MA3486—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2018 Lecture 12 (February 9, 2018)

David R. Wilkins

3.7. Convex Sets and Supporting Hyperplanes

Lemma 3.9

Let *m* be a positive integer, let *F* be a non-empty closed set in \mathbb{R}^m , and let **b** be a vector in \mathbb{R}^m . Then there exists an element **g** of *F* such that $|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$ for all $\mathbf{x} \in F$.

Proof

Let R be a positive real number chosen large enough to ensure that the set F_0 is non-empty, where

$$F_0 = F \cap \{\mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| \le R\}.$$

Then F_0 is a closed bounded subset of \mathbb{R}^m . Let $f: F_0 \to \mathbb{R}$ be defined such that $f(\mathbf{x}) = |\mathbf{x} - \mathbf{b}|$ for all $\mathbf{x} \in F$. Then $f: F_0 \to \mathbb{R}$ is a continuous function on F_0 .

Now it is a standard result of real analysis that any continuous real-valued function on a closed bounded subset of a finite-dimensional Euclidean space attains a minimum value at some point of that set. It follows that there exists an element \mathbf{g} of F_0 such that

$$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all $\mathbf{x} \in F_0$. If $\mathbf{x} \in F \setminus F_0$ then

$$|\mathbf{x} - \mathbf{b}| \ge R \ge |\mathbf{g} - \mathbf{b}|.$$

It follows that

$$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all $\mathbf{x} \in F$, as required.

3.8. A Separating Hyperplane Theorem

Theorem 3.10

Let *m* be a positive integer, let *X* be a closed convex set in \mathbb{R}^m , and let **b** be point of \mathbb{R}^m , where $\mathbf{b} \notin X$. Then there exists a linear functional $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ and a real number *c* such that $\varphi(\mathbf{x}) > c$ for all $\mathbf{x} \in X$ and $\varphi(\mathbf{b}) < c$.

Proof

It follows from Lemma 3.9 that there exists a point **g** of X such that $|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$ for all $\mathbf{x} \in X$. Let $\mathbf{x} \in X$. Then $(1 - t)\mathbf{g} + t\mathbf{x} \in X$ for all real numbers t satisfying $0 \le t \le 1$, because the set X is convex, and therefore

$$|(1-t)\mathbf{g} + t\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all real numbers t satisfying $0 \le t \le 1$.

Now

$$(1-t)\mathbf{g} + t\mathbf{x} - \mathbf{b} = \mathbf{g} - \mathbf{b} + t(\mathbf{x} - \mathbf{g}).$$

It follows by a straightforward calculation from the definition of the Euclidean norm that

$$\begin{aligned} |\mathbf{g} - \mathbf{b}|^2 &\leq |(1 - t)\mathbf{g} + t\mathbf{x} - \mathbf{b}|^2 \\ &= |\mathbf{g} - \mathbf{b}|^2 + 2t(\mathbf{g} - \mathbf{b}) \cdot (\mathbf{x} - \mathbf{g}) \\ &+ t^2 |\mathbf{x} - \mathbf{g}|^2 \end{aligned}$$

for all real numbers t satisfying $0 \le t \le 1$. In particular, this inequality holds for all sufficiently small positive values of t, and therefore

$$(\mathbf{g} - \mathbf{b}) \cdot (\mathbf{x} - \mathbf{g}) \ge 0$$

for all $\mathbf{x} \in X$.

Let

$$arphi(\mathbf{x}) = (\mathbf{g} - \mathbf{b})$$
 . \mathbf{x}

for all $\mathbf{x} \in \mathbb{R}^m$. Then $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ is a linear functional on \mathbb{R}^m , and $\varphi(\mathbf{x}) \ge \varphi(\mathbf{g})$ for all $\mathbf{x} \in X$. Moreover

$$\varphi(\mathbf{g}) - \varphi(\mathbf{b}) = |\mathbf{g} - \mathbf{b}|^2 > 0,$$

and therefore $\varphi(\mathbf{g}) > \varphi(\mathbf{b})$. It follows that $\varphi(\mathbf{x}) > c$ for all $\mathbf{x} \in X$, where $c = \frac{1}{2}\varphi(\mathbf{b}) + \frac{1}{2}\varphi(\mathbf{g})$, and that $\varphi(\mathbf{b}) < c$. The result follows.

Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n . A point **b** lies on the *boundary* of X if every open ball of positive radius centred on the point **b** intersects both the set X itself and the complement $\mathbb{R}^n \setminus X$ of X in \mathbb{R}^n .

If a subset X of \mathbb{R}^n is open in \mathbb{R}^n then every point belonging to the boundary of the set X belongs to the complement of X. If the subset X of \mathbb{R}^m is closed in \mathbb{R}^m then every point belonging to the boundary of the set X belongs to the set X itself.

Theorem 3.11 (Supporting Hyperplane Theorem)

Let *m* be a positive integer, let *X* be a closed convex set in \mathbb{R}^m , and let **b** be point of \mathbb{R}^m that belongs to the boundary of the closed convex set *X*. Then there exists a linear functional $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ and a real number *c* such that $\varphi(\mathbf{x}) \ge c$ for all $\mathbf{x} \in X$ and $\varphi(\mathbf{b}) = c$.

Proof

We may assume without loss of generality, that $\mathbf{b} = (0, 0, \dots, 0)$. We must then prove the existence of a linear functional $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ with the property that $\varphi(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in X$. Now, because the **b** is located on the boundary of the set X, there exists an infinite sequence $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \ldots$ of points of the complement $\mathbb{R}^n \setminus X$ of the set X that converges to **b**. It follows from basic linear algebra that, given any linear functional $\psi : \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n , there exists a vector **w** in \mathbb{R}^n such that $\psi(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. It therefore follows from Theorem 3.10, that there exists an infinite sequence $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots$ of non-zero vectors in \mathbb{R}^n such that $\mathbf{v}_j \cdot \mathbf{b}_j < 0$ and $\mathbf{v}_j \cdot \mathbf{x} \ge 0$ for all $\mathbf{x} \in X$. We may assume, without loss of generality, that $|\mathbf{v}_j| = 1$ for all positive integers *j*.

It follows from the Bolzano-Weierstrass Theorem (Theorem 1.4) that the infinite sequence $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots$ has a convergent subsequence $\mathbf{v}_{k_1}, \mathbf{v}_{k_2}, \mathbf{v}_{k_3}, \ldots$, where

$$k_1 < k_2 < k_3 < \cdots$$

Let $\mathbf{v} = \lim_{j \to +\infty} \mathbf{v}_{k_j}$. Then $|\mathbf{v}| = 1$. Let $\varphi(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Then

$$arphi({f x}) = \lim_{j o +\infty} {f v}_{k_j}$$
 . ${f x} \ge 0$

for all $\mathbf{x} \in X$. The result follows.