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3. Simplices and Convexity (continued)

3.5. The Interior of a Simplex

Definition

The interior of a simplex σ is defined to be the set consisting of all
points of σ that do not belong to any proper face of σ.

Lemma 3.2

Let σ be a q-simplex in some Euclidean space with vertices
v0, v1, . . . , vq. Let x be a point of σ, and let t0, t1, . . . , tq be the
barycentric coordinates of the point x with respect to

v0, v1, . . . , vq, so that tj ≥ 0 for j = 0, 1, . . . , q, x =
q∑

j=0
tjvj , and

q∑
j=0

tj = 1. Then the point x belongs to the interior of σ if and only

if tj > 0 for j = 0, 1, . . . , q.
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Proof
The point x belongs to the face of σ spanned by vertices

vj0 , vj1 , . . . , vjr ,

where 0 ≤ j0 < j1 < · · · < jr ≤ q, if and only if tj = 0 for all
integers j between 0 and q that do not belong to the set
{j0, j1, . . . , jr}. Thus the point x belongs to a proper face of the
simplex σ if and only if at least one of the barycentric
coordinates tj of that point is equal to zero. The result follows.



3. Simplices and Convexity (continued)

Example
A 0-simplex consists of a single vertex v. The interior of that
0-simplex is the vertex v itself.

Example
A 1-simplex is a line segment. The interior of a line segment in a
Euclidean space Rk with endpoints v and w is

{(1− t) v + t w : 0 < t < 1}.

Thus the interior of the line segment consists of all points of the
line segement that are not endpoints of the line segment.
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Example
A 2-simplex is a triangle. The interior of a triangle with vertices u,
v and w is the set

{r u + s v + t w : 0 < r , s, t < 1 and r + s + t = 1}.

The interior of this triangle consists of all points of the triangle
that do not lie on any edge of the triangle.
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Remark
Let σ be a q-dimensional simplex in some Euclidean space Rk ,
where k ≥ q. If k > q then the interior of the simplex (defined
according to the definition given above) will not coincide with the
topological interior determined by the usual topology on Rk .
Consider for example a triangle embedded in three-dimensional
Euclidean space R3. The interior of the triangle (defined according
to the definition given above) consists of all points of the triangle
that do not lie on any edge of the triangle. But of course no
three-dimensional ball of positive radius centred on any point of
that triangle is wholly contained within the triangle. It follows that
the topological interior of the triangle is the empty set when that
triangle is considered as a subset of three-dimensional space R3.
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Lemma 3.3

Any point of a simplex belongs to the interior of a unique face of
that simplex.

Proof
let v0, v1, . . . , vq be the vertices of a simplex σ, and let x ∈ σ.

Then x =
q∑

j=0
tjvj , where t0, t1, . . . , tq are the barycentric

coordinates of the point x. Moreover 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q

and
q∑

j=0
tj = 1. The unique face of σ containing x in its interior is

then the face spanned by those vertices vj for which tj > 0.
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3.6. Convex Subsets of Euclidean Spaces

Definition

A subset X of n-dimensional Euclidean space Rn is said to be
convex if (1− t)u + tv ∈ X for all points u and v of X and for all
real numbers t satisfying 0 ≤ t ≤ 1.

It follows from the above definition that a subset X of Rm is a
convex subset of Rm if and only if, given any two points of X , the
line segment joining those two points is wholly contained in X .
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Lemma 3.4

An simplex in a Euclidean space is a convex subset of that
Euclidean space.

Proof
Let σ be a q-simplex in n-dimensional Euclidean space with
vertices w0,w1, . . . ,wq, and let u and v be points of σ. Then
there exist non-negative real numbers y0, y1, . . . , yq and

z0, z1, . . . , zq, where
q∑

i=0
yi = 1 and

q∑
i=0

zi = 1, such that

u =

q∑
i=0

yiwi , v =

q∑
i=0

ziwi .

