MA3486—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2018 Lecture 20 (March 9, 2018)

David R. Wilkins

Proposition 6.8

Let T be a non-negative $n \times n$ (square) matrix, and let μ denote the Perron root of T. Let I denote the identity $n \times n$ matrix. Then, given any σ is a non-negative real number satisfying $\mu \sigma < 1$, the matrix $I - \sigma T$ is invertible and $(1 - \sigma T)^{-1}$ is a non-negative matrix.

Proof

We use some basic results of linear algebra and complex analysis. Let z be a complex number. Then the eigenvectors of the matrix I - zT are the same as those of the matrix T, and therefore the eigenvalues of I - zT are of the form $1 - z\lambda$ as λ ranges of the eigenvalues of T.

Now the modulus of any eigenvalue of the non-negative matrix T is bounded above by the Perron root of T (Proposition 6.7). Therefore the eigenvalues of I - zT have real part not less than $1 - |z|\mu$. A square matrix is invertible if zero is not an eigenvalue of that matrix. It follows that the matrix I - zT is invertible for all complex numbers z satisfying $\mu |z| < 1$.

The determinant of the matrix I - zT is a polynomial function of z. It follows that if $\mu > 0$ then all coefficients of the matrix $(I - zT)^{-1}$ are holomorphic functions of the complex variable z throughout the disk $\{z \in \mathbb{C} : |z| < \mu^{-1}\}$, and if $\mu = 0$ then all coefficients of the matrix $(I - zT)^{-1}$ are holomorphic functions of the complex variable z throughout entire complex plane. A basic theorem of complex analysis therefore ensures that each coefficient of the matrix $(I - zT)^{-1}$ may be represented as a power series in the complex plane z that converges for all complex numbers z satisfying $\mu |z| < 1$.

Now

$$(1-zT)(1+zT+z^2T^2+z^3T^3+\cdots+z^kT^k)=1-z^{k+1}T^{k+1},$$

and thus

$$(1-zT)^{-1} = 1+zT+z^2T^2+z^3T^3+\cdots+z^kT^k$$

 $+z^{k+1}T^{k+1}(I-zT)^{-1}$

when $\mu |z| < 1$.

Now it has already been shown that $(1 - zT)^{-1}$ can be represented by a power series in z that converges whenever $\mu |z| < 1$. we can therefore conclude that

$$(1-zT)^{-1} = 1 + zT + z^2T^2 + z^3T^3 + \cdots$$

for all complex numbers z satisfying $\mu |z| < 1$.

In particular

$$(1 - \sigma T)^{-1} = 1 + \sigma T + \sigma^2 T^2 + \sigma^3 T^3 + \cdots$$

for all non-negative real numbers σ satisfying $\mu\sigma < 1$. But each summand on the right side of this power series representation of $(1 - \sigma T)^{-1}$ is a non-negative matrix. It follows that $I - \sigma T$ is invertible and $(1 - \sigma T)^{-1}$ is a non-negative matrix for all non-negative real numbers σ satisfying $\sigma\rho < 1$, as required.

Proposition 6.9

Let T be a non-negative $n \times n$ (square) matrix, let μ denote the Perron root of T. Then the Perron root of the transpose T^T is equal to the Perron root μ of T, and there exists a non-zero vector $\mathbf{p} \in \mathbb{R}^n$ satisfying $\mathbf{p} \ge \mathbf{0}$ and $\mathbf{p}^T T = \mu \mathbf{p}^T$, where \mathbf{p}^T , the transpose of \mathbf{p} is the row vector components are the components of the column vector \mathbf{p} .

Proof

The transpose T^{T} of the non-negative square matrix T is itself a non-negative square matrix with the same characteristic polynomial as T, and thus with the same eigenvalues as T. The Perron root of the transpose T^{T} of T is a non-negative real eigenvalue of T^{T} (Proposition 6.5), and moreover it is an upper bound on the modulus of every eigenvalue of T^{T} (Proposition 6.7. It follows that the non-negative square matrix T and its transpose $\mathcal{T}^{\mathcal{T}}$ have the same Perron root. Moreover the Perron root is an eigenvalue of T^{T} , and therefore there exists a non-zero vector $\mathbf{p} \in \mathbb{R}^n$ for which $\mathbf{p} > 0$ and $T^T \mathbf{p} = \mu \mathbf{p}$. Taking the transpose of this equation, we find that $\mathbf{p}^T T = \mu \mathbf{p}^T$, as required.

Proposition 6.10

Let T be a non-negative $n \times n$ (square) matrix, let μ denote the Perron root of T, and let σ is a non-negative real number. Then there exists a non-zero vector $\mathbf{w} \in \mathbb{R}^n$ satisfying $\mathbf{w} \ge \mathbf{0}$ and $\mathbf{w} \gg \sigma T \mathbf{w}$ if and only if $\mu \sigma < 1$.

