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7. Game Theory and Nash Equilibria (continued)

7.3. Quasiconvex Functions

Definition

Let K be a convex set in some real vector space. A real-valued
function f : K → R is said to be quasiconvex if

f ((1− t)u + tv) ≤ max
(
f (u), f (v)

)
for all u, v ∈ K and for all real numbers t satisfying 0 ≤ t ≤ 1.



7. Game Theory and Nash Equilibria (continued)

Definition

Let K be a convex set in some real vector space. A real-valued
function f : K → R is said to be quasiconcave if

f ((1− t)u + tv) ≥ min
(
f (u), f (v)

)
for all u, v ∈ K and for all real numbers t satisfying 0 ≤ t ≤ 1.

Linear functionals are quasiconvex and quasiconcave.

A function f : K → R defined over a compact subset K of a real
vector space is quasiconcave if and only if the function −f is
quasiconvex.
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Lemma 7.2

Let K be a convex set in a real vector space, and let f : K → R be
a quasiconcave function. Then, for each real number s, the
preimage f −1([s,+∞)) of the interval [s,+∞) is a convex subset
of K, where

f −1([s,+∞)) = {x ∈ K : f (x) ≥ s}.

Proof
Let u, v ∈ f −1([s,+∞)), and let t be a real number satisfying
0 ≤ t ≤ 1. Then f (u) ≥ s and f (v) ≥ s. It follows from the
definition of quasiconcavity that

f ((1− t)u + tv) ≥ min
(
f (u), f (v)

)
≥ s,

and therefore (1− t)u + tv ∈ f −1([s,+∞)), as required.



7. Game Theory and Nash Equilibria (continued)

7.4. Nash Equilibria

We consider a game with n players. Each player choses a strategy
from an appropriate strategy sets. The strategies chosen by the
players in the game constitute a strategy profile. The utility, or
payoff, of the game, for each player is determined by the strategy
profile chosen by the players in the game. The technical details
involved are explored and specified in more detail in the following
discussion.
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We suppose that, in an n-player game, the ith player choses
strategies from a strategy set Si , where Si is represented as a
non-empty compact convex set in Rmi for some positive
integer mi . (The convexity requirement would typically be satisfied
in games where players can adopt mixed strategies.) We let
S = S1 × S1 × · × Sn. The elements of the set S are referred to as
strategy profiles. The strategy profile set S is a compact convex
subset of Rm, where

m = m1 + m2 + · · ·+ mn.
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For each integer i between 1 and n let us define

S−1 = S2 × S3 × S4 × · · · × Sn,

S−2 = S1 × S3 × S4 × · · · × Sn,

S−3 = S1 × S2 × S4 × · · · × Sn,
...

S−n = S1 × S2 × S3 × · · · × Sn−1,

so that
S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn

for all integers i between 1 and n (making the appropriate
interpretation of the right hand side of this expression, as specified
above, in the cases i = 1 and i = n). The set S−i is then a
compact convex subset of Rm−mi for i = 1, 2, . . . , n.
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We define projections πi : S → Si and π−i : S → S−i for
i = 1, 2, . . . , n in the obvious fashion so that

πi (x1, x2, . . . , xn) = xi

and

π−1(x1, x2, . . . , xn) = (x2, x3, x4, . . . , xn),

π−2(x1, x2, . . . , xn) = (x1, x3, x4, . . . , xn),

π−3(x1, x2, . . . , xn) = (x1, x2, x4, . . . , xn),
...