Then

(1− t)u + tv =

q∑
i=0

((1− t)yi + tzi )wi .
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Moreover (1− t)yi + tzi ≥ 0 for i = 0, 1, . . . , q and for all real
numbers t satisfying 0 ≤ t ≤ 1. Also

q∑
i=0

((1− t)yi + tzi ) = (1− t)

q∑
i=0

yi + t

q∑
i=0

zi = 1.

It follows that (1− t)u + tv ∈ σ. Thus σ is a convex subset of
Rn.
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Lemma 3.5

Let X be a convex subset of n-dimensional Euclidean space Rn,
and let σ be a simplex contained in Rn. Suppose that the vertices
of σ belong to X . Then σ ⊂ X .

Proof
We prove the result by induction on the dimension q of the
simplex σ. The result is clearly true when q = 0, because in that
case the simplex σ consists of a single point which is the unique
vertex of the simplex.
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Thus let σ be a q-dimensional simplex, and suppose that the result
is true for all (q − 1)-dimensional simplices whose vertices belong
to the convex set X . Let w0,w1, . . . ,wq be the vertices of σ. Let
x be a point of σ. Then there exist non-negative real numbers

t0, t1, . . . , tq satisfying
q∑

i=0
ti = 1 such that x =

q∑
i=0

tiwi . If t0 = 1

then x = w0, and therefore x ∈ X .
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It remains to consider the case when t0 < 1. In that case let
si = ti/(1− t0) for i = 1, 2, . . . , q, and let

v =

q∑
i=1

siwi .

Now si ≥ 0 for i = 1, 2, . . . , q, and

q∑
i=1

si =
1

1− t0

q∑
i=1

ti =
1

1− t0

(
q∑

i=0

ti − t0

)
= 1,

It follows that v belongs to the proper face of σ that is spanned by
the vertices w1, . . . ,wq. The induction hypothesis then ensures
that v ∈ X . But then

x = t0w0 + (1− t0)v,

where w0 ∈ X and v ∈ X and 0 ≤ t0 ≤ 1. It follows from the
convexity of X that x ∈ X , as required.
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Let X be a convex set in n-dimensional Euclidean space Rn. A
point x of X is said to belong to the topological interior of X if
there exists some δ > 0 such that B(x, δ) ⊂ X , where

B(x, δ) = {x′ ∈ Rn : |x′ − x| < δ}.
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Lemma 3.6

Let X be a convex set in n-dimensional Euclidean space Rn, and
let x = (1− t)u + tv where u, v ∈ X and 0 < t < 1. Suppose that
either u or v belongs to the topological interior of X . Then x
belongs to the topological interior of X .

Proof
Suppose that v belongs to the topological interior of X . Then
there exists δ > 0 such that B(v, δ) ⊂ X , where

B(v, δ) = {x′ ∈ Rn : |x′ − v| < δ}.

We claim that B(x, tδ) ⊂ X .
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Let x′ ∈ B(x, tδ), and let

z =
1

t
(x′ − x).

Then v + z ∈ B(v, δ) and

x′ = (1− t)u + t(v + z),

and therefore x′ ∈ X . This proves the result when v belongs to the
topological interior of X . The result when u belongs to the
topological interior of X then follows on interchanging u and v and
replacing t by 1− t. The result follows.



3. Simplices and Convexity (continued)

Proposition 3.7

Let X be a closed bounded convex subset of n-dimensional
Euclidean space Rn whose topological interior contains the origin,
let Sn−1 be the unit sphere in Rn, defined such that

Sn−1 = {u ∈ Rn : |u| = 1},

and let λ : Sn−1 → R be the real-valued function on Sn−1 defined
such that

λ(u) = sup{t ∈ R : tu ∈ X}

for all u ∈ Sn−1. Then the function λ : Sn−1 → R is continuous.
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Proof
Let u0 ∈ Sn−1, let t0 = λ(u0), and let some positive real number ε
be given, where 0 < ε < t0. It follows from Lemma 3.6 that
(t0 − ε)u belongs to the topological interior of X . It then follows
from the continuity of the function sending u ∈ Sn−1 to (t0 − ε)u
that there exists some positive real number δ1 such that
(t0 − ε)u ∈ X for all u ∈ Sn−1 satisfying |u− u0| < δ1. Therefore
λ(u) ≥ t0 − ε whenever |u− u0| < δ1.
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Next we note that (t0 + ε)u0 6∈ X . Now X is closed in Rn, and
therefore the complement Rn \ X of X in Rn is open. It follows
that there exists an open ball of positive radius about the point
(t0 + ε)u0 that is wholly contained in the complement of X . It
then follows from the continuity of the function sending u ∈ Sn−1