Proof

Let $\mathbf{v} \in \mathbb{R}^n$ satisfy $\mathbf{v} >> \mathbf{0}$, and let $\mathbf{w} = (I - \sigma T)^{-1}\mathbf{v}$, where I denotes the identity $n \times n$ matrix. It follows from Proposition 6.8 that if $\mu \sigma < 1$ then $(I - \sigma T)^{-1}$ a non-negative matrix, and therefore $\mathbf{w} \ge 0$. Also

$$\mathbf{w} - \sigma T \mathbf{w} = (I - \sigma T) \mathbf{w} = \mathbf{v} >> \mathbf{0},$$

and therefore $\mathbf{w} >> \sigma T \mathbf{w}$. We have thus shown that if $\mu \sigma < 1$ then there exists a vector \mathbf{w} with the required properties.

Conversely suppose that σ is a non-negative real number and that $\mathbf{w} \in \mathbb{R}^n$ is a non-zero vector for which $\mathbf{w} \ge 0$ and $\mathbf{w} >> \sigma T \mathbf{w}$. It follows from Proposition 6.9 that there exists a non-zero vector $\mathbf{p} \in \mathbb{R}^n$ satisfying $\mathbf{p} \ge \mathbf{0}$ and $\mathbf{p}^T T = \mu \mathbf{p}^T$, where \mathbf{p}^T denotes the transpose of \mathbf{p} . Then

$$(1 - \sigma \mu)\mathbf{p}^{\mathsf{T}}\mathbf{w} = \mathbf{p}^{\mathsf{T}}\mathbf{w} - \sigma \mu \mathbf{p}^{\mathsf{T}}\mathbf{w} = \mathbf{p}^{\mathsf{T}}(\mathbf{w} - \sigma \mathbf{T}\mathbf{w}) > 0.$$

It follows that $\mathbf{p}^T \mathbf{w} > 0$ and $\sigma \mu < 1$, as required. This completes the proof.

6.2. Perron's Theorem for Positive Matrices

In 1907 Oskar Perron (1880–1975) proved a fundamental theorem concerning the eigenvalues and eigenvectors of a positive square matrix, in particular showing that the positive real number now referred to as the Perron root (or Perron-Frobenius eigenvalue) of the matrix is a simple eigenvector, with a one-dimensional eigenspace spanned by a positive eigenvector, and that any other eigenvalues of the matrix has a modulus strictly less than the Perron root. In 1912, Georg Frobenius (1849-1917) generalized Perron's Theorem to a particular class of non-negative square matrices that are said to be *unzerlegbar* (i.e., "indecomposible" or "irreducible"). These discoveries initiated the development of a body of results concerning non-negative square matrices that is today referred to as *Perron-Frobenius Theory*

Before stating and proving Perron's Theorem, we review (without proof) some standard results from linear algebra, related to the Jordan normal form of a square matrix, that are relevant to the proof of Perron's Theorem.

Let T be a linear operator defined on a finite-dimensional complex vector space V. Then the vector space V can be decomposed as a direct sum of subspaces that are invariant under the action of T and cannot be further decomposed as direct sums of invariant subspaces. Then

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$$

where, for each integer r between 1 and m, the linear operator T maps the subspace V_r of V into itself. Moreover the subspace V_r has no proper non-zero vector subspace that is invariant under the action of T. Associated with each subspace V_r is a complex number λ_r that is the unique eigenvalue of the restriction of the linear operator T to V_r .

The characteristic polynomial χ of T on V is defined such that $\chi(z) = \det(zI_V - T)$, where I_V denotes the identity operator on V. It can be shown that

$$\chi(z)=\prod_{r=1}^m(z-\lambda_r)^{d_r},$$

where $d_r = \dim_{\mathbb{C}} V_r$ for r = 1, 2, ..., m. It follows that a complex number λ is a simple root of the characteristic polynomial χ of T if and only if the following two conditions are satisfied: there exists exactly one integer r between 1 and m for which $\lambda = \lambda_r$; for this value of r, $d_r = 1$.

The theory of the Jordan Normal Form ensures that each subspace V_r has a basis of the form

$$e_1, e_2, ..., e_{d_r},$$

with the property that $T\mathbf{e}_1 = \lambda_r \mathbf{e}_s$ and $T\mathbf{e}_s = \lambda_r \mathbf{e}_s + \mathbf{e}_{s-1}$ for $1 < s \leq d_r$. All eigenvectors of T contained in V_r are scalar multiples of \mathbf{e}_1 . Moreover if $d_r > 1$ then $(T - \lambda_r I_{V_r})^2 \mathbf{e}_2 = \mathbf{0}$ but $T\mathbf{e}_2 \neq \lambda_r \mathbf{e}_2$.

