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6. Perron-Frobenius Theory (continued)

Proposition 6.8

Let T be a non-negative n X n (square) matrix, and let u denote
the Perron root of T. Let | denote the identity n X n matrix.
Then, given any o is a non-negative real number satisfying

po < 1, the matrix | — o T is invertible and (1 —oT) 1 is a
non-negative matrix.

Proof

We use some basic results of linear algebra and complex analysis.
Let z be a complex number. Then the eigenvectors of the matrix
| — zT are the same as those of the matrix T, and therefore the
eigenvalues of /| — zT are of the form 1 — z)\ as A ranges of the
eigenvales of T.



6. Perron-Frobenius Theory (continued)

Now the modulus of any eigenvalue of the non-negative matrix T
is bounded above by the Perron root of T (Proposition 6.7).
Therefore the eigenvalues of | — zT have real part not less than

1 — |z|p. A square matrix is invertible if zero is not an eigenvalue
of that matrix. It follows that the matrix / — zT is invertible for all
complex numbers z satisfying p|z| < 1.

The determinant of the matrix / — zT is a polynomial function

of z. It follows that if ;& > 0 then all coefficients of the matrix

(I — zT)~! are holomorphic functions of the complex variable z
throughout the disk {z € C : |z| < p~1}, and if 4 = 0 then all
coefficients of the matrix (/ — zT)~! are holomorphic functions of
the complex variable z throughout entire complex plane. A basic
theorem of complex analysis therefore ensures that each coefficient
of the matrix (/ — zT)~! may be represented as a power series in
the complex plane z that converges for all complex numbers z
satisfying p|z| < 1.



6. Perron-Frobenius Theory (continued)

Now
(1= 2T)(A+ 2T + T2+ 28T3 4. 4 2K TK) = 1 — LTkl
and thus

(1_27—)71 = 14 zT+22T?+ 28373 +... 4 ZkTK
+Zk+1 Tk+1(/ o ZT)—l

when plz| < 1.



6. Perron-Frobenius Theory (continued)

Now it has already been shown that (1 —zT)~! can be represented
by a power series in z that converges whenever p|z| < 1. we can
therefore conclude that

(1—zT) ' =142T+ 22T +2373+ ...

for all complex numbers z satisfying p|z| < 1.



6. Perron-Frobenius Theory (continued)

In particular
A—oT) t=14+0T+0°T?°+3T3 4.

for all non-negative real numbers o satisfying o < 1. But each
summand on the right side of this power series representation of
(1 —oT)1is a non-negative matrix. It follows that / —o T is
invertible and (1 — o T)~! is a non-negative matrix for all
non-negative real numbers o satisfying op < 1, as required. |}



6. Perron-Frobenius Theory (continued)

Proposition 6.9

Let T be a non-negative n X n (square) matrix, let ju denote the
Perron root of T. Then the Perron root of the transpose T is
equal to the Perron root u of T, and there exists a non-zero vector
p € R" satisfyingp > 0 and p’ T = up’, where p', the transpose
of p is the row vector components are the components of the
column vector p.




6. Perron-Frobenius Theory (continued)

Proof

The transpose T of the non-negative square matrix T is itself a
non-negative square matrix with the same characteristic
polynomial as T, and thus with the same eigenvalues as T. The
Perron root of the transpose T of T is a non-negative real
eigenvalue of T (Proposition 6.5), and moreover it is an upper
bound on the modulus of every eigenvalue of T7 (Proposition 6.7.
It follows that the non-negative square matrix T and its transpose
T have the same Perron root. Moreover the Perron root is an
eigenvalue of T, and therefore there exists a non-zero vector

p € R for which p > 0 and T7p = up. Taking the transpose of
this equation, we find that p” T = up’, as required. |}



6. Perron-Frobenius Theory (continued)

Proposition 6.10

Let T be a non-negative n X n (square) matrix, let ju denote the
Perron root of T, and let o is a non-negative real number. Then
there exists a non-zero vector w € R" satisfying w > 0 and

w >> g Tw if and only if po < 1.

Proof

Let v € R” satisfy v >> 0, and let w = (/ — o T) v, where /
denotes the identity n x n matrix. It follows from Proposition 6.8
that if uo < 1 then (I — o T)™! a non-negative matrix, and
therefore w > 0. Also

w—ocTw=(l—0cT)w=v>>0,

and therefore w >> o Tw. We have thus shown that if yo <1
then there exists a vector w with the required properties.



6. Perron-Frobenius Theory (continued)

Conversely suppose that ¢ is a non-negative real number and that
w € R” is a non-zero vector for which w > 0 and w >> o Tw. It
follows from Proposition 6.9 that there exists a non-zero vector

p € R" satisfyingp>0and p’ T = up’, where p’ denotes the
transpose of p. Then

(1—op)p'™w=p'w—oup’w=p'(w—0cTw) > 0.

It follows that p"w > 0 and op < 1, as required. This completes
the proof. |}



6. Perron-Frobenius Theory (continued)

6.2. Perron’s Theorem for Positive Matrices

In 1907 Oskar Perron (1880-1975) proved a fundamental theorem
concerning the eigenvalues and eigenvectors of a positive square
matrix, in particular showing that the positive real number now
referred to as the Perron root (or Perron-Frobenius eigenvalue) of
the matrix is a simple eigenvector, with a one-dimensional
eigenspace spanned by a positive eigenvector, and that any other
eigenvalues of the matrix has a modulus strictly less than the
Perron root. In 1912, Georg Frobenius (1849-1917) generalized
Perron’s Theorem to a particular class of non-negative square
matrices that are said to be unzerlegbar (i.e., “indecomposible” or
“irreducible” ). These discoveries initiated the development of a
body of results concerning non-negative square matrices that is
today referred to as Perron-Frobenius Theory



6. Perron-Frobenius Theory (continued)

Before stating and proving Perron’s Theorem, we review (without
proof) some standard results from linear algebra, related to the
Jordan normal form of a square matrix, that are relevant to the
proof of Perron’s Theorem.



