c ∩ F = A ∩ E c ∩ F ,

A ∩ (E ∪ F ) ∩ E c ∩ F c = ∅.
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It follows therefore that

λ(A ∩ (E ∪ F )) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c)

+ λ(A ∩ E c ∩ F ).

Also A ∩ (E ∪ F )c = A ∩ E c ∩ E c . It follows that

λ(A) = λ(A ∩ (E ∪ F )) + λ(A ∩ (E ∪ F )c),

for all subsets A of X , and thus the subset E ∪ F of X is
λ-measurable.

Also if E and F are λ-measurable subsets of X then so are E c and
F c , and therefore E c ∪ F c is a λ-measurable subset of X . But
E c ∪ F c = (E ∩ F )c . It follows that E ∩ F is λ-measurable for all
λ-measurable subsets E and F of X . Moreover E \ F = E ∩ F c ,
and therefore E \ F is λ-measurable for all λ-measurable subsets E
and F of X . This completes the proof.
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It follows from the above proposition that any finite union or
intersection of measurable sets is measurable.

We say that the sets in some collection are pairwise disjoint if the
intersection of any two distinct sets belonging to this collection is
the empty set.
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Lemma 7.14

Let λ be an outer measure on a set X , let A be a subset of X , and
let E1,E2, . . . ,Em be pairwise disjoint λ-measurable sets. Then

λ

(
A ∩

m⋃
k=1

Ek

)
=

m∑
k=1

λ(A ∩ Ek).

Proof
There is nothing to prove if m = 1. Suppose that m > 1. It follows
from the definition of measurable sets that

λ

(
A ∩

m⋃
k=1

Ek

)

= λ

((
A ∩

m⋃
k=1

Ek

)
\ Em

)
+ λ

((
A ∩

m⋃
k=1

Ek

)
∩ Em

)
.
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But

(
A ∩

m⋃
k=1

Ek

)
\ Em = A ∩

m−1⋃
k=1

Ek and(
A ∩

m⋃
k=1

Ek

)
∩ Em = A ∩ Em, because the sets E1,E2, . . . ,Em are

pairwise disjoint. Therefore

λ

(
A ∩

m⋃
k=1

Ek

)
= λ

(
A ∩

m−1⋃
k=1

Ek

)
+ λ(A ∩ Em).

The required result therefore follows by induction on m.
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Proposition 7.15

Let λ be an outer measure on a set X . Then the union of any
countable collection of λ-measurable subsets of X is λ-measurable.

Proof
The union of any two λ-measurable sets is λ-measurable
(Proposition 7.13). It follows from this that the union of any finite
collection of λ-measurable sets is λ-measurable.
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Now let E1,E2,E3, . . . be an infinite sequence of pairwise disjoint
λ-measurable subsets of X . We shall prove that the union of these

sets is λ-measurable. Let A be a subset of X . Now
m⋃

k=1

Ek is a

λ-measurable set for each positive integer m, because any finite
union of λ-measurable sets is λ-measurable, and therefore

λ(A) = λ

(
A ∩

m⋃
k=1

Ek

)
+ λ

(
A \

m⋃
k=1

Ek

)

for all positive integers m. Moreover it follows from Lemma 7.14
that

λ

(
A ∩

m⋃
k=1

Ek

)
=

m∑
k=1

λ(A ∩ Ek).
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Also

A \
+∞⋃
k=1

Ek ⊂ A \
m⋃

k=1

Ek ,

and therefore

λ

(
A \

m⋃
k=1

Ek

)
≥ λ

(
A \

+∞⋃
k=1

Ek

)
.

It follows that

λ(A) ≥
m∑

k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)
,

and therefore
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λ(A) ≥ lim
m→+∞

m∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)

=
+∞∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)
.

However it follows from the definition of outer measures that

λ

(
A ∩

+∞⋃
k=1

Ek

)
= λ

(
+∞⋃
k=1

(A ∩ Ek)

)
≤

+∞∑
k=1

λ(A ∩ Ek).

