
MA3486—Fixed Point Theorems and
Economic Equilibria

School of Mathematics, Trinity College
Hilary Term 2018

Lecture 25 (March 22, 2018)

David R. Wilkins



8. Walrasian Equilibria

8. Walrasian Equilibria

8.1. Exchange Economies

We consider an exchange economy consisting of a finite number of
commodities and a finite number of households, each provided
with an initial endowment of each of the commodities. The
commodities are required to be infinitely divisible: this means that
a household can hold an amount x of that commodity for any
non-negative real number x . (Thus salt, for example, could be
regarded as an ‘infinitely divisible’ quantity whereas cars cannot: it
makes little sense to talk about a particular household owning
2.637 of a car, for example, though such a household may well own
2.637 kilograms of salt.) Now the households may well wish to
exchange commodities with one another so as improve on their
initial endowment. They might for example seek to barter
commodities with one another: however this method of
redistribution would not work very efficiently in a large economy.
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Alternatively they might attempt to set up a price mechanism to
simplify the task of redistributing the commodities. Thus suppose
that each commodity is assigned a given price. Then each
household could sell its initial endowment to the market, receiving
in return the value of its initial endowment at the given prices.
The household could then purchase from the market a quantity of
each commodity so as to maximize its own preference, subject to
the constraint that the total value of the commodities purchased
by any household cannot exceed the value of its initial endowment
at the given prices.
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The problem of redistribution then becomes one of fixing prices so
that there is exactly enough of each commodity to go around: if
the price of any commodity is too low then the demand for that
commodity is likely to outstrip supply, whereas if the price is too
high then supply will exceed demand. A Walras equilibrium is
achieved if prices can be found so that the supply of each
commodity matches its demand. We shall use Berge’s Maximum
Theorem and the Kakutani fixed point theorem to prove the
existence of a Walras equilibrium in this idealized economy.
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Let our exchange economy consist of n commodities and
m households. We suppose that household h is provided with an
initial endowment xhi of commodity i , where xhi ≥ 0. Thus the
initial endowment of household h can be represented by a vector
xh in Rn whose ith component is xhi . The prices of the
commodities are given by a price vector p whose ith component pi
specifies the price of a unit of the ith commodity: a price vector p
is required to satisfy pi ≥ 0 for all i . Then the value of the initial
endowment of household h at the given prices is p . xh. This
quantity represents the wealth of household h at prices p.



8. Walrasian Equilibria (continued)

Definition

For each positive integer n, the positive orthant Rn
+ is the subset

of Rn defined so that

Rn
+ = {x ∈ Rn : x ≥ 0}.

In particular R+ = {t ∈ R : t ≥ 0}.

Definition

A real-valued function u : X → R defined over a subset X of Rn is
said to be strictly increasing on X if u(x) < u(x′) for all x, x′ in X
satisfying x ≤ x′ and x 6= x′.
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8.2. The Budget Correspondence

We now discuss basic properties of the budget correspondence.

The budget correspondence is defined on the set of pairs. A
price-wealth pair is an ordered pair (p,w), where p ∈ Rn, w is a
non-negative real number and p ≥ 0. The budget correspondence
assigns to each price-wealth pair the bundles of commodities that
an economic agent with the specified wealth can afford to purchase
at the specified prices.
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More formally, the definition of the budget correspondence may be
given as follows.

Definition

In a model of an exchange economy with n commodities, The
budget correspondence B : Rn

+ × R+ ⇒ Rn assigns to each
price-wealth pair (p,w) in Rn

+ × R+ the subset B(p,w) of Rn
+

defined such that

B(p,w) = {x ∈ Rn : x ≥ 0 and p . x ≤ w}.
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Example
Consider the case of two commodities. The budget correspondence
B : R2

+ × R+ ⇒ R2 is defined so that

B(p,w) = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0 and p1x1 + p2x2 ≤ w}

for all p ∈ R2
+ and w ∈ R+, where p = (p1, p2).

Let p0 be the vector in R2
+ with p0 = (1, 0), and let V be the open

set in R3 defined so that

V =

{
(x1, x2) ∈ R2 : x1 < 1 +

1

1 + x22

}
.
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Now

B(p0,w) = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ w and x2 ≥ 0}

for all w > 0. It follows that B(p0, 1) ⊂ V , but B(p0,w) 6⊂ V for
all w > 1. Indeed if w > 1 then t can be chosen large enough to
ensure that

w > 1 +
1

1 + t2
.

But then (w , t) ∈ B(p0,w), but (w , t) 6∈ V . This example
demonstrates that the budget correspondence B : R2

+ × R+ ⇒ R2

is not upper hemicontinuous at (p0, 1), where p0 = (1, 0).

Note also that B(p,w) = B(w−1p, 1) for all (p,w) ∈ R2 × R+

satisfying w > 0. It follows that the budget correspondence
p 7→ B(p, 1) is not upper hemicontinuous on R2

+ at p0.
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Now let p0 = (1, 0) as before, and let

V = {(x1, x2) ∈ R2 : x2 > 1}.

Now
B(p0, 0) = {(x1, x2) ∈ R2 : x1 = 0 and x2 ≥ 0}.