6. Perron-Frobenius Theory (continued)

Let T be a linear operator defined on a finite-dimensional complex
vector space V. Then the vector space V can be decomposed as a
direct sum of subspaces that are invariant under the action of T
and cannot be further decomposed as direct sums of invariant
subspaces. Then

V=VieaVo® - @& Vp

where, for each integer r between 1 and m, the linear operator T
maps the subspace V, of V into itself. Moreover the subspace V,
has no proper non-zero vector subspace that is invariant under the
action of T. Associated with each subspace V, is a complex
number A, that is the unique eigenvalue of the restriction of the
linear operator T to V,.



6. Perron-Frobenius Theory (continued)

The characteristic polynomial x of T on V is defined such that
X(z) = det(zly — T), where Iy denotes the identity operator on
V. It can be shown that

x(2) = [[(z=2)%,
r=1
where d, = dim¢ V, for r =1,2, ..., m. It follows that a complex

number X is a simple root of the characteristic polynomial y of T
if and only if the following two conditions are satisfied: there exists
exactly one integer r between 1 and m for which A = \,; for this
value of r, d, = 1.



6. Perron-Frobenius Theory (continued)

The theory of the Jordan Normal Form ensures that each subspace
V. has a basis of the form

e;, e, ... 7edr7

with the property that Te; = A\,es and Tes = A\, es + es_; for

1 < s < d,. All eigenvectors of T contained in V, are scalar
multiples of e;. Moreover if d, > 1 then (T — \,/y,)%e> = 0 but
TEQ 75 )\rEQ.

These results of linear algebra, summarized without detailed proof,
yield the result stated in the following lemma.



6. Perron-Frobenius Theory (continued)

Lemma 6.11

Let T be a linear operator acting on a finite-dimensional complex
vector space V, and let A be an eigenvalue of T. Then X is a
simple root of the characteristic polynomial of T if and only if the
following two conditions are satisfied:

@ the eigenspace associated with the eigenvalue \ is
one-dimensional.;

e ifv € V satisfies the identity (T — Ay)?v = 0 then Tv = )v.




6. Perron-Frobenius Theory (continued)

Theorem 6.12 (Perron)

Let T be a positive square matrix, and let p. be the Perron root of

T. Then the following properties are satisfied:—

(i) there exists an eigenvector of T with associated eigenvalue
whose coefficients are all strictly positive;

(ii) the eigenvalue 1 is a simple root of the characteristic
polynomial of T, and the corresponding eigenspace is
therefore one-dimensional;

(iii) all eigenvalues X\ (real or complex) of T that are distinct from
w satisfy the inequality |\| < p.




6. Perron-Frobenius Theory (continued)

Proof
Let the positive square matrix T be an n x n matrix, and let p
denote the Perron root of T. Proposition 6.4 establishes that the
Perron root p of T is well-defined and is an eigenvalue of T with
which is associated an eigenvector b with positive coefficients.
Moreover Proposition 6.4 ensures that the following properties are
then satisfied:—
(iv) b >>0and Th = ub;
(v) if p is a non-negative real number, if v is a non-zero
n-dimensional vector with non-negative coefficients, and if
Tv > pv, then p < .
(vi) given any n-dimensional vector u with real coefficients for
which Tu > pu, there exists a real number t for which
u = tb, and thus Tu = pu.



6. Perron-Frobenius Theory (continued)

Now because the coefficients of the matrix T are all real, and p is
also a real number, the real and imaginary parts of any eigenvector
of T with associated eigenvalue  must themselves be eigenvectors
with eigenvalue u. The result just obtained therefore ensures that
any convex eigenvector of T with eigenvalue p must be a complex
scalar multiple of the eigenvector b. Thus the eigenspace of T
associated with the eigenvalue p is one-dimensional, when
considered over the field of complex numbers.



6. Perron-Frobenius Theory (continued)

Let / denote the identity n x n matrix, and let v be real
n-dimensional vector for which (T — pu/)?v = 0. Then Tv — pv is
an eigenvector of T with associated eigenvalue p. It follows from
property (vi) above that there must exist some real number « for
which Tv — uv = ab. Now b >> 0. It follows that if & > 0 then
Tv > pv. But property (vi) stated at the commencement of the
proof then ensures that v = tb for some real number t. But then
Tv = pv and a = 0. Similarly if « <0 then T(—v) > u(—v), and
this also ensures that o = 0. It follows that if v is a real
n-dimensional vector satisfying (T — u/)?v = 0 then Tv = pv.
The criterion stated in Lemma 6.11 therefore establishes that w is
a simple root of the characteristic polynomial of T.



6. Perron-Frobenius Theory (continued)

We have now verified (i) and (ii). It remains to verify that all
eigenvalues \ of T distinct from p satisfy the inequality [\| < p.
Now it follows from Proposition 6.7 that all eigenvalues A of T
satisfy the inequality |A| < p.

Now suppose that |A| = p. It then follows from property (vi),
stated at the commencement of the proof, that Tv = uv = |A|v.
It then follows from Lemma 6.6 that A is a positive real number,
and therefore A = p. This completes the proof of (iii), and
therefore completes the proof of the theorem. |
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