Therefore

λ(A) ≥ λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
.
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But the set A is the union of the sets A ∩
+∞⋃
k=1

Ek and A \
+∞⋃
k=1

Ek ,

and therefore

λ(A) ≤ λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
.

We conclude therefore that

λ(A) = λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)

for all subsets A of X . We conclude from this that the union of
any pairwise disjoint sequence of λ-measurable subsets of X . is
itself λ-measurable.
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Now let E1,E2,E3, . . . be a countable sequence of (not necessarily

pairwise disjoint) λ-measurable sets. Then
+∞⋃
k=1

Ek =
+∞⋃
k=1

Fk , where

F1 = E1, and Fk = Ek \
k−1⋃
j=1

Ej for all integers k satisfying k > 1.

Now we have proved that any finite union of λ-measurable sets is
λ-measurable, and any difference of λ-measurable sets is
λ-measurable. It follows that the sets F1,F2,F3, . . . are all
λ-measurable. These sets are also pairwise disjoint. We conclude
that the union of the sets F1,F2,F3, . . . is λ-measurable, and
therefore the union of the sets E1,E2,E3, . . . is λ-measurable.
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We have now shown that the union of any finite collection of
λ-measurable sets is λ-measurable, and the union of any infinite
sequence of λ-measurable sets is λ-measurable. We conclude that
the union of any countable collection of λ-measurable sets is
λ-measurable, as required.
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Corollary 7.16

Let λ be an outer measure on a set X . Then the intersection of any
countable collection of λ-measurable subsets of X is λ-measurable.

Proof
Let C be a countable collection of λ-measurable subsets of X .
Then X \

⋂
E∈C E =

⋃
E∈C(X \ E ) (i.e., the complement of the

intersection of the sets in the collection is the union of the
complements of those sets.) Now X \ E is λ-measurable for every
E ∈ C. Therefore the complement X \

⋂
E∈C E of

⋂
E∈C E is a

union of λ-measurable sets, and is thus itself λ-measurable. It
follows that intersection

⋂
E∈C E of the sets in the collection is

λ-measurable, as required.
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Proposition 7.17

Let λ be an outer measure on a set X , let A be a subset of X , and
let C be a countable collection of pairwise disjoint λ-measurable
sets. Then

λ

(
A ∩

⋃
E∈C

E

)
=
∑
E∈C

λ(A ∩ E ).

Proof
It follows from Lemma 7.14 that the required identity holds for any
finite collection of pairwise disjoint λ-measurable sets.
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Now let E1,E2,E3, . . . be an infinite sequence of pairwise disjoint
λ-measurable subsets of X . Then

m∑
k=1

λ(A ∩ Ek) = λ

(
A ∩

m⋃
k=1

Ek

)
≤ λ

(
A ∩

+∞⋃
k=1

Ek

)

for all positive integers m. It follows that

+∞∑
k=1

λ(A ∩ Ek) = lim
m→+∞

m∑
k=1

λ(A ∩ Ek) ≤ λ

(
A ∩

+∞⋃
k=1

Ek

)
.
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But the definition of outer measures ensures that

λ

(
A ∩

+∞⋃
k=1

Ek

)
= λ

(
+∞⋃
k=1

(A ∩ Ek)

)
≤

+∞∑
k=1

λ(A ∩ Ek)

We conclude therefore that λ

(
A ∩

+∞⋃
k=1

Ek

)
=

+∞∑
k=1

λ(A ∩ Ek) for

any infinite sequence E1,E2,E3, . . . of pairwise disjoint
λ-measurable subsets of X . Thus the required identity holds for
any countable collection of pairwise disjoint λ-measurable subsets
of X , as required.
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7.4. Measure Spaces

Definition

Let X be a set. A collection A of subsets of X is said to a
σ-algebra (or sigma-algebra) of subsets of X if it has the following
properties:

(i) the empty set ∅ is a member of A;

(ii) the complement X \ E of any member E of A is itself a
member of A;

(iii) the union of any countable collection of members of A is itself
a member of A.
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Lemma 7.18

Let X be a set, and let A be a σ-algebra of subsets of X . Then
the intersection of any countable collection of members of the
σ-algebra A is itself a member of A.

