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5. Fixed Point Theorems (continued)

5.3. The Kakutani Fixed Point Theorem

Theorem 5.4 (Kakutani’s Fixed Point Theorem)

Let X be a non-empty, compact and convex subset of
n-dimensional Euclidean space Rn, and let Φ: X ⇒ X be a
correspondence mapping X into itself. Suppose that the graph of
the correspondence Φ is closed and that Φ(x) is non-empty and
convex for all x ∈ X . Then there exists a point x∗ of X that
satisfies x∗ ∈ Φ(x∗).



5. Fixed Point Theorems (continued)

Proof
There exists a continuous map r : Rn → X from Rn to X with the
property that r(x) = x for all x ∈ X . (see Proposition 3.8). Let ∆
be an n-dimensional simplex chosen such that X ⊂ ∆, and let
Ψ(x) = Φ(r(x)) for all x ∈ ∆. If x∗ ∈ ∆ satisfies x∗ ∈ Ψ(x∗) then
x∗ ∈ X and r(x∗) = x∗, and therefore x ∈ Φ(x∗). It follows that
the result in the general case follows from that in the special case
in which the closed bounded convex subset X of Rn is an
n-dimensional simplex.

Thus let ∆ be an n-dimensional simplex contained in Rn, and let
Φ: ∆ ⇒ ∆ be a correspondence with closed graph, where Φ(x) is
a non-empty closed convex subset of ∆ for all x ∈ X . We must
prove that there exists some point x∗ of ∆ with the property that
x∗ ∈ Φ(x∗).



5. Fixed Point Theorems (continued)

Let K be the simplicial complex consisting of the n-simplex ∆
together with all its faces, and let K (j) be the jth barycentric
subdivision of K for all positive integers j . Then |K (j)| = ∆ for all
positive integers j . Now Φ(v) is non-empty for all vertices v of
K (j). Now any function mapping the vertices of a simplicial
complex into a Euclidean space extends uniquely to a piecewise
linear map defined over the polyhedron of that simplicial complex
(Proposition 4.8). Therefore there exists a sequence f1, f2, f3, . . . of
continuous functions mapping the simplex ∆ into itself such that,
for each positive integer j , the continuous map fj : ∆→ ∆ is
piecewise linear on the simplices of K (j) and satisfies fj(v) ∈ Φ(v)
for all vertices v of K (j).



5. Fixed Point Theorems (continued)

Now it follows from the Brouwer Fixed Point Theorem
(Theorem 5.3) that, for each positive integer j , there exists zj ∈ ∆
for which fj(zj) = zj . For each positive integer j , there exist
vertices

v0,j , v1,j , . . . , vn,j

of K (j) spanning a simplex of K and non-negative real numbers

t0,j , t1,j , . . . , tn,j satisfying
n∑

i=1
ti ,j = 1 such that

zj =
n∑

i=0

ti ,jvi ,j

for all positive integers j . Let yi ,j = fj(vi ,j) for i = 0, 1, . . . , n and
for all positive integers j . Then yi ,j ∈ Φ(vi ,j) for i = 0, 1, . . . , n and
for all positive integers j .



5. Fixed Point Theorems (continued)

The function fj is piecewise linear on the simplices of K (j). It
follows that

n∑
i=0

ti ,jvi ,j = zj = fj(zj) = fj

(
n∑

i=0

ti ,jvi ,j

)

=
n∑

i=0

ti ,j fj(vi ,j) =
n∑

i=0

ti ,jyi ,j

for all positive integers j . Also |vi ,j − v0,j | ≤ µ(K (j)) for
i = 0, 1, . . . , n and for all positive integers j , where µ(K (j)) denotes
the mesh of the simplicial complex K (j) (i.e., the length of the
longest side of that simplicial complex). Moreover µ(K j)→ 0 as
j → +∞ (see Lemma 4.6). It follows that

lim
j→+∞

|vi ,j − v0,j | = 0.



5. Fixed Point Theorems (continued)

Now the multidimensional Bolzano-Weierstrass Theorem
(Theorem 1.4) ensures the existence of points

x∗, y0, y1, . . . , yn

of the simplex ∆, non-negative real numbers t0, t1, . . . , tn and an
infinite sequence m1,m2,m3, . . . of positive integers, where

m1 < m2 < m3 < · · · ,

such that

x∗ = lim
j→+∞

v0,mj ,

yi = lim
j→+∞

yi ,mj
(0 ≤ i ≤ n),

ti = lim
j→+∞

ti ,mj
(0 ≤ i ≤ n).



5. Fixed Point Theorems (continued)

Now
|vi ,mj

− x∗| ≤ |vi ,mj
− v0,mj |+ |v0,mj − x∗|

for i = 0, 1, . . . , n and for all positive integers j . Moreover
lim

j→+∞
|vi ,mj

− v0,mj | = 0 and lim
j→+∞

|v0,mj − x∗| = 0. It follows that

lim
j→+∞

vi ,mj
= x∗ for i = 0, 1, . . . , n. Also

n∑
i=0

ti = lim
j→+∞

(
n∑

i=0

ti ,mj

)
= 1.

It follows that

lim
j→+∞

(
n∑

i=0

ti ,mj
vi ,mj

)
=

n∑
i=0

(
lim

j→+∞
ti ,mj

)(
lim

j→+∞
vi ,mj

)

=
n∑

i=0

tix
∗ = x∗.



5. Fixed Point Theorems (continued)

But we have also shown that
n∑

i=0
ti ,jyi ,j =

n∑
i=0

ti ,jvi ,j for all positive

integers j . It follows that

n∑
i=0

tiyi = lim
j→+∞

(
n∑

i=0

ti ,mj
yi ,mj

)
= lim

j→+∞

(
n∑

i=0

ti ,mj
vi ,mj

)
= x∗.



5. Fixed Point Theorems (continued)

Next we show that yi ∈ Φ(x∗) for i = 0, 1, . . . , n. Now

(vi ,mj
, yi ,mj

) ∈ Graph(Φ)

for all positive integers j , and the graph Graph(Φ) of the
correspondence Φ is closed. It follows that

(x∗, yi ) = lim
j→+∞

(vi ,mj
, yi ,mj

) ∈ Graph(Φ)

and thus yi ∈ Φ(x∗) for i = 0, 1, . . . ,m (see Proposition 2.6).



5. Fixed Point Theorems (continued)

It follows from the convexity of Φ(x∗) that

n∑
i=0

tiy∗ ∈ Φ(x∗).

(see Lemma 3.5). But
n∑

i=0
tiy∗ = x∗. It follows that x∗ ∈ Φ(x∗), as

required.
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