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8. Walrasian Equilibria (continued)

8.8. Walrasian Equilibria in Exchange Economies

Theorem 8.10

Let n be a positive integer, let

∆ =

{
p ∈ Rn : p ≥ 0 and

n∑
i=1

(p)i = 1

}
,

let K be a compact subset of Rn, and let ζ : ∆ ⇒ K be an upper
hemicontinuous correspondence mapping points of the simplex ∆
to non-empty closed convex subsets of K. Suppose that p . z ≤ 0
for all p ∈ ∆ and z ∈ ζ(p). Then there exist p∗ ∈ ∆ and
z∗ ∈ ζ(p∗) for which z∗ ≤ 0.
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Proof
The set K is clearly non-empty. We may assume, without loss of
generality, that the set K is both compact and convex, because if
K were not convex, then it could be replaced by a compact convex
set containing it.
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Let γ : Rn → R be the function defined so that, for each x ∈ Rn,
γ(x) is the maximum of the components of x, and let µ : Rn ⇒ ∆
be the correspondence defined such that

µ(x) = {p ∈ ∆ : p . z = γ(z)}.

It was shown in Proposition 8.3 that the correspondence
µ : Rn ⇒ ∆ is upper hemicontinuous, and µ(x) is a non-empty
compact convex subset of ∆ for all x ∈ Rn. Moreover
p . x ≤ p′ . x = γ(x) for all p ∈ ∆ and p′ ∈ µ(x). (The upper
hemicontinuity of µ also follows directly on applying Berge’s
Maximum Theorem, which is Theorem 2.23 above.)
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Let Φ: ∆× K ⇒ ∆× K be the correspondence defined such that

Φ(p, z) = (µ(z), ζ(p))

for all p ∈ ∆ and z ∈ K . The correspondences µ and ζ are upper
hemicontinuous and closed-valued, and every upper
hemicontinuous closed-valued correspondence has a closed graph
(Proposition 2.11). It follows that the correspondence Φ has closed
graph. Moreover Φ(p, z) is a non-empty closed convex subset of
the compact convex set ∆× K for all p ∈ ∆ and z ∈ K . It follows
from the Kakutani Fixed Point Theorem (Theorem 5.4) that there
exists (p∗, z∗) ∈ ∆× K for which (p∗, z∗) ∈ Φ(p∗, z∗). Then
p∗ ∈ µ(z∗) and z∗ ∈ ζ(p∗).
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Now the conditions of the theorem require that p∗ . z ≤ 0 for all
z ∈ ζ(p∗). Combining this inequality with the definition of the
correspondence µ, and noting that p∗ ∈ µ(z∗) and z∗ ∈ ζ(p∗), we
find that

p . z∗ ≤ p∗ . z∗ ≤ 0

for all p ∈ ∆. Applying this result when p is the vertex of ∆ whose
ith component is equal to 1 and whose other components are zero,
we find that (z∗)i ≤ 0 for i = 1, 2, . . . , n, and thus z∗ ≤ 0, as
required.
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Remark
For Theorem 8.10, and its proof, see Gérard Debreu, Theory of
Value (Cowles Foundation Monograph 17, 1959), Section 5.6. In
his notes on Chapter 5 of that monograph, Debreu notes that the
result was obtained and published independently by D. Gale
(published 1955) and H. Nikaido (published 1956). Debreu also
thanks A. Borel, P. Samuel and A. Weil for conversations that he
had with them on an early formulation of the result.
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Theorem 8.11