Proof
Let C be a countable collection of sets belonging to A. Then
X \ E ∈ A for all E ∈ C, and therefore

⋃
E∈C

(X \ E ) ∈ A. But⋃
E∈C

(X \ E ) = X \
⋂
E∈C

E . It follows that the complement of the

intersection
⋂
E∈C

E of the sets in the collection C is itself a member

of A, and therefore the intersection
⋂
E∈C

E of those sets is a

member of the σ-algebra A, as required.



7. Measure Spaces (continued)

Let X be a set, and let C be a collection of subsets of X . The
collection of all subsets of X is a σ-algebra. Also the intersection
of any collection of σ-algebras of subsets of X is itself a σ-algebra.
Let A be the intersection of all σ-algebras B of subsets of X that
have the property that C ⊂ B. Then A is a σ-algebra, and C ⊂ A.
Moreover if B is a σ-algebra of subsets of X , and if C ⊂ B then
A ⊂ B. The σ-algebra A may therefore be regarded as the smallest
σ-algebra of subsets of X for which C ⊂ A. We shall refer to this
σ-algebra A as the σ-algebra of subsets of X generated by C. We
see therefore that any collection of subsets of a set X generates a
σ-algebra of subsets of X which is the smallest σ-algebra of
subsets of X that contains the given collection of subsets.
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Definition

Let X be a set, and let A be a σ-algebra of subsets of X . A
measure on A is a function µ : A → [0,+∞], taking values in the
set [0,+∞] of non-negative extended real numbers, which has the
property that

µ

(⋃
E∈C

E

)
=
∑
E∈C

µ(E )

for any countable collection C of pairwise disjoint sets belonging to
the σ-algebra A.
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Definition

A measure space (X ,A, µ) consists of a set X , a σ-algebra A of
subsets of X , and a measure µ : A → [0,+∞] defined on this
σ-algebra A. A subset E of a measure space (X ,A, µ) is said to
be measurable (or µ-measurable) if it belongs to the σ-algebra A.
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Theorem 7.19

Let λ be an outer measure on a set X . Then the collection Aλ of
all λ-measurable subsets of X is a σ-algebra. The members of this
σ-algebra are those subsets E of X with the property that
λ(A) = λ(A ∩ E ) + λ(A \ E ) for any subset A of X . Moreover the
restriction of the outer measure λ to the λ-measurable sets defines
a measure µ on the σ-algebra Aλ. Thus (X ,A, µ) is a measure
space.

Proof
Immediate from Propositions 7.13, 7.15 and 7.17.
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Definition

A measure space (X ,A, µ) is said to be complete if, given any
measurable subset E of X satisfying µ(E ) = 0, and given any
subset F of E , the subset F is also measurable. The measure µ on
A is then said to be complete.
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Lemma 7.20

Let λ be an outer measure on a set X , let A be the σ-algebra
consisting of the λ-measurable subsets of X , and let µ be the
measure on A obtained by restricting the outer measure λ to the
members of A. Then (X ,A, µ) is a complete measure space.
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Proof
Let E be a measurable set in X satisfying µ(E ) = 0, let F be a
subset of E , and let A be a subset of X . Then A ∩ F ⊂ A ∩ E and
A \ E ⊂ A \ F ⊂ A, and therefore 0 ≤ λ(A ∩ F ) ≤ λ(A ∩ E ) and
λ(A \ E ) ≤ λ(A \ F ) ≤ λ(A). Now it follows from the definition of
measurable sets in X that λ(A) = λ(A ∩ E ) + λ(A \ E ). Moreover
0 ≤ λ(A ∩ E ) ≤ λ(E ) = µ(E ) = 0. It follows that λ(A ∩ E ) = 0
and λ(A \ E ) = λ(A). The inequalities above then ensure that
λ(A ∩ F ) = 0 and λ(A \ F ) = λ(A). But then
λ(A) = λ(A ∩ F ) + λ(A \ F ), and thus F is λ-measurable, as
required.
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7.5. Lebesgue Measure on Euclidean Spaces