It follows that B(p0, 0) ∩ V 6= ∅. But if p >> 0 then
B(p, 0) = {(0, 0)}. Thus B(p, 0) ∩ V = ∅ whenever p ≥ 0. It
follows that the budget correspondence B is not lower
hemicontinuous at (p0, 0).
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Proposition 8.1

Let n be a positive integer, let c be an element of Rn satisfying
c >> 0, and let Bc : Rn

+ × R+ ⇒ Rn be the correspondence that
assigns to each price-wealth pair (p,w) in Rn

+ × R+ the subset
Bc(p,w) of Rn

+ defined such that

Bc(p,w) = {x ∈ Rn : 0 ≤ x ≤ c and p . x ≤ w}.

Then the correspondence Bc : Rn
+ × R+ ⇒ Rn is upper

hemicontinuous on Rn
+ × R and lower hemicontinuous on

{(p,w) ∈ Rn
+ × R : w > 0}.

Moreover Bc(p,w) of Rn
+ is non-empty, compact and convex for all

(p,w) ∈ Rn
+ × R.
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Proof
The set Bc(p,w) is a non-empty closed bounded convex subset of
Rn
+ for i = 1, 2, . . . , n. Any closed bounded subset of Rn is

compact. It follows that The set Bc(p,w) is non-empty, compact
convex for all (p,w) ∈ Rn

+ × R+.
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Next we show that the correspondence Bc is upper hemicontinuous
on Rn

+ × R+. Let (p0,w0) ⊂ Rn
+ × R+, and let V be an open set

in Rn for which Bc(p0,w0) ⊂ V . We will show that there exists an
open set N in Rn

+ × R+ such that (p0,w0) ∈ N and Bc(p,w) ⊂ V
for all (p,w) ∈ N.

Now Bc(p,w) ⊂ C for all (p,w) ∈ Rn
+ × R+, where

C = {x ∈ Rn : 0 ≤ x ≤ c}.

It follows that if C ⊂ V then Bc(p,w) ⊂ V for all
(p,w) ∈ Rn

+ × R+. We may therefore take N = Rn
+ × R+ in the

case where C ⊂ V .
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In the case where C is not contained in V let F = C \ V . Then F
is a non-empty closed subset of C . If x ∈ C and p0 . x ≤ w0 then
x ∈ Bc(p0,w0), and therefore x ∈ V , because Bc(p0,w0) ⊂ V , and
thus x 6∈ F . It follows that p0 . x > w0 for all x ∈ F . It then follows
from the Extreme Value Theorem that the continuous function
sending each point x of F to p0 . x attains a minimum value at
some point of the set F , and therefore there exists a point x1 of F
and a real number w1 such that p0 . x1 = w1 and p0 . x ≥ w1 for all
x ∈ F . Then w1 > w0. It follows that p0 . x ≥ w1 for all x ∈ F ,
and therefore Bc(p0,w1) ∩ F = ∅. But Bc(p0,w1) ⊂ C and
F = C \ V . It follows that Bc(p0,w1) ⊂ V .
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Now let N be the subset of Rn
+ × R+ consisting of those

price-wealth pairs (p,w) with the property that

(p)i >
w

w1
(p0)i

for those integers i between 1 and n for which (p0)i > 0. Then N
is open in Rn

+ × R+. Moreover the definition of N and the
inequality w0 < w1 together ensure that (p0,w0) ∈ N.
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Care needs to be exercised in cases where w = 0. Suppose that
p ≥ 0 and (p, 0) ∈ N. Then (p)i > 0 for all integers i between 1
and n for which (p0)i > 0. It follows that if x ∈ Rn satisfies x ≥ 0
and p . x = 0 then (p)i = 0 for those integers i between 1 and n
for which (x)i > 0. But then (p0)i = 0 for those integers i between
1 and n for which (x)i > 0, and therefore p0 . x = 0. We conclude
from this that if (p, 0) ∈ N and x ∈ Bc(p, 0) then p0 . x = 0, and
therefore x ∈ Bc(p0, 0). But

Bc(p0, 0) ⊂ Bc(p0,w0) ⊂ V .

We conclude therefore that if (p, 0) ∈ N then Bc(p, 0) ⊂ V .
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Now let (p,w) ∈ N, where w > 0, and let x ∈ Bc(p,w). Then
x ≥ 0 and p . x ≤ w . Then

p0 . x =
n∑

i=1

(p0)i (x)i ≤
w1

w

n∑
i=1

(p)i (x)i =
w1

w
p . x ≤ w1,

and therefore x ∈ Bc(p0,w1). It follows that if (p,w) ∈ N and
w > 0 then

Bc(p,w) ⊂ Bc(p0,w1) ⊂ V .

We conclude therefore that Bc(p,w) ⊂ V for all (p,w) ∈ N. The
results we have so far obtained combine to show that the
correspondence Bc is upper hemicontinuous on Rn

+ × R+.
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Now let (p0,w0) ∈ Rn
+ × R+ satisfy w0 > 0, and let V be an open

set in Rn that satisfies V ∩ Bc(p0,w0) 6= ∅. The constraint w0 > 0
ensures that any open ball of positive radius centred on a point of
Bc(p0,w0) intersects the interior of that set. It follows that the
open set V must intersect the interior of the set Bc(p0,w0), and
therefore there exists x0 ∈ V for which 0 ≤ x0 ≤ c and
p0 . x0 < w0. Let

N = {(p,w) ∈ Rn
+ × R+ : w − p . x0 > 0}.

Then N is open in Rn, (p0,w0) ∈ N, and x0 ∈ V ∩ Bc(p,w) for all
(p,w) ∈ N. We conclude from this that the correspondence Bc is
lower hemicontinuous on the set Rn

+ × R+. This completes the
proof.
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