These results of linear algebra, summarized without detailed proof, yield the result stated in the following lemma.

Lemma 6.11

Let T be a linear operator acting on a finite-dimensional complex vector space V, and let λ be an eigenvalue of T. Then λ is a simple root of the characteristic polynomial of T if and only if the following two conditions are satisfied:

- the eigenspace associated with the eigenvalue λ is one-dimensional;
- if $\mathbf{v} \in V$ satisfies the identity $(T \lambda I_V)^2 \mathbf{v} = \mathbf{0}$ then $T\mathbf{v} = \lambda \mathbf{v}$.

Theorem 6.12 (Perron)

- Let T be a positive square matrix, and let μ be the Perron root of T. Then the following properties are satisfied:—
- (i) there exists an eigenvector of T with associated eigenvalue μ whose coefficients are all strictly positive;
- (ii) the eigenvalue μ is a simple root of the characteristic polynomial of T, and the corresponding eigenspace is therefore one-dimensional;
- (iii) all eigenvalues λ (real or complex) of T that are distinct from μ satisfy the inequality $|\lambda| < \mu$.

Proof

Let the positive square matrix T be an $n \times n$ matrix, and let μ denote the Perron root of T. Proposition 6.4 establishes that the Perron root μ of T is well-defined and is an eigenvalue of T with which is associated an eigenvector **b** with positive coefficients. Moreover Proposition 6.4 ensures that the following properties are then satisfied:—

- (iv) $\mathbf{b} \gg \mathbf{0}$ and $T\mathbf{b} = \mu \mathbf{b}$;
- (v) if ρ is a non-negative real number, if v is a non-zero *n*-dimensional vector with non-negative coefficients, and if $T \mathbf{v} \ge \rho \mathbf{v}$, then $\rho \le \mu$.
- (vi) given any *n*-dimensional vector **u** with real coefficients for which $T\mathbf{u} \ge \mu \mathbf{u}$, there exists a real number *t* for which $\mathbf{u} = t\mathbf{b}$, and thus $T\mathbf{u} = \mu \mathbf{u}$.

Now because the coefficients of the matrix T are all real, and μ is also a real number, the real and imaginary parts of any eigenvector of T with associated eigenvalue μ must themselves be eigenvectors with eigenvalue μ . The result just obtained therefore ensures that any convex eigenvector of T with eigenvalue μ must be a complex scalar multiple of the eigenvector **b**. Thus the eigenspace of Tassociated with the eigenvalue μ is one-dimensional, when considered over the field of complex numbers.

Let I denote the identity $n \times n$ matrix, and let **v** be real *n*-dimensional vector for which $(T - \mu I)^2 \mathbf{v} = \mathbf{0}$. Then $T\mathbf{v} - \mu \mathbf{v}$ is an eigenvector of T with associated eigenvalue μ . It follows from property (vi) above that there must exist some real number α for which $T\mathbf{v} - \mu\mathbf{v} = \alpha\mathbf{b}$. Now $\mathbf{b} >> \mathbf{0}$. It follows that if $\alpha > 0$ then $T\mathbf{v} > \mu\mathbf{v}$. But property (vi) stated at the commencement of the proof then ensures that $\mathbf{v} = t\mathbf{b}$ for some real number t. But then $T\mathbf{v} = \mu\mathbf{v}$ and $\alpha = 0$. Similarly if $\alpha \leq 0$ then $T(-\mathbf{v}) \geq \mu(-\mathbf{v})$, and this also ensures that $\alpha = 0$. It follows that if **v** is a real *n*-dimensional vector satisfying $(T - \mu I)^2 \mathbf{v} = \mathbf{0}$ then $T \mathbf{v} = \mu \mathbf{v}$. The criterion stated in Lemma 6.11 therefore establishes that μ is a simple root of the characteristic polynomial of T.

We have now verified (i) and (ii). It remains to verify that all eigenvalues λ of T distinct from μ satisfy the inequality $|\lambda| < \mu$. Now it follows from Proposition 6.7 that all eigenvalues λ of T satisfy the inequality $|\lambda| \le \mu$.

Now suppose that $|\lambda| = \mu$. It then follows from property (vi), stated at the commencement of the proof, that $T\mathbf{v} = \mu\mathbf{v} = |\lambda|\mathbf{v}$. It then follows from Lemma 6.6 that λ is a positive real number, and therefore $\lambda = \mu$. This completes the proof of (iii), and therefore completes the proof of the theorem.