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7. Game Theory and Nash Equilibria

7.1. Zero-Sum Two-Person Games

Example
Consider the following hand game. This is a zero-sum two-person
game. At each go, the two players present simultaneously either
and open hand or a fist. If both players present fists, or if both
players present open hands, then no money changes hands. If one
player presents a fist and the other player presents an open hand
then the player presenting the fist receives ten cents from the
player presenting the open hand.
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The payoff for the first player can be represented by the following
payoff matrix: (

0 −10
10 0

)
.

In this matrix the entry in the first row represent the payoffs when
the first player presents an open hand; those in the second row
represent the payoffs when the first player presents a fist. The
entries in the first column represent the payoff when the second
player presents an open hand; those in the second column
represent the payoffs when the second player presents a fist. In this
game the second player, choosing the best strategy, is always going
to play a fist, because that reduces the payoff for the first player,
whatever the first player chooses to play. Similarly the first player,
choosing the best strategy, is going to play a fist, because that
maximizes the payoff for the first player whatever the second player
does. Thus in this game, both players choosing the best strategies,
play fists.
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It should be noticed that, in this situation, if the second player
always plays a fist, the first player would not be tempted to move
from a strategy of always playing a fist in order get a better payoff.
Similarly if the first player always plays a fist, then the second
player would not be tempted to move from a strategy of always
playing a fist in order to reduce the payoff to the first player. This
is a very simple example of a Nash Equilibrium. This equilibrium
arises because the element in the second row and second column of
the payoff matrix is simultaneously the largest element in its
column and the smallest element in its row. Matrix elements with
this property as said to be saddle points of the matrix.
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Example
Now consider the game of Rock, Paper, Scissors. This game has a
long history, and versions of this game were well-established in
China and Japan in particular for many centuries.

Two players simultaneously present hand symbols representing
Rock (a closed fist), Paper (a flat hand), or Scissors (first two
fingers outstretched in a ‘V’). Paper beats Rock, Scissors beats
Paper, Rock beats Scissors. If both players present the same hand
symbol then that round is a draw.
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Ordering the strategies for the playes in the order Rock (1st),
Paper (2nd) and Scissors (3rd), the payoff matrix for the first
player is the following:— 0 −1 1

1 0 −1
−1 1 0

 .

The entry in the ith row and jth column of this payoff matrix
represents the return to the first player on a round of the game if
the first player plays strategy i and the second player plays
strategy j .
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A pure strategy would be one in which a player presents the same
hand symbol in every round. But it is not profitable for any player
in this game to adopt a pure strategy. If the first player adopts a
strategy of playing Paper, then the second player, on observing
this, would adopt a strategy of always playing Scissors, and would
beat the first player on every round. A preferable strategy, for each
player, is the mixed strategy of playing Rock, Paper and Scissors
with equal probability, and seeking to ensure that the sequence of
plays is as random as possible.
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Let us denote by M the payoff matrix above. A mixed strategy for
the first player is one in which, on any given round Rock is played
with probability p1, Paper is played with probability p2 and Scissors
is played with probability p3. The mixed strategies for the first
player can therefore be represented by points of a triangle ∆P ,
where

∆P =

{
(p1, p2, p3) ∈ R3 :

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, p1 + p2 + p3 = 1

}
.
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A mixed strategy for the second player is one in which Rock is
played with probability q1, Paper with probability q2 and Scissors
with probability q3. The mixed strategies for the second player can
therefore be represented by points of a triangle ∆Q , where

∆Q =

{
(q1, q2, q3) ∈ R3 :

q1 ≥ 0, q2 ≥ 0, q3 ≥ 0, q1 + q2 + q3 = 1

}
.



7. Game Theory and Nash Equilibria (continued)

Let p ∈ ∆P represent the mixed strategy chosen by the first player,
and q ∈ ∆Q the mixed strategy chosen by the second player, where

p = (p1, p2, p3), q = (q1, q2, q3).

Let Mij the payoff for the first player when the first player plays
strategy i and the second player plays strategy j . Then Mij is the
entry in the ith row and jth column of the payoff matrix M. In
matrix equations we consider p and q to be column vectors,
denoting their transposes by the row matrices pT and qT . The
expected payoff for the first player is then f (p,q), where

f (p,q) = pTMq =
3∑

i=1

3∑
j=1

piMijqj .
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Let p∗ = (p∗1 , p
∗
2 , p

∗
3), where

p∗1 = p∗2 = p∗3 = 1
3 .

Then p∗TM = (0, 0, 0), and therefore

f (p∗,q) = 0

for all q ∈ ∆Q . Similarly let q∗ = (q∗1 , q
∗
2 , q

∗
3), where

q∗1 = q∗2 = q∗3 = 1
3 .

Then
f (p,q∗) = 0

for all p ∈ ∆Q . Thus the inequalities

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

are satisfied for all p ∈ ∆P and q ∈ ∆q, because each of the
quantities occurring is equal to zero.