π−n(x1, x2, . . . , xn) = (x1, x2, x3, . . . , xn−1).
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We now consider the utility, or payoff, of the game for the players.
We suppose that, for each integer i between 1 and n, the utility of
the game, from the perspective of the ith player, is determined by
a utility function ui : Si × S−i → R defined so that, for each
element x−i of S−i representing a choice of strategies by players of
the game other than the ith player, the real number ui (xi , x−i )
represents the utility, or payoff, for the ith player on adopting the
strategy i. We impose the following two requirements on these
utility functions:

the utility function ui : Si × S−i → R is continuous on
Si × S−i ;

for fixed x−i , the function sending xi to ui (xi , x−i ) is
quasiconcave on Si , and thus

ui ((1− t)x′i + tx′′i , x−i ) ≥ min
(
ui (x′i , x−i ), ui (x′′i , x−i )

)
for all x′i , x

′′
i ∈ Si , x−i ∈ S−i and real numbers t satisfying

0 ≤ t ≤ 1.
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Let x′i and x′′i elements of the strategy set Si , representing
strategies for the ith player, and let x−i be an element of S−i ,
representing a profile of strategies adopted by the other players.
Then the ith player actively prefers the outcome of strategy
profile x′′i to that of strategy profile x′i if and only if

ui (x′i , x−i ) < ui (x′′i , x−i ).

The ith player is indifferent between the outcomes of the strategy
profiles x′i and x′′i if and only if

ui (x′i , x−i ) = ui (x′′i , x−i ).



7. Game Theory and Nash Equilibria (continued)

Definition

In an n-player game, let S1,S2, . . . ,Sn denote the strategy sets for
the players in the game, and let ui : Si × S−i → R denote the
utility function for the ith player in the game (where the set S−i is
defined for i = 1, 2, . . . , n as described above). A strategy profile

(x∗1, x
∗
2, . . . , x

∗
n)

is said to be a Nash equilibrium for the game if

ui (xi , x
∗
−i ) ≤ ui (x∗i , x

∗
−i ).

for all integers i between 1 and n and for all xi ∈ Si .
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Given any element x−i of S−i (representing a choice of strategies
that might be adopted by the other players of the game), there will
be a subset Bi (x−i ) of Si that represents the best strategies that
the ith player can adopt when the other players are adopting the
strategies represented by the element x−i of S−i . These best
strategies are those strategies that maximize the utility function for
the ith player, and we denote the value of the utility function ui for
those best strategies by bi (x−i ). Accordingly

bi (x−i ) = sup{ui (xi , x−i ) : xi ∈ Si},
Bi (x−i ) = {xi ∈ Si : ui (xi , x−i ) = b(x−i )}.

We obtain in this fashion a single-valued function bi : S−i → Si
and a correspondence Bi : S−i ⇒ Si .
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Now, for each integer i between 1 and n, the constant
correspondence that sends each element of S−i to the strategy
set Si is clearly both upper hemicontinuous and lower
hemicontinuous. The function ui : Si × S−i → R is required to be
continuous. Moreover, for each xi−1 ∈ S−i , the Extreme Value
Theorem ensures that the set Bi (x−i ) is non-empty, and the
continuity of the utility function ui ensures that Bi (x−i ) is a closed
subset of the compact set Si . It follows that the the
correspondence B : S−i ⇒ Si is both non-empty and compact. It
therefore follows from Berge’s Maximum Theorem (Theorem 2.23)
that the function b : S−i → R is continuous on S−i , Bi (x−i ) is a
compact subset of Si for all x−i ∈ S−i , and the correspondence
B : S−i ⇒ Si is upper hemicontinuous in S−i . Now every upper
hemicontinuous closed-valued correspondence has a closed graph
(Proposition 2.11). We conclude therefore that the correspondence
B : S−i ⇒ Si has a closed graph.
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Now, for each i , and for each x−i ∈ S−i , the quasiconcavity
requirement imposed on the utility function i ensures that the
non-empty compact set Bi (x−i ) is convex. Indeed the definition of
bi (x−i ) and Bi (x−i ) ensures that ui (z, x−i ) ≤ bi (x−i ) for all
z ∈ Si , and ui (z, x−i ) = bi (x−i ) for all z ∈ Bi (x−i ). It follows that

Bi (x−i ) = {z ∈ Si : ui (z, x−i ) ≥ b(x−i )}.

