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4. Simplicial Complexes

4. Simplicial Complexes

4.1. Simplical Complexes in Euclidean Spaces

Definition

A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

if σ is a simplex belonging to K then every face of σ also
belongs to K ,

if σ1 and σ2 are simplices belonging to K then either
σ1 ∩ σ2 = ∅ or else σ1 ∩ σ2 is a common face of both σ1 and
σ2.



4. Simplicial Complexes (continued)

Definition

The dimension of a simplicial complex K is the greatest
non-negative integer n with the property that K contains an
n-simplex.

Definition

The polyhedron of a simplicial complex K is the union of all the
simplices of K .

The polyhedron |K | of a simplicial complex K is a subset of a
Euclidean space that is both closed and bounded. It is therefore a
compact subset of that Euclidean space.



4. Simplicial Complexes (continued)

Example
Let Kσ consist of some n-simplex σ together with all of its faces.
Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.



4. Simplicial Complexes (continued)

Lemma 4.1

Let K be a simplicial complex, and let X be a subset of some
Euclidean space. A function f : |K | → X is continuous on the
polyhedron |K | of K if and only if the restriction of f to each
simplex of K is continuous on that simplex.

Proof
Each simplex of the simplicial complex K is a closed subset of the
polyhedron |K | of the simplicial complex K . The numbers of
simplices belonging to the simplicial complex is finite. The result
therefore follows from a straightforward application of
Lemma 1.19.



4. Simplicial Complexes (continued)

We shall denote by VertK the set of vertices of a simplicial
complex K (i.e., the set consisting of all vertices of all simplices
belonging to K ). A collection of vertices of K is said to span a
simplex of K if these vertices are the vertices of some simplex
belonging to K .

Definition

Let K be a simplicial complex in Rk . A subcomplex of K is a
collection L of simplices belonging to K with the following
property:—

if σ is a simplex belonging to L then every face of σ also
belongs to L.

Note that every subcomplex of a simplicial complex K is itself a
simplicial complex.



4. Simplicial Complexes (continued)

Proposition 4.2

Let K be a finite collection of simplices in some Euclidean
space Rk , and let |K | be the union of all the simplices in K. Then
K is a simplicial complex (with polyhedron |K |) if and only if the
following two conditions are satisfied:—

K contains the faces of its simplices,

every point of |K | belongs to the interior of a unique simplex
of K.



4. Simplicial Complexes (continued)

Proof
Suppose that K is a simplicial complex. Then K contains the faces
of its simplices. We must show that every point of |K | belongs to
the interior of a unique simplex of K . Let x ∈ |K |. Then x ∈ ρ for
some simplex ρ of K . It follows from Lemma 3.3 that there exists
a unique face σ of ρ such that the point x belongs to the interior
of σ. But then σ ∈ K , because ρ ∈ K and K contains the faces of
all its simplices. Thus x belongs to the interior of at least one
simplex of K .



4. Simplicial Complexes (continued)

Suppose that x were to belong to the interior of two distinct
simplices σ and τ of K . Then x would belong to some common
face σ ∩ τ of σ and τ (since K is a simplicial complex). But this
common face would be a proper face of one or other of the
simplices σ and τ (since σ 6= τ), contradicting the fact that x
belongs to the interior of both σ and τ . We conclude that the
simplex σ of K containing x in its interior is uniquely determined.



4. Simplicial Complexes (continued)

Conversely, we must show that if K is some finite collection of
simplices in some Euclidean space, if K contains the faces of all its
simplices, and if every point of the union |K | of those simplices
belongs the the interior of a unique simplex in the collection, then
that collection is a simplicial complex. To achieve this, we must
prove that if σ and τ are simplices belonging to the collection K ,
and if σ ∩ τ 6= ∅, then σ ∩ τ is a common face of σ and τ .



4. Simplicial Complexes (continued)

Let x ∈ σ ∩ τ . Then x belongs to the interior of a unique simplex
ω belonging to the collection K . However any point of σ or τ
belongs to the interior of a unique face of that simplex, and all
faces of σ and τ belong to K . It follows that ω is a common face
of σ and τ , and thus the vertices of ω are vertices of both σ and τ .
It follows that the simplices σ and τ have vertices in common.



4. Simplicial Complexes (continued)

Let ρ be the simplex whose vertex set is the intersection of the
vertex sets of σ and τ . Then ρ is a common face of both σ and τ ,
and therefore ρ ∈ K . Moreover if x ∈ σ ∩ τ and if ω is the unique
simplex of K whose interior contains the point x, then (as we have
already shown), all vertices of ω are vertices of both σ and τ . But
then the vertex set of ω is a subset of the vertex set of ρ, and thus
ω is a face of ρ. Thus each point x of σ ∩ τ belongs to ρ, and
therefore σ ∩ τ ⊂ ρ. But ρ is a common face of σ and τ and
therefore ρ ⊂ σ ∩ τ . It follows that σ ∩ τ = ρ, and thus σ ∩ τ is a
common face of σ and τ . This completes the proof that the
collection K of simplices satisfying the given conditions is a
simplicial complex.



4. Simplicial Complexes (continued)

4.2. Barycentric Subdivision of a Simplicial Complex

Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq. The
barycentre of σ is defined to be the point

σ̂ =
1

q + 1
(v0 + v1 + · · ·+ vq).