We are now in a position to give the definition of Lebesgue
measure on n-dimensional Euclidean space Rn. We have already
defined an outer measure µ∗ on Rn known as Lebesgue outer
measure. We defined a block in Rn to be a subset of Rn that is a
Cartesian product of n bounded intervals. The product of the
lengths of those intervals is the content of the block. Then, given
any subset E of Rn, we defined the Lebesgue outer measure µ∗(E )
of the set E to be the infimum of the quantities

∑
B∈C

m(B), where

the infimum is taken over all countable collections of blocks in Rn

that cover the set E , and where m(B) denotes the content of a
block B in such a collection. Thus
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∑
B∈C

m(B) ≥ µ∗(E )

for every countable collection C of blocks in Rn that covers E ; and,
moreover, given any positive real number ε, there exists a
countable collection C of blocks in Rn covering E for which

µ∗(E ) ≤
∑
B∈C

m(B) ≤ µ∗(E ) + ε.

These properties characterize the Lebesgue outer measure µ∗(E )
of the set E .
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We say that a subset E of Rn is Lebesgue-measurable if and only if
it is µ∗-measurable, where µ∗ denotes Lebesgue outer measure on
Rn. Thus a subset E of Rn is Lebesgue-measurable if and only if
µ∗(A) = µ∗(A ∩ E ) + µ∗(A \ E ) for all subsets A of Rn. The
collection Ln of all Lebesgue-measurable sets is a σ-algebra of
subsets of Rn, and therefore the difference of any two
Lebesgue-measurable subsets of Rn is Lebesgue-measurable, and
any countable union or intersection of Lebesgue-measurable sets is
Lebesgue-measurable. The Lebesgue measure µ(E ) of a
Lebesgue-measurable subset E of Rn is defined to be the Lebesgue
outer measure µ∗(E ) of that set. Thus Lebesgue measure µ is the
restriction of Lebesgue outer measure µ∗ to the σ-algebra Ln of
Lebesgue-measurable subsets of Rn.

It follows from Lemma 7.20 that Lebesgue measure is a complete
measure on Rn.
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Remark
The Lebesgue measure µ(E ) of a subset E of R2 may be regarded
as the area of that set. It is not possible to assign an area to every
subset of R2 in such a way that the areas assigned to such subsets
have all the properties that one would expect from a well-defined
notion of area. One might at first sight expect that Lebesgue outer
measure would provide a natural definition of area, applicable to all
subsets of the plane, that would have the properties that one
would expect of a well-defined notion of area. One would expect in
particular that the area of a disjoint union of two subsets of the
plane would be the sum of the areas of those sets. However it is
possible to construct examples of disjoint subsets E and F in the
plane which interpenetrate one another to such an extent as to
ensure that µ∗(E ∪ F ) < µ∗(E ) + µ∗(F ), where µ∗ denotes
Lebesgue outer measure on R2.
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The σ-algebra L2 consisting of the Lebesgue-measurable subsets of
the plane R2 is in fact that largest collection of subsets of the
plane for which the sets in the collection have a well-defined area;
the Lebesgue measure of a Lebesgue-measurable subset of the
plane can be regarded as the area of that set. Similarly the
σ-algebra L3 of Lebesgue-measurable subsets of three-dimensional
Euclidean space R3 is the largest collection of subsets of R3 for
which the sets in the collection have a well-defined volume.
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Proposition 7.21

Every closed n-dimensional block in Rn is Lebesgue-measurable.