Suppose that, in a model of an exchange economy with n goods
and m households, every household receives a strictly positive initial
endowment of every commodity, so that the initial endowment
vector xh of household h satisfies xh >> 0 for h = 1, 2, . . . ,m.
Suppose also that the preferences of household h are determined
by a utility function uh that is continuous, strictly increasing and
quasiconcave. Then there exists a normalized price vector p∗

satisfying p∗ >> 0 and, for each household h, a corresponding
bundle x∗h of commodities that maximizes utility for that household
subject to the affordability constraint p . x∗h ≤ p . xh, so that the
total supply is redistributed amongst the households, and thus

m∑
h=1

x∗h =
m∑

h=1

xh.
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Proof

Let s =
m∑

h=1

xh, and let c ∈ Rn be chosen so that c >> s. Let

∆ =

{
p ∈ Rn : p ≥ 0 and

n∑
i=1

(p)i = 1

}
,

and, for each household, let ξ̂c,h : ∆ ⇒ Rn
+ be the demand

correspondence that sends each normalized price vector p in ∆ to
the set ξ̂c,h(p) of bundles of commodities that maximize utility for
household h subject to the affordability constraint p∗ . xh ≤ p∗ . xh,
and the additional constraint 0 ≤ x ≤ c.



8. Walrasian Equilibria (continued)

Let the correspondence ξ̂c : ∆ ⇒ Rn
+ be defined so that

ξ̂c =
m∑

h=1

ξ̂c,h. Then the correspondence ξ̂c is upper hemicontinuous

and maps each normalized price vector in ∆ to a non-empty
compact convex subset of Rn

+ whose elements x satisfy p . x ≤ p . s
(see Corollary 8.9).

Let the correspondence ζc : ∆→ Rn be defined so that

ζc = {x− s : x ∈ ξ̂c(p)}

for all p ∈ ∆. Then p . z ≤ 0 for all p ∈ ∆ and z ∈ ζ(p). Moreover
ζc maps ∆ into the compact set

{z ∈ Rn : −s ≤ z ≤ c− s}.

It then follows from Theorem 8.10 that there exist p∗ ∈ ∆ and
z∗ ∈ ζc(p∗) for which z∗ ≤ 0.
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Now z∗ + s ∈ ξ̂c(p∗). It follows from the definition of ξ̂c(p∗). that
there exist x∗h ∈ ξ̂c,h(p∗) for h = 1, 2, . . . , n for which
m∑

h=1

x∗h = z∗ + s. Then
m∑

h=1

x∗h ≤ s, because z∗ ≤ 0. Now x∗h ≥ 0 for

h = 1, 2, . . . ,m. It follows that 0 ≤ x∗h ≤ s and therefore x∗h << c
for h = 1, 2, . . . ,m.
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Now x∗h maximizes the utility function uh on the set Bc,h(p∗),
where

Bc,h(p∗) = {x ∈ Rn
+ : 0 ≤ x ≤ c and p∗ . x ≤ p∗ . xh}.

Let
Bh(p∗) = {x ∈ Rn

+ : x ≥ 0 and p∗ . x ≤ p∗ . xh}.

and let
N = {x ∈ Rn : x << c}.

Then the set N is open in Rn, x∗h ∈ N and the maximum value of
the utility function uh for household h on Bh(p∗) ∩ N is achieved
at x∗h. It follows directly from Proposition 8.4 that

p∗ . x∗h = p∗ . xh,

and moreover the maximum value of the utility function uh for
household h on Bh(p∗) is achieved at x∗h.
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Next we note that were it the case that (p∗)i = 0 for some index i
between 1 and n then the amount of the ith commodity in the
bundle x∗h could be increased to obtain a bundle x for which
x 6= x∗h, x >> xh and p∗ . x = p∗ . x∗h. But then uh(x) > uh(x∗h),
because the utility function uh is strictly increasing, and thus x∗h
would not maximize utility for for household h subject to the
affordability constraint. We conclude therefore that p∗ >> 0.
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Finally we note that

s−
m∑

h=1

x∗h ≥ 0

and

p∗ .

(
s−

m∑
h=1

x∗h

)
=

m∑
h=1

p∗ . (xh − x∗h) = 0.

It follows that

s =
m∑

h=1

x∗h.

This completes the proof.


	Review of Basic Results of Analysis in Euclidean Spaces
	Correspondences and Hemicontinuity
	Simplices and Convexity
	Simplicial Complexes
	Fixed Point Theorems
	Perron-Frobenius Theory
	Game Theory and Nash Equilibria
	Walrasian Equilibria
	Walrasian Equilibria in Exchange Economies