Let σ and τ be simplices in some Euclidean space. If σ is a proper
face of τ then we denote this fact by writing σ < τ .
A simplicial complex K1 is said to be a subdivision of a simplicial
complex K if |K1| = |K | and each simplex of K1 is contained in a
simplex of K .



4. Simplicial Complexes (continued)

Definition

Let K be a simplicial complex in some Euclidean space Rk . The
first barycentric subdivision K ′ of K is defined to be the collection
of simplices in Rk whose vertices are σ̂0, σ̂1, . . . , σ̂r for some
sequence σ0, σ1, . . . , σr of simplices of K with σ0 < σ1 < · · · < σr .
Thus the set of vertices of K ′ is the set of all the barycentres of all
the simplices of K .

Note that every simplex of K ′ is contained in a simplex of K .
Indeed if σ0, σ1, . . . , σr ∈ K satisfy σ0 < σ1 < · · · < σr then the
simplex of K ′ spanned by σ̂0, σ̂1, . . . , σ̂r , is contained in the
simplex σr of K .



4. Simplicial Complexes (continued)

Example
Let K be the simplicial complex consisting of two triangles a b d
and b c d that intersect along a common edge b d, together with
all the edges and vertices of the two triangles, as depicted in the
following diagram:
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4. Simplicial Complexes (continued)

The barycentric subdivision K ′ of this simplicial complex is then as
depicted in the following diagram:
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4. Simplicial Complexes (continued)

We see that K ′ consists of 12 triangles, together with all the edges
and vertices of those triangles. Of the 11 vertices of K ′, the
vertices a, b, c and d are the vertices of the original complex K ,
the vertices e, f, g, h and i are the barycentres of the edges a b,
b c, c d, a d and b d respectively, and are located at the midpoints
of those edges, and the vertices j and k are the barycentres of the
triangles a b d and b c d of K . Thus e = 1

2a + 1
2b, f = 1

2b + 1
2c,

etc., and j = 1
3a + 1

3b + 1
3d and k = 1

3b + 1
3c + 1

3d.



4. Simplicial Complexes (continued)

Proposition 4.3

Let K be a simplicial complex in some Euclidean space, and let K ′

be the first barycentric subdivision of K. Then K ′ is itself a
simplicial complex, and |K ′| = |K |.

Proof
We prove the result by induction on the number of simplices in K .
The result is clear when K consists of a single simplex, since that
simplex must then be a point and therefore K ′ = K . We prove the
result for a simplicial complex K , assuming that it holds for all
complexes with fewer simplices.

It is clear from the definition of the barycentric subdivision K ′ that
any face of a simplex of K ′ must itself belong to K ′. We must
verify that any two simplices of K ′ are disjoint or else intersect in a
common face.



4. Simplicial Complexes (continued)

Choose a simplex σ of K for which dimσ = dimK , and let
L = K \ {σ}. Then L is a subcomplex of K , since σ is not a proper
face of any simplex of K . Now L has fewer simplices than K . It
follows from the induction hypothesis that L′ is a simplicial
complex and |L′| = |L|. Also it follows from the definition of K ′

that K ′ consists of the following simplices:—

the simplices of L′,

the barycentre σ̂ of σ,

simplices σ̂ρ whose vertex set is obtained by adjoining σ̂ to
the vertex set of some simplex ρ of L′, where the vertices of ρ
are barycentres of proper faces of σ.



4. Simplicial Complexes (continued)

By checking all possible intersections of simplices of the above
types, it is easy to verify that any two simplices of K ′ intersect in a
common face. Indeed any two simplices of L′ intersect in a
common face, since L′ is a simplicial complex. If ρ1 and ρ2 are
simplices of L′ whose vertices are barycentres of proper faces of σ,
then ρ1 ∩ ρ2 is a common face of ρ1 and ρ2 which is of this type,
and σ̂ρ1 ∩ σ̂ρ2 = σ̂(ρ1 ∩ ρ2). Thus σ̂ρ1 ∩ σ̂ρ2 is a common face of
σ̂ρ1 and σ̂ρ2. Also any simplex τ of L′ is disjoint from the
barycentre σ̂ of σ, and σ̂ρ ∩ τ = ρ ∩ τ . We conclude that K ′ is
indeed a simplicial complex.



4. Simplicial Complexes (continued)

It remains to verify that |K ′| = |K |. Now |K ′| ⊂ |K |, since every
simplex of K ′ is contained in a simplex of K . Let x be a point of
the chosen simplex σ. Then there exists a point y belonging to a
proper face of σ and some t ∈ [0, 1] such that x = (1− t)σ̂ + t y.
But then y ∈ |L|, and |L| = |L′| by the induction hypothesis. It
follows that y ∈ ρ for some simplex ρ of L′ whose vertices are
barycentres of proper faces of σ. But then x ∈ σ̂ρ, and therefore
x ∈ |K ′|. Thus |K | ⊂ |K ′|, and hence |K ′| = |K |, as required.

We define (by induction on j) the jth barycentric subdivision K (j)

of K to be the first barycentric subdivision of K (j−1) for each j > 1.
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