The quasiconcavity condition on the function ui ensures that, for
all z, z′ ∈ Bi (x−i ) and for all real numbers t satisfing 0 ≤ t ≤ 1,

ui ((1− t)z′ + tz′′, x−i ) ≥ min
(
ui (z′, x−i ), ui (z′′, x−i )

)
≥ b(x−i ),

and therefore (1− t)z′ + tz′′ ∈ Bi (x−i ). (This justification of the
convexity of Bi (x−i ) essentially repeats the argument presented in
the proof of Lemma 7.2.)
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We have now shown that, for each integer i between 1 and n, the
correspondence Bi : S−i → Si that assigns to each element x−i of
S−i the set of best strategies that the ith player can adopt in the
event that the other players adopt the strategies represented by
x−i has closed graph, and maps each element x−i of S−i to a
subset Bi (x−i ) that is non-empty, compact and convex.

Now the Kakutani Fixed Point Theorem (Theorem 5.4) applies to
correspondences with closed graph that map elements of a
non-empty, compact and convex subset to non-empty convex
subsets of that set. Thus in order to obtain a proof of the
existence of Nash equilibria that utilizes the Kakutani Fixed Point
Theorem, we must construct such a correspondence from a
non-empty compact convex set to itself.
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We recall that the strategy profile set S is defined to be the
Cartesian product S1 × S2 × · · · × Sn of the strategy sets for the
players of the game. Let Φ: S ⇒ S be the correspondence from
the strategy profile set S to itself defined so that

Φ(x) =
(
B1(π−1(x)),B2(π−2(x)), · · ·Bn(π−n(x))

)
for i = 1, 2, . . . , n. Then

{(x, y) ∈ S × S : y ∈ Φ(x)} =
n⋂

i=1

Gi ,

where
Gi = {(x, y) ∈ S × S : πi (y) ∈ Bi (π−i (x))}

for i = 1, 2, . . . , n.
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Now, for each i , the set

{(x−i , yi ) ∈ S−i × Si : yi ∈ Bi (x−i )}

is closed in S−i × Si , because the correspondence Bi : S−i ⇒ Si has
closed graph. It follows that each set Gi is closed in S × S , because
the set Gi is the preimage of a closed set under the continuous
mapping from S × S to S−i × Si that sends each ordered pair (x, y)
in S × S to (π−i (x), πi (y)). The graph of the correspondence Φ is
the intersection of the closed sets G1,G2, . . . ,Gn. It is therefore
itself a closed set. Thus the correspondence Φ: S ⇒ S has closed
graph. Moreover S is a non-empty compact convex set, and Φ(x)
is a non-empty convex subset of S for all x ∈ S . It follows from
the Kakutani Fixed Point Theorem (Theorem 5.4) that there exists
a fixed point x∗ for the correspondence Φ. This fixed point is
strategy profile that satisfies x∗ ∈ Φ(x∗).
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Let x∗i = πi (x∗) and x∗−i = π−i (x∗) for i = 1, 2, . . . , n. Then
x∗i ∈ Bi (x∗−i ) for i = 1, 2, . . . , n, because x∗ ∈ Φ(x∗). It follows
from the definition of Bi (x∗−i that

ui (xi , x
∗
−i ) ≤ ui (x∗i , x

∗
−i )

for all integers i between 1 and n and for all xi ∈ Si . The strategy
profile (x∗1, x

∗
2, . . . , x

∗
n) therefore represents a Nash equilibrium for

the game.
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Theorem 7.3 (Existence of Nash Equilibria)

Consider an n-person game in which, for each integer i between 1
and n, the strategy set Si is a compact convex subset of a
Euclidean space, and in which the utility function
ui : Si × Si−1 → R that determines the utility for the ith player,
given a strategy profile x−i representing strategies chosen by the
other players, is a continuous function that, for any fixed
x−i ∈ S−i , determines a quasiconcave function mapping xi to
ui (xi , x−i ) as xi varies over the strategy set Si . Then there exists a
Nash equilibrium (x∗1, x

∗
2, . . . , x

∗
n) for the game. Accordingly

ui (xi , x
∗
−i ) ≤ ui (x∗i , x

∗
−i )

for all integers i between 1 and n and for all xi ∈ Si .
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