MA3486—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2018 Lecture 16 (February 22, 2018)

David R. Wilkins

5.3. The Kakutani Fixed Point Theorem

Theorem 5.4 (Kakutani's Fixed Point Theorem)

Let X be a non-empty, compact and convex subset of n-dimensional Euclidean space \mathbb{R}^n , and let $\Phi: X \rightrightarrows X$ be a correspondence mapping X into itself. Suppose that the graph of the correspondence Φ is closed and that $\Phi(\mathbf{x})$ is non-empty and convex for all $\mathbf{x} \in X$. Then there exists a point \mathbf{x}^* of X that satisfies $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Proof

There exists a continuous map $r: \mathbb{R}^n \to X$ from \mathbb{R}^n to X with the property that $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in X$. (see Proposition 3.8). Let Δ be an *n*-dimensional simplex chosen such that $X \subset \Delta$, and let $\Psi(\mathbf{x}) = \Phi(r(\mathbf{x}))$ for all $\mathbf{x} \in \Delta$. If $\mathbf{x}^* \in \Delta$ satisfies $\mathbf{x}^* \in \Psi(\mathbf{x}^*)$ then $\mathbf{x}^* \in X$ and $r(\mathbf{x}^*) = \mathbf{x}^*$, and therefore $\mathbf{x} \in \Phi(\mathbf{x}^*)$. It follows that the result in the general case follows from that in the special case in which the closed bounded convex subset X of \mathbb{R}^n is an *n*-dimensional simplex.

Thus let Δ be an *n*-dimensional simplex contained in \mathbb{R}^n , and let $\Phi: \Delta \rightrightarrows \Delta$ be a correspondence with closed graph, where $\Phi(\mathbf{x})$ is a non-empty closed convex subset of Δ for all $\mathbf{x} \in X$. We must prove that there exists some point \mathbf{x}^* of Δ with the property that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Let K be the simplicial complex consisting of the *n*-simplex Δ together with all its faces, and let $K^{(j)}$ be the *i*th barycentric subdivision of K for all positive integers j. Then $|K^{(j)}| = \Delta$ for all positive integers j. Now $\Phi(\mathbf{v})$ is non-empty for all vertices \mathbf{v} of $\mathcal{K}^{(j)}$. Now any function mapping the vertices of a simplicial complex into a Euclidean space extends uniquely to a piecewise linear map defined over the polyhedron of that simplicial complex (Proposition 4.8). Therefore there exists a sequence f_1, f_2, f_3, \ldots of continuous functions mapping the simplex Δ into itself such that, for each positive integer *j*, the continuous map $f_i: \Delta \to \Delta$ is piecewise linear on the simplices of $K^{(j)}$ and satisfies $f_i(\mathbf{v}) \in \Phi(\mathbf{v})$ for all vertices **v** of $K^{(j)}$.

Now it follows from the Brouwer Fixed Point Theorem (Theorem 5.3) that, for each positive integer j, there exists $\mathbf{z}_j \in \Delta$ for which $f_j(\mathbf{z}_j) = \mathbf{z}_j$. For each positive integer j, there exist vertices

$$v_{0,j}, v_{1,j}, \dots, v_{n,j}$$

of $K^{(j)}$ spanning a simplex of K and non-negative real numbers $t_{0,j}, t_{1,j}, \ldots, t_{n,j}$ satisfying $\sum_{i=1}^{n} t_{i,j} = 1$ such that

$$\mathbf{z}_j = \sum_{i=0}^n t_{i,j} \mathbf{v}_{i,j}$$

for all positive integers j. Let $\mathbf{y}_{i,j} = f_j(\mathbf{v}_{i,j})$ for i = 0, 1, ..., n and for all positive integers j. Then $\mathbf{y}_{i,j} \in \Phi(\mathbf{v}_{i,j})$ for i = 0, 1, ..., n and for all positive integers j.

5. Fixed Point Theorems (continued)

The function f_j is piecewise linear on the simplices of $\mathcal{K}^{(j)}$. It follows that

$$\sum_{i=0}^{n} t_{i,j} \mathbf{v}_{i,j} = \mathbf{z}_j = f_j(\mathbf{z}_j) = f_j\left(\sum_{i=0}^{n} t_{i,j} \mathbf{v}_{i,j}\right)$$
$$= \sum_{i=0}^{n} t_{i,j} f_j(\mathbf{v}_{i,j}) = \sum_{i=0}^{n} t_{i,j} \mathbf{y}_{i,j}$$

for all positive integers *j*. Also $|\mathbf{v}_{i,j} - \mathbf{v}_{0,j}| \le \mu(K^{(j)})$ for i = 0, 1, ..., n and for all positive integers *j*, where $\mu(K^{(j)})$ denotes the mesh of the simplicial complex $K^{(j)}$ (i.e., the length of the longest side of that simplicial complex). Moreover $\mu(K^j) \to 0$ as $j \to +\infty$ (see Lemma 4.6). It follows that

$$\lim_{j\to+\infty}|\mathbf{v}_{i,j}-\mathbf{v}_{0,j}|=0.$$

Now the multidimensional Bolzano-Weierstrass Theorem (Theorem 1.4) ensures the existence of points