Proof
Proposition 7.12, ensures that closed blocks have the property that
characterizes Lebesgue-measurable subsets of Rn.
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Proposition 7.22

Every open set in Rn is Lebesgue-measurable.

Proof
Let W be the collection of all open blocks in Rn that are Cartesian
products of intervals whose endpoints are rational numbers. Now
the set I of all open intervals in Rn whose endpoints are rational
numbers is a countable set, as the function that sends such an
interval to its endpoints defines an injective function from I to the
countable set Q×Q. Moreover there is a bijection from the
countable set In to W that sends each ordered n-tuple
(I1, I2, . . . , In) of open intervals to the open block I1 × I2 × · · · × In.
It follows that the collection W is countable.
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Let V be an open set in Rn, and let v be a point of V . Then there
exists some positive real number δ such that B(v, δ) ⊂ V , where
B(v, δ) ⊂ V denotes the open ball of radius δ centred on v.
Moreover there exist open blocks W belonging to W for which
v ∈W and W ⊂ B(v, δ). It follows that the open set V is the
union of the countable collection

{W ∈ W : W ⊂ V }

of open blocks. Now each open block is a Lebesgue-measurable
set, and any countable union of Lebesgue-measurable sets is itself
a Lebesgue-measurable set. Therefore the open set V is a
Lebesgue-measurable set, as required.
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Corollary 7.23

Every closed set in Rn is Lebesgue-measurable.

Proof
This follows immediately from Proposition 7.22, since the
complement of any Lebesgue-measurable set is itself Lebesgue
measurable set.
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Definition

A subset of Rn is said to be a Borel set if it belongs to the
σ-algebra generated by the collection of open sets in Rn.

All open sets and closed sets in Rn are Borel sets. The collection
of all Borel sets is a σ-algebra in Rn and is the smallest such
σ-algebra containing all open subsets of Rn.
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Definition

A measure defined on a σ-algebra A of subsets of Rn is said to be
a Borel measure if the σ-algebra A contains all the open sets in Rn.

Corollary 7.24

Lebesgue measure on Rn is a Borel measure, and thus every Borel
set in Rn is Lebesgue-measurable.
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Remark
The definitions of Borel sets and Borel measures generalize in the
obvious fashion to arbitrary topological spaces. The collection of
Borel sets in a topological space X is the σ-algebra generated by
the open subsets of X . A measure defined on a σ-ring of subsets
of X is said to be a Borel measure if every Borel set is measurable.
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7.6. Basic Properties of Measures

Let (X ,A, µ) be a measure space. Then the measure µ is defined
on the σ-algebra A of measurable subsets of X , and takes values
in the set [0,+∞], where [0,+∞] = [0,+∞) ∪ {+∞}. Thus µ(E )
is defined for each measurable subset E of X , and is either a
non-negative real number, or else has the value +∞. The
measure µ is by definition countably additive, so that

µ

(⋃
E∈C

E

)
=
∑
E∈C

µ(E )

for every countable collection C of pairwise disjoint measurable
subsets of X . In particular µ is finitely additive, so that if
E1,E2, . . . ,Er are measurable subsets of X that are pairwise
disjoint, then

µ(E1 ∪ E2 ∪ · · · ∪ Er ) = µ(E1) + µ(E2) + · · ·+ µ(Er ).
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Also

µ

+∞⋃
j=1

Ej

 =
+∞∑
j=1

µ(Ej)

for any infinite sequence E1,E2,E3, . . . of pairwise disjoint
measurable subsets of X .
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Let E and F be measurable subsets of X . Then
E = (E ∩ F ) ∪ (E \ F ), and the sets E ∩ F and E \ F are
measurable and disjoint. It therefore follows from the finite
additivity of the measure µ that µ(E ) = µ(E ∩ F ) + µ(E \ F ).
Also E ∪ F is the disjoint union of E and F \ E . and therefore

µ(E ∪ F ) = µ(E ) + µ(F \ E ) = µ(E ∩ F ) + µ(E \ F ) + µ(F \ E ).