7. Game Theory and Nash Equilibria (continued)

Were the first player to adopt a mixed strategy p, where
p = (p1, p2, p3), pi ≥ 0 for i = 1, 2, 3 and p1 + p2 + p3 = 1, the
second player could adopt mixed strategy q, where
q = (q1, q2, q3) = (p3, p1, p2). The payoff f (p,q) is then

f (p,q) = −p1q2 + p1q3 − p2q3 + p2q1 − p3q1 + p3q2

= −p21 + p1p2 − p22 + p2p3 − p23 + p3p1

= −1
6

(
(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2

+ (2p3 − p1 − p2)2
)

≤ 0.
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Moreover if f (p,q) = 0, where q1 = p3, q2 = p1 and q3 = p2, then

(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2 + (2p3 − p1 − p2)2 = 0

and therefore 2p1 = p2 + p3, 2p2 = p3 + p1 and 2p3 = p1 + p2.
But then

3p1 = 3p2 = 3p3 = p1 + p2 + p3 = 1,

and thus p = p∗. It follows that if p ∈ ∆Q and p 6= p∗ then there
exists q ∈ ∆Q for which f (p,q) < 0. Thus if the first player
adopts a mixed strategy other than the strategy p∗ in which Rock,
Paper, Scissors are played with equal probability on each round,
there is a mixed strategy for the second player that ensures that
the average payoff for the first player is negative, and thus the first
player will lose in the long run over many rounds. Thus strategy p∗

is the only sensible mixed strategy that the first player can adopt.
The corresponding strategy q∗ is the only sensible mixed strategy
that the second player can adopt. The average payoff for each
player is then equal to zero.
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7.2. Von Neumann’s Minimax Theorem

In 1920, John Von Neumann published a paper entitled “Zur
Theorie der Gesellschaftsspielle” (Mathematische Annalen, Vol.
100 (1928), pp. 295–320). The title translates as “On the Theory
of Social Games”. This paper included a proof of the following
“Minimax Theorem”, which made use of the Brouwer Fixed Point
Theorem. An alternative proof using results concerning convexity
was presented in the book On the Theory of Games and Economic
Behaviour by John Von Neumann and Oskar Morgenstern
(Princeton University Press, 1944). George Dantzig, in a paper
published in 1951, showed how the theorem could be solved using
linear programming methods (see Joel N. Franklin, Methods of
Mathematical Economics, (Springer Verlag, 1980, republished by
SIAM in 1982).
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Theorem 7.1 (Von Neumann’s Minimax Theorem)

Let M be an m × n matrix, let

∆P =

{
(p1, p2, . . . , pm) ∈ Rm : pi ≥ 0 for i = 1, 2, . . . ,m, and

m∑
i=1

pi = 1

}
,

∆Q =

{
(q1, q2, . . . , qn) ∈ Rn : qi ≥ 0 for i = 1, 2, . . . , n, and

n∑
j=1

qj = 1

}
,
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and let

f (p,q) = pTMq =
m∑
i=1

n∑
j=1

Mi ,jpiqj

for all p ∈ ∆P and q ∈ ∆Q . Then there exist p∗ ∈ ∆P and
q∗ ∈ ∆Q such that

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

for all p ∈ ∆P and q ∈ ∆Q .
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Proof
Let f (p,q) = pTMq for all p ∈ ∆P and q ∈ ∆Q . Given q ∈ ∆Q ,
let

µP(q) = sup{f (p,q) : p ∈ ∆P}

and let
P(q) = {p ∈ ∆P : f (p,q) = µP(q)}.

Similarly given p ∈ ∆P , let

µQ(p) = inf{f (p,q) : q ∈ ∆Q}

and let
Q(p) = {q ∈ ∆Q : f (p,q) = µQ(q)}.
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An application of Berge’s Maximum Theorem (Theorem 2.23)
ensures that the functions µP : ∆P → R and µQ : ∆Q → R are
continuous, and that the correspondences P : ∆Q ⇒ ∆P and
Q : ∆P ⇒ ∆Q are non-empty, compact-valued and upper
hemicontinuous. These correspondences therefore have closed
graphs (see Proposition 2.11). Morever P(q) is convex for all
q ∈ ∆Q and Q(p) is convex for all p ∈ ∆P . Let X = ∆P ×∆Q ,
and let Φ: X ⇒ X be defined such that

Φ(p,q) = P(q)× Q(p)

for all (p,q) ∈ X . Kakutani’s Fixed Point Theorem (Theorem 5.4)
then ensures that there exists (p∗,q∗) ∈ X such that
(p∗,q∗) ∈ Φ(p∗,q∗). Then p∗ ∈ P(q∗) and q∗ ∈ Q(p∗) and
therefore

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

for all p ∈ ∆P and q ∈ ∆Q , as required.
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