 $\mathbf{x}^*, \mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n$

of the simplex Δ , non-negative real numbers t_0, t_1, \ldots, t_n and an infinite sequence m_1, m_2, m_3, \ldots of positive integers, where

 $m_1 < m_2 < m_3 < \cdots,$

such that

$$\begin{aligned} \mathbf{x}^* &= \lim_{j \to +\infty} \mathbf{v}_{0,m_j}, \\ \mathbf{y}_i &= \lim_{j \to +\infty} \mathbf{y}_{i,m_j} \quad (0 \le i \le n), \\ t_i &= \lim_{j \to +\infty} t_{i,m_j} \quad (0 \le i \le n). \end{aligned}$$

Now

$$|\mathbf{v}_{i,m_j} - \mathbf{x}^*| \leq |\mathbf{v}_{i,m_j} - \mathbf{v}_{0,m_j}| + |\mathbf{v}_{0,m_j} - \mathbf{x}^*|$$

for i = 0, 1, ..., n and for all positive integers j. Moreover $\lim_{\substack{j \to +\infty}} |\mathbf{v}_{i,m_j} - \mathbf{v}_{0,m_j}| = 0 \text{ and } \lim_{\substack{j \to +\infty}} |\mathbf{v}_{0,m_j} - \mathbf{x}^*| = 0.$ It follows that $\lim_{\substack{j \to +\infty}} \mathbf{v}_{i,m_j} = \mathbf{x}^* \text{ for } i = 0, 1, ..., n. \text{ Also}$

$$\sum_{i=0}^{n} t_i = \lim_{j \to +\infty} \left(\sum_{i=0}^{n} t_{i,m_j} \right) = 1.$$

It follows that

$$\lim_{j \to +\infty} \left(\sum_{i=0}^{n} t_{i,m_j} \mathbf{v}_{i,m_j} \right) = \sum_{i=0}^{n} \left(\lim_{j \to +\infty} t_{i,m_j} \right) \left(\lim_{j \to +\infty} \mathbf{v}_{i,m_j} \right)$$
$$= \sum_{i=0}^{n} t_i \mathbf{x}^* = \mathbf{x}^*.$$

But we have also shown that $\sum_{i=0}^{n} t_{i,j} \mathbf{y}_{i,j} = \sum_{i=0}^{n} t_{i,j} \mathbf{v}_{i,j}$ for all positive integers *j*. It follows that

$$\sum_{i=0}^{n} t_i \mathbf{y}_i = \lim_{j \to +\infty} \left(\sum_{i=0}^{n} t_{i,m_j} \mathbf{y}_{i,m_j} \right) = \lim_{j \to +\infty} \left(\sum_{i=0}^{n} t_{i,m_j} \mathbf{v}_{i,m_j} \right) = \mathbf{x}^*.$$

Next we show that $\mathbf{y}_i \in \Phi(\mathbf{x}^*)$ for i = 0, 1, ..., n. Now

$$(\mathbf{v}_{i,m_j},\mathbf{y}_{i,m_j})\in \operatorname{Graph}(\Phi)$$

for all positive integers j, and the graph $\operatorname{Graph}(\Phi)$ of the correspondence Φ is closed. It follows that

$$(\mathbf{x}^*, \mathbf{y}_i) = \lim_{j \to +\infty} (\mathbf{v}_{i,m_j}, \mathbf{y}_{i,m_j}) \in \operatorname{Graph}(\Phi)$$

and thus $\mathbf{y}_i \in \Phi(\mathbf{x}^*)$ for $i = 0, 1, \dots, m$ (see Proposition 2.6).

It follows from the convexity of $\Phi(\mathbf{x}^*)$ that

$$\sum_{i=0}^n t_i \mathbf{y}_* \in \Phi(\mathbf{x}^*).$$

(see Lemma 3.5). But $\sum_{i=0}^{n} t_i \mathbf{y}_* = \mathbf{x}^*$. It follows that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$, as required.