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3. Simplices and Convexity (continued)

3.7. Convex Sets and Supporting Hyperplanes

Lemma 3.9

Let m be a positive integer, let F be a non-empty closed set in
Rm, and let b be a vector in Rm. Then there exists an element g
of F such that |x− b| ≥ |g − b| for all x ∈ F .

Proof
Let R be a positive real number chosen large enough to ensure
that the set F0 is non-empty, where

F0 = F ∩ {x ∈ Rm : |x− b| ≤ R}.

Then F0 is a closed bounded subset of Rm. Let f : F0 → R be
defined such that f (x) = |x− b| for all x ∈ F . Then f : F0 → R is
a continuous function on F0.



3. Simplices and Convexity (continued)

Now it is a standard result of real analysis that any continuous
real-valued function on a closed bounded subset of a
finite-dimensional Euclidean space attains a minimum value at
some point of that set. It follows that there exists an element g of
F0 such that

|x− b| ≥ |g − b|

for all x ∈ F0. If x ∈ F \ F0 then

|x− b| ≥ R ≥ |g − b|.

It follows that
|x− b| ≥ |g − b|

for all x ∈ F , as required.



3. Simplices and Convexity (continued)

3.8. A Separating Hyperplane Theorem

Theorem 3.10

Let m be a positive integer, let X be a closed convex set in Rm,
and let b be point of Rm, where b 6∈ X . Then there exists a linear
functional ϕ : Rm → R and a real number c such that ϕ(x) > c for
all x ∈ X and ϕ(b) < c .

Proof
It follows from Lemma 3.9 that there exists a point g of X such
that |x− b| ≥ |g − b| for all x ∈ X . Let x ∈ X . Then
(1− t)g + tx ∈ X for all real numbers t satisfying 0 ≤ t ≤ 1,
because the set X is convex, and therefore

|(1− t)g + tx− b| ≥ |g − b|

for all real numbers t satisfying 0 ≤ t ≤ 1.



3. Simplices and Convexity (continued)

Now
(1− t)g + tx− b = g − b + t(x− g).

It follows by a straightforward calculation from the definition of the
Euclidean norm that

|g − b|2 ≤ |(1− t)g + tx− b|2

= |g − b|2 + 2t(g − b) . (x− g)

+ t2|x− g|2

for all real numbers t satisfying 0 ≤ t ≤ 1. In particular, this
inequality holds for all sufficiently small positive values of t, and
therefore

(g − b) . (x− g) ≥ 0

for all x ∈ X .



3. Simplices and Convexity (continued)

Let
ϕ(x) = (g − b) . x

for all x ∈ Rm. Then ϕ : Rm → R is a linear functional on Rm, and
ϕ(x) ≥ ϕ(g) for all x ∈ X . Moreover

ϕ(g)− ϕ(b) = |g − b|2 > 0,

and therefore ϕ(g) > ϕ(b). It follows that ϕ(x) > c for all x ∈ X ,
where c = 1

2ϕ(b) + 1
2ϕ(g), and that ϕ(b) < c . The result

follows.



3. Simplices and Convexity (continued)

Let X be a subset of n-dimensional Euclidean space Rn. A point b
lies on the boundary of X if every open ball of positive radius
centred on the point b intersects both the set X itself and the
complement Rn \ X of X in Rn.
If a subset X of Rn is open in Rn then every point belonging to
the boundary of the set X belongs to the complement of X . If the
subset X of Rm is closed in Rm then every point belonging to the
boundary of the set X belongs to the set X itself.



3. Simplices and Convexity (continued)

Theorem 3.11 (Supporting Hyperplane Theorem)

Let m be a positive integer, let X be a closed convex set in Rm,
and let b be point of Rm that belongs to the boundary of the
closed convex set X . Then there exists a linear functional
ϕ : Rm → R and a real number c such that ϕ(x) ≥ c for all x ∈ X
and ϕ(b) = c .

Proof
We may assume without loss of generality, that b = (0, 0, . . . , 0).
We must then prove the existence of a linear functional
ϕ : Rm → R with the property that ϕ(x) ≥ 0 for all x ∈ X .



3. Simplices and Convexity (continued)

Now, because the b is located on the boundary of the set X , there
exists an infinite sequence b1,b2,b3, . . . of points of the
complement Rn \ X of the set X that converges to b. It follows
from basic linear algebra that, given any linear functional
ψ : Rn → R on Rn, there exists a vector w in Rn such that
ψ(x) = w . x for all x ∈ Rn. It therefore follows from
Theorem 3.10, that there exists an infinite sequence v1, v2, v3, . . .
of non-zero vectors in Rn such that vj . bj < 0 and vj . x ≥ 0 for all
x ∈ X . We may assume, without loss of generality, that |vj | = 1
for all positive integers j .



3. Simplices and Convexity (continued)

It follows from the Bolzano-Weierstrass Theorem (Theorem 1.4)
that the infinite sequence v1, v2, v3, . . . has a convergent
subsequence vk1 , vk2 , vk3 , . . ., where

k1 < k2 < k3 < · · · .

Let v = lim
j→+∞

vkj . Then |v| = 1. Let ϕ(x) = v . x for all x ∈ Rn.

Then
ϕ(x) = lim

j→+∞
vkj . x ≥ 0

for all x ∈ X . The result follows.
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