It follows that

µ(E ∪ F ) + µ(E ∩ F )

= (µ(E ∩ F ) + µ(E \ F )) + (µ(E ∩ F ) + µ(F \ E ))

= µ(E ) + µ(F ).

Now let E and F be measurable subsets of X that satisfy F ⊂ E .
Then µ(E ) = µ(F ) + µ(E \ F ), and µ(E \ F ) ≥ 0. It follows that
µ(F ) ≤ µ(E ). Moreover µ(E \ F ) = µ(E )− µ(F ), provided that
µ(E ) < +∞.
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Lemma 7.25

Let (X ,A, µ) be a measure space, and let E1,E2,E3, . . . be an
infinite sequence of measurable subsets of X . Suppose that
Ej ⊂ Ej+1 for all positive integers j . Then

µ

+∞⋃
j=1

Ej

 = lim
j→+∞

µ(Ej).



7. Measure Spaces (continued)

Proof

Let E =
+∞⋃
j=1

Ej , let F1 = E1, and let Fj = Ej \
j−1⋃
k=1

Ek for all

integers j satisfying j > 1. Then the sets F1,F2,F3, . . . are pairwise
disjoint, the set Ej is the disjoint union of the sets Fk for which
1 ≤ k ≤ j , and the set E is the disjoint union of all of the sets Fk .
It therefore follows from the countable (and finite) additivity of the
measure µ that

µ(E ) =
+∞∑
k=1

µ(Fk), µ(Ej) =

j∑
k=1

µ(Fk).

But then

µ(E ) =
+∞∑
k=1

µ(Fk) = lim
j→+∞

j∑
k=1

µ(Fk) = lim
j→+∞

µ(Ej),

as required.
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Lemma 7.26

Let (X ,A, µ) be a measure space, and let E1,E2,E3, . . . be an
infinite sequence of measurable subsets of X . Suppose that
Ej+1 ⊂ Ej for all positive integers j , and that µ(E1) < +∞. Then

µ

+∞⋂
j=1

Ej

 = lim
j→+∞

µ(Ej).
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Proof

Let Gj = E1 \ Ej for all positive integers j , let E =
+∞⋂
j=1

Ej , and let

G =
+∞⋃
j=1

Gj . It then follows from Lemma 7.25 that

µ(G ) = lim
j→+∞

µ(Gj). Now Ej = E1 \ Gj for all positive integers j ,

and µ(E1) <∞. It follows that µ(Ej) = µ(E1)− µ(Gj) for all
positive integers j . Also E = E1 \ G . Therefore

µ(E ) = µ(E1)− µ(G ) = µ(E1)− lim
j→+∞

µ(Gj) = lim
j→+∞

µ(Ej),

as required.



7. Measure Spaces (continued)

7.7. The Existence of Non-Measurable Sets

Definition

For each real number u, let τu : R→ R be the translation mapping
the set R of real numbers onto itself defined so that τu(x) = x + u
for all real numbers x . We say that an outer measure λ on R is
translation-invariant if λ(τu(E )) = λ(E ) for all subsets E of R and
for all real numbers u.

Proposition 7.27

Let λ be a translation-invariant outer measure on the set R of real
numbers. Suppose that [0, 1) is λ-measurable and λ([0, 1)) = 1.
Then there exist subsets of R that are not λ-measurable.
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Proof
Let B = [0, 1) and, for each real number u, let τu : R→ R and
ρu : B → B be defined such that, for all x ∈ B, τu(x) = x + u and
ρu(x) is the unique element of B for which x + u − ρu(x) is an
integer.
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Let u ∈ B. Then

ρu(x) =

{
x + u if x < 1− u;
x + u − 1 if x ≥ 1− u.