to (t0 + ε)u that there exists some positive real number δ2 such
that (t0 + ε)u 6∈ X for all u ∈ Sn−1 satisfying |u− u0| < δ2. It
then follows from the convexity of X that tu 6∈ X for all positive
real numbers t satisfying t ≥ t0 + ε. Therefore λ(u) ≤ t0 + ε
whenever |u− u0| < δ2. Let δ be the minimum of δ1 and δ2. Then
δ > 0, and

λ(u0)− ε ≤ λ(u) ≤ λ(u0) + ε

for all u ∈ Sn−1 satisfying |u− u0| < δ. The result follows.
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Proposition 3.8

Let X be a closed bounded convex subset of n-dimensional
Euclidean space Rn. Then there exists a continuous map
r : Rn → X such that r(Rn) = X and r(x) = x for all x ∈ X .

Proof
We first prove the result in the special case in which the convex
set X has non-empty topological interior. Without loss of
generality, we may assume that the origin of Rn belongs to the
topological interior of X . Let

Sn−1 = {u ∈ Rn : |u| = 1},
and let λ : Sn−1 → R be the real-valued function on Sn−1 defined
such that

λ(u) = sup{t ∈ R : tu ∈ X}
for all u ∈ Sn−1. Then the function λ : Sn−1 → R is continuous
(Proposition 3.7).
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We may therefore define a function r : Rn → X such that

r(x) =

{
x if x ∈ X ;
|x|−1λ(|x|−1x)x if x 6∈ X .

Let x ∈ X and let u = |x|−1x. Then x = |x|u, |x| ≤ λ(u) and
λ(u)u ∈ X . It follows from Lemma 3.6 that if |x| < λ(u) then the
point x belongs to the topological interior of u. Thus if the point x
of X belongs to the closure of the complement Rn \X of X then it
does not belong to the topological interior of X , and therefore
|x| = λ(|x|−1x), and therefore

x = |x|−1λ(|x|−1x)x.
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The function r defined above is therefore continuous on the closure
of Rn \ X . It is obviously continuous on X itself. It follows that
r : Rn → X is continuous. This proves the result in the case when
the topological interior of the set X is non-empty.
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We now extend the result to the case where the topological interior
of X is empty. Now the number of points in an affinely
independent list of points of Rn cannot exceed n + 1. It follows
that there exists an integer q not exceeding n such that the convex
set X contains a q + 1 affinely independent points but does not
contain q + 1 affinely independent points. Let w0,w1, . . . ,wq be
affinely independent points of X . Let V be the q-dimensional
subspace of Rn spanned by the vectors

w1 −w0,w2 −w0, . . . ,wq −w0.

Now if there were to exist a point x of X for which x−w0 6∈ V
then the points w0,w1, . . . ,wq, x would be affinely independent.
The definition of q ensures that this is not the case. Thus if

XV = {x−w0 : x ∈ X}.

then XV ⊂ V . Moreover XV is a closed convex subset of V .
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Now it follows from Lemma 3.5 that the convex set XV contains
the q-simplex with vertices

0, w1 −w0, w2 −w0, . . . wq −w0.

This q-simplex has non-empty topological interior with respect to
the vector space V . It follows that XV has non-empty topological
interior with respect to V . It therefore follows from the result
already proved that there exists a continuous function
rV : V → XV that satisfies rV (x) = x for all x ∈ XV . Basic linear
algebra ensures the existence of a linear transformation
T : Rn → V satisfying T (x) = x for all x ∈ V . Let

r(x) = rV (T (x−w0)) + w0

for all x ∈ Rn. Then the function r : Rn → X is continuous, and
r(x) = x for all x ∈ X , as required.
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