Now the set B is λ-measurable. The translation-invariance of the
outer measure λ then ensures that the set τ−u(B) is λ-measurable.
Indeed let A be a subset of R. Then

λ(A) = λ(τu(A)) = λ(τu(A) ∩ B) + λ(τu(A) \ B)

= λ(τ−u(τu(A) ∩ B))) + λ(τ−u(τu(A) \ B))

= λ(A ∩ τ−u(B)) + λ(A \ τ−u(B)).

Thus the set τ−u(B) is λ-measurable, as claimed.
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Next we show that λ(ρu(E )) = λ(E ) for all subsets E of B and for
all u ∈ B. Now

B ∩ τ−u(B) = {x ∈ B : x < 1− u}

and
B \ τ−u(B) = {x ∈ B : x ≥ 1− u}.

Therefore ρu(x) = τu(x) for all x ∈ B ∩ τ−u(B) and
ρu(x) = τu−1(x) for all x ∈ B \ τ−u(B). It follows that

λ(ρu(E ) ∩ B) = λ(ρu(E ∩ τ−u(B))) = λ(τu(E ∩ τ−u(B)))

= λ(E ∩ τ−u(B))

and

λ(ρu(E ) \ B) = λ(ρu(E \ τ−u(B))) = λ(τu−1(E \ τ−u(B)))

= λ(E \ τ−u(B))).
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But
λ(ρu(E )) = λ(ρu(E ) ∩ B) + λ(ρu(E ) \ B)

and
λ(E ) = λ(E ∩ τ−u(B)) + λ(E \ τ−u(B)),

because the sets B and τ−u(B) are λ-measurable. It follows that
λ(ρu(E )) = λ(E ) for all u ∈ R.
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Now let us define a relation ∼ on the interval B, where B = [0, 1),
where real numbers x and y belonging to B satisfy x ∼ y if and
only if x − y is a rational number. Clearly x ∼ x for all x ∈ B, and
if x , y ∈ B satisfy x ∼ y then they also satisfy y ∼ x . And if
x , y , z ∈ B satisfy x ∼ y and y ∼ z then they also satisfy x ∼ z .
Thus the relation ∼ on B is reflexive, symmetric and transitive,
and is therefore an equivalence relation. This equivalence relation
then partitions the set B into equivalence classes: every real
number in the set B belongs to a unique equivalence class; two
real numbers in the set set B belong to the same equivalence class
if and only if their difference is a rational number.
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Now the Axiom of Choice in set theory guarantees the existence of
a subset E of B that contains exactly one element from each
equivalence class. Then, given any real number x in the set B,
there exists exactly one element z of the set E for which x − z is a
rational number. If x ≥ z then x = ρq(z) if and only if q = x − z .
On the other hand if x < z then x = ρq(z) if and only if
q = x − z + 1. It follows that, given any real number x in the
set B, there exists a unique real number z belonging to E and a
unique rational number q satisfying 0 ≤ q < 1 for which
x = ρq(z). We conclude from this that the set B is the union of
the sets ρq(E ) as q ranges over the set T of all rational numbers q
satisfying 0 ≤ q < 1. Moreover the sets ρq(E ) obtained as q
ranges over the countable set T are pairwise disjoint.
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But λ(ρq(E )) = λ(E ) for all q ∈ T . If it were the case that
λ(E ) = 0, it would then follow that λ(B) = 0, because λ is an
outer measure. But λ(B) = 1. It then follows that the sum∑
q∈T

λ(ρq(E )) diverges, and therefore cannot equal λ(B), though

B =
⋃

q∈T ρq(E ). If the set E were λ-measurable, then all the sets
ρq(E ) would be λ-measurable, and the sum of the outer measures
of these pairwise-disjoint sets would be equal to λ(B). Because
this is not the case, it follows that the set E cannot be
λ-measurable. The result follows.
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